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Interaction Matrix Based Analysis and Asymptotic Cooperative Control
of Multi-agent Systems
Zhicheng Hou, Jianxin Xu, Gong Zhang* � , Weijun Wang, and Changsoo Han

Abstract: In this paper, we investigate a decentralized asymptotic cooperative control problem of multi-agent sys-
tems with leader-follower configuration. We firstly develop a new method using a proposed “interaction matrix”
for the analysis of cooperation convergence of multi-agent systems, i.e. both consensus of the agents states and tra-
jectory tracking of the whole group can be instantaneously concluded only by observing the minimum eigenvalue
of the interaction matrix. For a multi-agent system, the external given desired trajectory can be partially obtained
(through sensing or detecting) by the leaders, but higher-order derivatives such as acceleration and jerk of the de-
sired trajectory cannot be obtained. In this case, by using some conventional control methods, the trajectory tracking
performance is always not satisfactory when a trajectory varies aggressively w.r.t. time. For the sake of asymptotic
tracking of an arbitrary given external trajectory of a multi-agent system, we develop a nonlinear cooperative con-
troller based on the robust integral of signum of cooperative error (RISCE) technique, where the interaction matrix
is used. The simulation results show asymptotic convergence of cooperation by using the proposed control, and
better performance compared to composited nonlinear feedback based PD (CNF-PD) control.

Keywords: Asymptotic tracking of arbitrary trajectory, interaction matrix, multi-agent systems, RISCE, unknown
derivatives.

1. INTRODUCTION

The cooperative control of multi-agent systems (MASs)
has attracted attentions due to its potential applications,
which include multi-vehicle system [1,2], formation flight
of unmanned air vehicles [3, 4], sensor networks [5], and
congestion control in communication networks [6]. Since
the dynamics of mobile robots such as spacecraft, under-
water vehicles can be represented by double-integrator
systems [7], the research on multiple double-integrator
systems is progressively increased in such as [2, 8–10].

The leader-follower (L-F) is considered as a simple con-
figuration of MAS. In standard L-F configuration, the ac-
tions of the following vehicles in the MAS are completely
specified by the leader’s states [11,12]. The leader can af-
fect the followers whenever it is in their neighboring set
but there is no feedback from the followers to the leader
[13,14]. Furthermore, the moving trajectory of the flock is
clearly given to the leader(s) [15]. The standard L-F con-
figuration is not decentralized, thus it is considered as a
strategy lacking robustness, because the L-F configuration
is often considered poorly robust with respect to leader’s

failure [11]. In this paper, the leader(s) moves not only
depending on the reference trajectory but also the states
of its neighbors. Additionally, the followers do not dis-
tinguish leaders from its neighbors. The aim of the coop-
erative controller design is to achieve consensus incorpo-
rate with desired trajectory tracking of the group, which is
called the “cooperative task”.

In literature, the Laplacian is widely used in the analy-
sis such as consensus [15–17], formation control [18, 19],
switching topologies [20,21], etc. However, the trajectory
tracking analysis can not be accomplished by only using
Laplacian. In this paper, developed from the work [22],
in order to analyse the consensus and trajectory tracking
of an MAS ensemble, an interaction matrix is proposed
based on Laplacian. Then, the trajectory error conver-
gence of the agents is proven to be related to the small-
est eigenvalue of interaction matrix. Different from [22],
the interaction matrix is suitable for the analysis of agents
consensus and convergence of trajectory tracking error.
Additionally, the nodes of leaders are not necessarily re-
moved from the graph.

For the sake of achieving asymptotic trajectory tracking
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of the MAS, the researchers have proposed many control
methods. The distributed average tracking (DAT) prob-
lem for a group of agents to track the average of multi-
ple time-varying reference signals is investigated in [23],
where each agent has a reference signal. Auxiliary con-
trol term is integrated in controller design. The asymptotic
formation tracking problem is investigated in [24]. The
Lyapunov-like method is used to conclude the asymptotic
convergence of the formation error. The Lyapunov-based
method is also used in [25], where the asymptotic cooper-
ation can be concluded when the sensing/communication
topology is connected.

We consider the scenario such that some states (position
and velocity) of the reference trajectory can be obtained
only by leader(s). Furthermore, the high-order derivatives
cannot be known neither by the followers nor the leaders.
In this case, the arbitrary trajectory asymptotic tracking of
the MAS is very difficult to achieve by using conventional
linear cooperative control.

The asymptotic trajectory tracking problem is investi-
gated in literature. A robust integral sliding mode con-
trol is proposed in in [26] for networked control systems,
where multiple data packet losses is investigated. The inte-
gral sliding mode based control strategy is also developed
in [18], where the disturbance is rejected by a discontin-
uous control term. A gradient-based distributed optimiza-
tion control for handling distributed optimization problem
of multi-agent systems with disturbance rejection is pre-
sented in [27]. The robust integral of signum of error
(RISE) technology is proposed in [28] to compensate for
uncertainties in systems. Since it’s a continuous control
mechanism, the RISE method solves the chattering prob-
lem in standard sliding mode control. The authors in [29]
design an estimator which estimates the state of the ideal
agent without added disturbances. Then, the RISE method
is used to eliminate the difference between the estimation
and the state of agent, such that the disturbances rejection
is achieved. The RISE technique is also implemented in
[30], where the external disturbances and neural network
approximation errors are suppressed.

The contributions of this paper can be summarized as
follows. In order to model the interaction of agents,
we first propose a new interaction matrix method, in-
stead of frequently used Laplacian method in the liter-
ature ( [15–17] to name a few). The advantage is that
both consensus of agents’ states and trajectory tracking
of the whole group can be instantaneously concluded only
by observing the minimum eigenvalue of the interaction
matrix. Under a designed admissible cooperative con-
troller, the analysis of the interaction matrix reveals im-
portant properties of the MAS (like convergence and con-
vergence rate). Furthermore, in this paper, limited infor-
mation (position and velocity) of the arbitrarily given ref-
erence trajectory is only available to one or some agents
in the group, which is different from [23–25]. In this case,

it is more difficult to attain asymptotic convergence of the
trajectory tracking error. To this end, we develop a non-
linear cooperative control based on robust integral signum
cooperative error (RISCE) method, where the interaction
matrix is used. By using the RISCE-based cooperative
control, we obtain an asymptotic cooperation of MASs by
theoretical proof and simulation illustration.

The rest of the paper is organized as follows: Some pre-
liminaries are introduced in Section 2. The admissible lin-
ear cooperative control for the nominal system without un-
certain terms is proposed in Section 3. The RISCE-based
nonlinear control part and the asymptomatic stability anal-
ysis is studied in Section 4. Some simulation results are
given in Section 5. Finally, some conclusions are stated in
Section 6.

2. PRELIMINARIES

In multi-agent systems, the interaction topologies of
agents are represented using a graph G = (V,E) with
the sets of vertices V and edges E . The set of vertices
V = {1,2, . . . ,n} is composed of the indices of agents.
The symbol |V| represents the cardinality of the set V ,
which satisfies |V| = n. The set of edges is represented
by E ⊆ V ×V . If an edge exists between two vertices, the
two vertices are called adjacent. A graph is simple if it has
no self-loops or repeated edges. In other words, the edge
(i, i) does not exist. The graph G is said to be undirected if
(i, j)∈ E ⇔ ( j, i)∈ E . In this work, simple and undirected
graphs are considered.

The adjacency matrix of G is denoted by GA = [ωa
i j] ∈

Rn×n, where ωa
i j represents the entry on the ith row and

jth column of matrix GA. Since the simple graph is
considered, we have ωa

ii = 0. Since the graph is undi-
rected, we have ωa

i j = ωa
ji and ωa

i j > 0 if (i, j) ∈ E , oth-
erwise, ωa

i j = 0. The degree matrix of G is denoted by
GD = diag{∑n

j=1 ωa
1 j, . . . ,∑

n
j=1 ωa

n j}.
The neighbour set Ni = { j ∈ V : (i, j) ∈ E} of agent

i, is composed of the indices of the agents j, which has
interaction with the agent i. In other words, if ωa

i j > 0,
then, agent j is a neighbour of agent i. The number of the
neighbours of the agent i is equal to |Ni|. In this paper,
ωa

i j = 1, when (i, j) ∈ E . Then, the degree matrix yields
GD = diag{|N1|, |N2|, . . . , |Nn|}.

We also define a diagonal matrix GL = diag{ω l
1, . . . ,ω

l
n}

representing the role of agents. If ω l
i > 0, then agent i is a

leader. Otherwise, if ω l
i = 0, agent i is a follower, for i∈V .

Then, the leader set is defined as VL = {i ∈ V : ω l
i > 0}.

The leader set VL ⊂ V is a subset of V , which contains
the indices of the leaders. Particularly, all the agents are
leaders, when VL = V . The indices of the followers are
contained in the complementary set of VL, namely, V−VL.
In this paper, we assign an agent i as a leader by setting
ω l

i = 1.
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We define the interaction matrix G for an MAS as fol-
lows

G = GD−GA +GL. (1)

Obviously, if no leader exists in the group, namely, lead-
erless formation structure, the matrix GL will be equal to
zero. Therefore, the proposed interaction matrix is an ex-
tension of Laplacian.

Multiple leaders with different desired trajectory will
lead the group to split, in this case, the consensus cannot
be achieved. In this paper, we have the following assump-
tion.

Assumption 1: When multiple leaders exist in the
MAS, the leaders share the same desired trajectory.

3. COOPERATIVE CONTROL FOR THE
NOMINAL SYSTEM

Let us assume a multi-agent system with n agents, each
agent i has the following dynamics

ẍi = ui, (2)

where ui = ūi + ũi. The two terms ūi and ũi represent the
decentralized admissible cooperative control part and the
RISCE part respectively.

As proposed in [31], let us denote the trajectory track-
ing error of agent i and the reference trajectory r(t) by

ei = xi− r−di0. (3)

Remark 1: The assignments of scalars di0 will expand
the agents to some special formation shapes. In order to
focus on the objective of this paper, we consider a simplest
way of expansion, i.e., rigid formation shape, which leads
to constant scalars di0, i ∈ V .

We first design the admissible cooperative control part
ūi as follows

ūi =− ki2 ∑
j∈Ni

ω
a
i j(ẋi− ẋ j)− ki1 ∑

j∈Ni

ω
a
i j(xi− x j−di j)

− ki2ω
l
i (ẋi− ṙ)− ki1ω

l
i (xi− r−di0). (4)

We note that di j := di0− d j0. Notations ki2 and ki1, i ∈ V
represent some positive gains. For any i, j ∈ V , the gains
satisfies

ki2

ki1
=

k j2

k j1
=

1
Λ
, (5)

where Λ is a constant scalar. The weights ω l
i = 1 if i∈ VL,

and ω l
i = 0 if i ∈ V −VL.

Substituting (3) into (4), then, for an agent, we have

ëi =− ki2 ∑
j∈Ni

ω
a
i j(ėi− ė j)− ki1 ∑

j∈Ni

ω
a
i j(ei− e j)

− ki2ω
l
i ėi− ki1ω

l
i ei− r̈. (6)

Remark 2: In (6), we observe that the second deriva-
tive of the reference trajectory appears in the error dynam-
ics of the followers (when ω l

i = 0). Knowing that the ref-
erence trajectory is not available for the follower, the term
r̈ is treated as a uncertain term for the agents.

We give a useful lemma as follows

Lemma 1: For a linear system

ẋ = Acx+δ , (7)

where Ac is Hurwitz, δ represents a bounded uncertain
vector such that ‖δ‖ ≤ δmax where δmax is a finite scalar.
The operator ‖ · ‖ represents an L∞. Then, the state of
system (7) is ultimately bounded.

Let us denote by e = [e1,e2, . . . ,en]
T a collective track-

ing error for all the agents. Then, the dynamics of e in
state space yields

d
dt

[
e
ė

]
=

[
0n×n In

−K1(GD−GA) −K2(GD−GA)

][
e
ė

]
+

[
0n×n 0n×n

−K1GL −K2GL

][
e
ė

]
+

[
0n×n

r̈1n

]
,

where K2 = diag{k12,k22, . . . ,kn2} and K1 = diag{k11,k21, . . . ,kn1}.
According to (1), we obtain the collective tracking error

dynamics in closed loop as follows

d
dt

[
e
ė

]
=

[
0n×n In

−K1G −K2G

][
e
ė

]
+

[
0n×n

r̈1n

]
, (8)

where 1n ∈ Rn represents a vector whose elements are
equal to 1.

Remark 3: Note that the second term in the right of
the equation (8) is the uncertainty, since r̈ is unknown.
Therefore, the nominal system can be represented by

d
dt

[
e
ė

]
=

[
0n×n In

−K1G −K2G

][
e
ė

]
.

We note that ‖r̈1n‖≤ ‖1n‖· |r̈|, where ‖1n‖ is a constant
finite scalar. Since |r̈| is bounded, ‖r̈1n‖ ∈ L∞.

Let us define

AG =

[
0n×n In

−K1G −K2G

]
. (9)

The solution of the tracking error dynamics in (8) is ul-
timately bounded, if matrix AG is Hurwitz and |r̈| is
bounded.

Now we will study when the matrix AG is Hurwitz. The
interaction matrix G in AG describes the “information ex-
change” among the agents in a multi-agent system. Since
the graph is undirected, G is symmetric.

Since the interaction matrix is constructed by using the
Laplacian, we will introduce some important properties of
the Laplacian for future use.
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Lemma 2 [16]: Let G be an undirected graph with
Laplacian L. Then, G is connected if and only if rank(L)=
n−1.

According to the definition of the degree matrix, the
row sum of L satisfies ∑

n
j=1 L(i· j) = 0, i ∈ V . Thus, the

Laplacian L has a zero eigenvalue corresponding to the
eigenvector 1n.

Lemma 3 [32]: A Laplacian matrix is semi-definite
positive.

Now, we give a property of the interaction matrix as
follow.

Proposition 1: Let G =
⋃

1≤ j≤|V |G j, be an undirected
simple graph, where G j represents connected subgraphs
of G. For any two subgraphs G ja and G jb , their node sets
satisfy V ja ∩V jb = Φ. Then the interconnection matrix G
in (1), is positive-definite, if V j

L 6= Φ.

Proof: For each subgraph G j, its interaction matrix can
be rewritten as G j = L j +GL

j . According to lemma 3, we
have L j ≥ 0. Considering the definition of GL

j , we know
that GL

j ≥ 0. Firstly, we suppose that there exists a nonzero
vector x ∈ Rn, which renders

xT G jx = xT (L j +GL
j )x = xT L jx+ xT GL

j x = 0.

Therefore, we must have xT L jx = 0 and xT GL
j x = 0.

We know that G j is connected. Then, according to
xT L jx = 0, the eigenvector of Li satisfies x = α1n, where
α is a nonzero scalar. According to the fact that V j

L 6= Φ,
then, GL

j ≥ 0. As a result, xT GL
j x = α21T

n GL
j 1n > 0, which

contradicts xT GL
j x = 0. Therefore, such a nonzero vector x

does not exist. Thus, for any nonzero vector x, xT G jx > 0,
namely, G j is positive-definite for each subgraph G j.

Since we have V ja ∩V jb = Φ for any two subgraphs,
thus, we conclude that the interaction matrix is block di-
agonal. Thus, G = diag{G1,G2, . . .}. Since G j > 0, then,
the interaction matrix is positive-definite. �

In proposition 1, we note that the connectivity property of
the graph of an MAS is not required for having a positive
definite interaction matrix.

We will investigate as follows the consensus condition
and the convergence of the tracking error in system (8) by
the following theorem.

Theorem 1: For an agent in a multi-agent system with
the controller ui = ūi, where ūi is in (4) and ũi = 0, the
interaction topology can be represented by a graph G.
The agent dynamics yields double-integrator shown in (2).
The dynamics of the collective tracking error (8) of the
agents with respect to a sufficiently smooth reference tra-
jectory r(t) is ultimately bounded, if the conditions in
proposition 1 are satisfied.

Proof: According to (5), the gain matrices can be rep-
resented by K1 = k1In and K2 = k2In, where In is a

real positive diagonal matrix. Then, we obtain AG =[
0n×n In

−k1InG −k2InG

]
. Note that InG may be not sym-

metric, we carry out a similarity transformation by using

matrix T =

[
I

1
2

n 0n×n

0n×n I
1
2

n

]
, i.e.,

ÃG = T−1AGT =

[
0n×n In

−k1I
1
2

n GI
1
2

n −k2I
1
2

n GI
1
2

n

]
.

Then, ÃG has the same eigenvalues as the matrix AG. We

observe that G̃ = I
1
2

n GI
1
2

n is symmetric, since G is sym-
metric. Additionally, G̃ has the same eigenvalues as InG.

In view of condition i), the eigenvalues of G are real and
positive according to proposition (1). Since In is positive
definite, then, G̃ is positive definite. Note that gains k1 and
k2 are positive scalars. Let us denote x = [xT

1 ,x
T
2 ]

T by the
eigenvector with respect to the eigenvalue λ of matrix ÃG.
Then, we have x2 = λx1 and

(λ 2In +λk2G̃+ k1G̃)x1 = 0.

We left multiply the foregoing equation by x∗1, where x∗1
represents the conjugate transpose of x1. Denoting x∗1x1 =
a, k2x∗1G̃x1 = b and k1x∗1G̃x1 = c, we obtain

aλ
2 +bλ + c = 0.

The solution of the foregoing matrix yields

λ =


−b±

√
b2−4ac

2a
, if b2−4ac≥ 0,

−b± i
√

b2−4ac
2a

, if b2−4ac < 0.

(10)

Since G̃ is positive definite, then, a > 0, b > 0 and c > 0.
We obtain that the eigenvalues of ÃG are negative or have
negative real part. Therefore, the matrix AG is Hurwitz.
Then, according to Lemma 1, the solution of the error
dynamics (8) is ultimately bounded. Furthermore, if r̈ is
available, the tracking error (1) is asymptotically stable.

�

Now, we will investigate how the interaction matrix G af-
fects the convergence rate of e. This will be the purpose
of Theorem 2.

Theorem 2: In a multi-agent system with agent dy-
namics (2), the controller referred in theorem 1 are used
for each agent. We assume that the conditions in proposi-
tion 1 are satisfied such that the corresponding interaction
matrix G is positive definite. Let us denote λmin(InG) =
λ̃min, then, the convergence rate of the tracking error e is
proportional to λ̃min.

Proof: Let us set x = [xT
1 ,x

T
2 ]

T by the eigenvector with
respect to the eigenvalue λ of matrix ÃG. Then, we have
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−k1G̃x1− k2G̃x2 = λx2. Since x2 = λx1, then we obtain

G̃x2 =−
λ 2

k2λ + k1
x2. (11)

We denote λ̃ = − λ 2

k2λ+k1
. Equation (11) implies that λ̃ is

an eigenvalue of matrix G̃ with corresponding eigenvector
x2. It is worth to note that λ̃ is real, since G̃ is symmetric
matrix. According to λ̃ , we have

λ
2 + k2λ̃λ + k1λ̃ = 0.

If we define Re(λmax) := f (λ̃ ), according to the solution
of the foregoing equation, f (λ̃ ) yields

f (λ̃ ) =


−k2λ̃+

√
k2

2λ̃ 2−4k1λ̃

2
, if k2

2λ̃
2−4k1λ̃ ≥0,

−k2λ̃

2
, if k2

2λ̃
2−4k1λ̃ <0.

Let us denote f1(λ̃ ) = −k2λ̃ +
√

k2
2λ̃ 2−4k1λ̃ and

f2(λ̃ ) =−k2λ̃ . Since the gains k1 > 0 and k2 > 0, then

−4k2
1 < 0⇒k4

2λ̃
2−4k2

2k1λ̃ −4k2
1 < k4

2λ̃
2−4k2

2k1λ̃

⇒(k2
2λ̃ −2k1)

2 < k2
2(k

2
2λ̃

2−4k1λ̃ )

⇒k2
2λ̃ −2k1 < k2

√
k2

2λ̃ 2−4k1λ̃

⇒ k2
2λ̃ −2k1√

k2
2λ̃ 2−4k1λ̃

< k2

⇒− k2 +
k2

2λ̃ −2k1√
k2

2λ̃ 2−4k1λ̃

< 0

⇒ f ′1(λ̃ )< 0,

and

f ′2(λ̃ ) =−k2 < 0.

Therefore, f1(λ̃ ) and f2(λ̃ ) are decreasing functions.
When k2

2λ̃ 2− 4k1λ̃ = 0, since λ̃ 6= 0, this implies λ̃ =
4k1
k2

2
, since the graph is connected and a leader exists, i.e.,

λ̃ > 0. We assume λ̃− < 4k1
k2

2
. Then,

lim
λ̃−→

4k1
k2
2

f1(λ̃−)

2
=

2k1

k2
=

f2(
4k1
k2

2
)

2
,

which indicates that f (λ̃ ) is continuous at point λ̃ = 4k1
k2

2
.

Therefore, f (λ̃ ) is decreasing.
Then, we can conclude that Re(λmax) is equal to

f (λ̃min). Note that λ̃min represents the minimum eigen-
value of the interaction matrix G̃. Therefore, the multi-
agent system with a relatively high λ̃min will have a rela-
tively small λmax, i.e., the maximum eigenvalue of AG will

be farer away from the imaginary axis. Then, the “worst-
case speed of convergence” (defined in [16] and used in
our multi-agent system) will increase. �

In Theorem 2, the convergence rate of the tracking error
is proven to be related to the minimum eigenvalue of ma-
trix InG. Particularly, if the gains are selected as K1 = k1In

and K2 = k2In, the convergence rate is uniquely related to
the minimum eigenvalue of matrix G. In the sequel, we
will investigate the cases that cause the minimum eigen-
value of G increasing.

Proposition 2: The minimum eigenvalue of the inter-
action matrix G for an undirected connected graph G will
increase, if the edge set E is augmented.

Proof: The graph can be represented by G = (V,E).
The corresponding interaction matrix is G. We construct
another graph Ge = (V,Ee), where the vertices set is the
same as the graph G, while the edge set Ee represents some
new links between some agents. Its interaction matrix is
denoted by Ge. Then, the graph G becomes G ′ = (V,E ∪
Ee) after extra edges have been added. The interaction
matrix for graph G ′ is denoted by G′, then, we have

G′ = G+Ge.

According to Courant-Fischer theorem, λmin(G′) =
min‖x‖=1 xT G′x=min‖x‖=1 xT (G+Ge)x>min‖x‖=1 xT Gx+
min‖x‖=1 xT Gex = λmin(G) + λmin(Ge) ≥ λmin(G). Then,
the result is obtained. �

Corollary 1: The minimum eigenvalue of the interac-
tion matrix for an undirected connected graph G will in-
crease, if the leader set VL is augmented.

Proof: The proof is similar to the proof of Proposi-
tion 2. �

According to Proposition 1, the graph connectivity is
not required for achieving cooperation convergence.

In this section, we show that the convergence of coop-
eration is only related to the smallest eigenvalue of the in-
teraction matrix, rather than the connectivity of the graph.
The development of the interaction matrix extends the
function of Laplacian. In practice, the numerical calcu-
lation of smallest eigenvalue of a matrix is usually simpler
than the calculation of second smallest eigenvalue. Thus,
the development of interaction matrix has also practical
significance.

4. ASYMPTOMATIC STABILITY ANALYSIS

In the analysis shown above, we note that there exists
unknown term r̈1n which makes the system tracking er-
ror ultimately bounded but not converging to zero. In this
section, we design the ũi based on RISCE method to attain
asymptotic convergence.
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Considering that the reference trajectory r(t) should be
bounded in actual system,we have the follow assumption.

Assumption 2: The second-order, third-order, fourth-
order derivatives of reference trajectory r(t) are included
in L∞.

r̈,
...r , r(4) ∈ L∞, (12)

where L∞ indicates the space of bounded signal.

With the assumption, we then design the ũi as follow.

ũi =
∫ t

0
(α ūi +β · sgn(ūi))dτ, (13)

where α and β are positive scalars and sgn(·) denotes the
standard signum function.

Let us define a cooperative error for an agent i as follow

eci =− ∑
j∈Ni

ω
a
i j(xi− x j−di j)−ω

l
i (xi− r−di0).

(14)

We denote by uT = [u1,u2, . . . ,un] and eT
c = [ec1, . . . ,ecn]

the collective vectorial form of the control inputs and co-
operative error of all agents. According to (4) and (3),
we can rewrite the closed-loop multi-agent system in the
following form.

ẍ = u, (15)

u = ū+ ũ, (16)

ec =−Ge, (17)

ū = K2ėc +K1ec, (18)

ũ =
∫ t

0
(α ū+β · sgn(ū))dτ. (19)

The interaction matrix G is defined in (1).

Remark 4: We note that the higher-order derivatives
(greater than one) are not needed in the controller (16).

Let us define a new variable by

er = ˙̄u+α ū. (20)

We now differentiate er and substituting from the sec-
ond derivative of (19), then obtain

ėr = K2
...e c +K1ëc +α ˙̄u. (21)

Applying the third derivative of (17) and the derivative
of (15) and (16), we get

ėr =(K2G · ...r 1n+K1ëc+α ˙̄u)−K2Ger−βK2Gsgn(ū).

Using (19) and (20), we eliminate all the derivatives of
ec and ū in the above equation, we can get the auxiliary
system state equations from (22) to (24).

ėc =K−1
2 ū−Λec, (22)

˙̄u =er−α ū, (23)

ėr =K2G · ...r 1n +(Λ+α)er− (αΛ+Λ
2 +α

2)ū

+K1Λ
2ec−K2Ger−βK2G · sgn(ū). (24)

To prove stability of the system, we state one lemma
which will be invoked later.

Lemma 4: Let the function L(t) ∈R be defined as:

L := eT
r K2(G ·

...r 1n−βGsgn(ū)), (25)

if the control gain β satisfies the following condition:

β ≥ ‖
...r ‖L∞

λmin(G)
+
‖r(4)‖L∞

α ·λmin(G)
, (26)

where ‖ · ‖L∞
denotes the L∞ norm, then we have

P(t) := ζb−
∫ t

0
L(τ)dτ≥0, (27)

where ζb is a constant scalar defined as

ζb := ūT (0)Gβ sgn(ū(0))− ūT (0)G
...r (0). (28)

Proof: Substituting (20) into (25) and integrating in
time, we get∫ t

0
L(τ)dτ

=
∫ t

0
˙̄uT (τ)G

...r (τ)1n− ˙̄uT (τ)Gβ sgn(ū(τ))

+α ūT (τ)(G
...r (τ)−Gβ sgn(ū(τ)))dτ. (29)

Then we integrate the first integral on the right hand side
by part, noticing that G · r1n = GLr1n, it becomes∫ t

0
L(τ)dτ

= ūT (τ)G · ...r (τ)1n|t0−
∫ t

0
ūT (τ)G · r(4)(τ)1ndτ

− ūT (τ)Gβ sgn(ū(τ))|t0 +
∫ t

0
α ūT (τ)·

(G
...r (τ)−Gβ sgn(ū(τ)))dτ

= ūT (t)GL...r (t)− ūT (t)Gβ sgn(ū(t))

− ūT (0)G
...r (0)+ ūT (0)Gβ sgn(ū(0))

+
∫ t

0
α ūT (τ)(GL...r (τ)−Gβ sgn(ū(τ)))

− ūT (τ)GLr(4)(τ)dτ

≤ ‖ū(t)‖ · ‖...r (t)‖−βλmin(G)‖ū(t)‖
− ūT (0)G

...r (0)+ ūT (0)Gβ sgn(ū(0))

+
∫ t

0
α‖ū(τ)‖ · ‖...r (τ)‖

−αβλmin(G)‖ū(τ)‖+‖ū(τ)‖·‖r(4)‖dτ

= ‖ū(t)‖·(‖...r (t)‖−βλmin(G))
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+
∫ t

0
‖ū(τ)‖·(α‖...r (τ)‖−αβλmin(G))+‖r(4)‖)dτ

− ūT (0)G
...r (0)+ ūT (0)Gβ sgn(ū(0)). (30)

According to (30), we can find that when (26) is satisfied,
equation (27) holds. �

With the lemma 4, we now propose the theorem about the
stability of the multi-agent system with the proposed co-
operative control.

Theorem 3: For a multi-agent system described by
(15) with the cooperative controller (16), where assump-
tion 2 is satisfied, the system states will asymptotically
track the reference trajectory, if the control gains are se-
lected to satisfy (26) and the following inequalities

2K1K2 > K4
1 +K2,

(αK2 +K1)
2 >

1
2α

In +αK1K2,

λmin(K2) ·λmin(G)> α +Λ+
1
2

Λ
2. (31)

Proof: Let us choose a positive-definite function as

V :=
1
2

eT
c ec +

1
2
(αΛ+Λ

2 +α
2)ūT ū+

1
2

eT
r er +P,

(32)

where P is defined in (27). Since Λ and α are positive
scalars, the function is positive definite. The derivative of
(32) yields

V̇ =eT
c K−1

2 ū−ΛeT
c ec +(αΛ+Λ

2 +α
2)ūT ˙̄u

+ eT
r ėr + Ṗ. (33)

According to (22), (23) and (24), the derivative V̇ satisfies

V̇ =eT
c K−1

2 ū−ΛeT
c ec− (α2

Λ+αΛ
2 +α

3)ūT ū

− eT
r (K2G−ΛIn−αIn)er +ΛeT

r K1ec

≤− eT
c (ΛIn−

1
2

K−1
2 −

1
2

K2
1 Λ

2)ec

− ūT (α2
ΛIn +αΛ

2In +α
3In−

1
2

K−2
2 )ū

− eT
r (K2G−ΛIn−αIn−

1
2

Λ
2In)er. (34)

According to the first two inequalities in (31), we con-
clude that the first two terms in the right-hand side of the
inequality (34) are negative definite. For the third term,
we have

− eT
r (K2G−ΛIn−αIn−

1
2

Λ
2In)er

≤−λ (K2) ·λ (G) · ‖er‖2+(ΛIn+αIn+
1
2

Λ
2In) · ‖er‖2

≤ 0. (35)

We can observe that V̇ ≤ 0, if and only if ec = 0, ū = 0 and
er = 0. According to LaSalle’s invariant principal, error
ec converges to origin asymptotically. If the conditions in
proposition 1 is satisfied, the trajectory tracking error e
converges to origin asymptotically, i.e. the agents’ states
track the reference asymptotically. �

5. SIMULATION RESULTS

We first interpret the relation between convergence
speed and λmin(G) in subsection 5.1. Then, the asymptotic
converging of the trajectory tracking error using RISCE is
shown in subsection 5.2

5.1. Relation of convergence speed and λmin(G)

In Section 3, we demonstrate that the convergence rate
of the tracking errors of agents is proportional to the mini-
mum eigenvalue of the interaction matrix λmin(G). In Ex-
ample 1, we first show some cases where λmin(G) aug-
ments, and in the sequel, the convergence rate increases.
In Example 2, we show a special case of the convergence
of tracking error of a multi-agent system with discon-
nected graph.

Since the added desired inter-distances of agents have
no effects on the convergence rate, we omit the terms of
di j in (4) in this subsection for the sake of simplicity.

Example 1: Consider a multi-agent system with four
agents whose dynamics is shown in (2), the admissible co-
operative control in (4) is used, where ki1 = 1 and ki2 = 1,
for all i ∈ V . The reference is a stationary point at ori-
gin. The interaction matrix of the left graph in Fig. 2 is as
follows:

G = GD−GA +GL =


2 −1 0 0
−1 2 0 −1
0 0 1 −1
0 −1 −1 2

 . (36)

Its smallest eigenvalue is λmin(G) = 0.1206. The consen-
sus of the agents states is shown in Fig. 1. The transient
time represents the time when the response of the agents
enters the error band [−0.05,0.05].

Then, we consider the following two cases.

Augmented edge set E: We assume that four extra
edges (1,4), (4,1), (2,3) and (3,2) are added in edge set
E , then the graph is represented by Fig. 2 (right).

The added four edges and the same vertices constitute
the graph Ge = (V,Ee). Then, Ge yields

Ge =


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 ,
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Fig. 1. The consensus result with interaction matrix G in
(36). The transient time represents the time when
the response of the agents enters the error band
[−0.05,0.05]. The transient time is 38 s.

Fig. 2. The graphs of a multi-agent system with Vl =
{1}. The interaction topologies are represented by
G = (V,E) (on the right) and Ge = (V,E+e) (on
the left). The new edge set E+e = E ∪ Ee, where
Ee = {(1,4),(4,1),(2,3),(3,2)}

and G+e yields

G+e = G+Ge =


3 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3

 . (37)

Then, we can calculate that λmin(G+e) = 0.1864 >
λmin(G). The simulation result is shown in Fig. 3. We ob-
serve that the convergence rate with extra edges is faster
than the MAS with original topology in Fig. 1.

Remark 5: In fact, adding new edges may increase the
total input energy of the MAS, because the trace of the
interaction matrix is augmented (Trace(G+e)>Trace(G)).
Similarly, the method such as augmented leader set VL will
also increase the convergence rate of the MAS, since the
total input energy is increased.

We introduce the second case where the total input en-
ergy maintains constant, but the minimum eigenvalue of
interaction matrix augments.

Weighted-neighbor-based protocol: In the forego-
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Fig. 3. The consensus result with interaction matrix G+e

in (37). The transient time is 24 s.

ing stated case, the neighbors of an agent are equally
weighted. For example, in the multi-agent system with in-
teraction matrix G+e (37), the agent 2 has three neighbors,
which are agents 1, 3, and 4. Their weights are “1”. If we
use the weighted-neighbor-based protocol [33] to assign
the weights in controller 4. We get the following interac-
tion matrix Gw in (38), where Trace(Gw)=Trace(G+e).

.

(38)

By reassigning the weights of agents, the new in-
teraction matrix has greater smallest eigenvalue, i.e.,
λmin(Gw) = 0.2759 > λmin(G+e) = 0.1864. The consen-
sus result using Gw is shown in Fig. 4. We can observe that
the convergence rate is increased, compared to Fig. 3. We
note that the reassignment of the weights does not change
the trace of the interaction matrix.

Therefore, we conclude that some special assignments
of the weights in (4) can augment the smallest eigenvalue
of a multi-agent system without increasing the total energy
input of an MAS.

The example 1 shows that the convergence speed of the
trajectory tracking error of a MAS is proportional to the
smallest eigenvalue of the interaction matrix.

The following example show that the cooperation con-
vergence can be achieved, although the graph is discon-
nected. This results can be predicted by observing the
positive-definite interaction matrix.

Example 2: Consider the MAS introduced in example
1. Among the four agents, there are two connected sub-
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Fig. 4. The consensus result with interaction matrix Gw in
(38). The transient time is 7 s.
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) = 0.382

Fig. 5. Multi-agent system achieve consensus with non-
singular interaction matrix, even the graph is dis-
connected. Left: the disconnected graph; Right:
the consensus of agents states.

groups V1 = {1,2} and V2 = {3,4}. In each of them, there
exists V1

L = {1} and V2
L = {3}, such that the conditions in

Proposition 1 is satisfied. Then we can write the interac-
tion matrix as follows

Gdis =


2 −1 0 0
−1 1 0 0
0 0 2 −1
0 0 −1 1

 .
We observe that λmin(Gdis) = 0.382 > 0. Therefore, the
outputs of the agents are able to achieve the convergence
of cooperation, as shown in Fig. 5, even though the graph
is disconnected.

5.2. Asymptotic convergence of the formation
In this subsection, we compare the trajectory tracking

of the multi-agent systems using respectively the RISCE
based cooperative control and the composited nonlin-
ear feedback based PD (CNF-PD) cooperative control
[31, 34]. The CNF-PD method has shown very satisfac-
tory performance in aggressive formation of MASs. It is
very robust w.r.t. the change of unknown external naviga-
tion trajectories.

Let us reconsider the MAS with information exchang-
ing graph G in the left of Fig. 2. Its interaction matrix
G is shown in equation (36), whose smallest eigenvalue
is λmin(G) = 0.1206. Then, according to (26) and (31),
the control gains are selected as Λ = 1, α = 3, β = 180,
k1i = 40, k2i = 40, i ∈ {1,2,3,4} for each agent. We sup-
pose that the agents should maintain the inter-distances
di j = 1, j ∈Ni.

In the MAS with CNF-PD cooperative control, the con-
trol inputs for the leader and follower can be written as
follows:

When i ∈ VL,

ui =− ki2 ∑
j∈Ni

(ẋi− ẋ j)− ki1 ∑
j∈Ni

(xi− x j−di j)

− ki2(ẋi− ṙ)− ki1(xi− r−d0i)

−η1 exp−η2e2
iCNF ėiCNF , (39)

where we denote eiCNF = ẋi− ẋ j−di j + ẋi− ṙ−d0i.
When i ∈ V −VL,

ui =− ki2 ∑
j∈Ni

(ẋi− ẋ j)− ki1 ∑
j∈Ni

(xi− x j)

−η1 exp−η2e2
iCNF ėiCNF , (40)

where eiCNF = ẋi− ẋ j−di j. We select k1i = 150 and k2i =
100, i ∈ {1,2,3,4}. The selection protocol of the CNF
gains is given in [31]. Here, we select η1 = 100 and η2 =
1.

Three tests, where the reference trajectories are r1 : x =
3sin(t), r2 : x = 3sin(2t) and r3 : x = 3sin(3t), are given re-
spectively. The objective is that the four agents cooperate
to maintain the given inter-distances di j, meanwhile, the
centre of the formation (COF) should track the external
given trajectories r1, r2 or r3.

The aim of giving three sinusoidal trajectories of dif-
ferent frequencies is to show if the proposed cooperation
control has good robustness w.r.t. to different external tra-
jectories. Same tests are also processed with using the
CNF-PD method for the purpose of comparing.

The initial states are x0 = [−1,−2,−1,−2]T for all
these tests. The simulation results are shown in figures
from Fig. 6 to Fig. 8.

In Fig. 6, we observe that the states of agents can track
the given trajectory r1 using both CNF-PD (on top of
Fig. 6) and RISCE (on middle of Fig. 6) based cooperation
controllers. The foregoing selected control gains make
satisfactory performance. According to the sub-figure on
bottom of Fig. 6, the error of COF w.r.t. the given trajec-
tory converges asymptotically to origin by using RISCE
based cooperation control.

Let us redo the test by giving different trajectories r2

and r3 in Fig. 7 and Fig. 8. With the same control gains and
initial conditions, the tracking accuracy is getting worse
when CNF-PD method is used (see the sub-figure on top
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Fig. 6. Responses of agents states (xi, i = {1,2,3,4},
when r1 : x = 3sin(t)) with CNF-PD (top) and
RISCE (middle) based cooperative control meth-
ods. The sub-figure on the bottom represents the
errors of the centre of formation (COF) w.r.t the
trajectory r1 by using these two controllers.

of Fig. 7 and Fig. 8). Furthermore, the error of COF has
greater oscillation around the origin (see the red dashed
lines in the sub-figure on bottom of Fig. 7 and Fig. 8).

Nevertheless, by using the RISCE based cooperative
control, not only the agents keep the desired inter-distance
(sub-figure on middle of Fig. 7 and Fig. 8), but also the er-
ror of COF converges to the origin asymptotically (solid
lines in sub-figures on bottom of Fig. 7 and Fig. 8), even
different trajectories are given.

A planar formation of four agents using our proposed
cooperation controller is given in Fig. 9, where we assume
that the motion on x and y directions are decoupled into
two second-order systems, such assumption is practical in
the control of robots like quadrotors and AGVs.

We select the same control gains as foregoing men-
tioned. The desired trajectory r is represented by rx : x =
3sin(t) and ry : y =−3cos(0.25t)−1.5cos(t)−0.75sin(t)
respectively. The initial states are x0 = [−1,−2,−1,−2]T

and y0 = [−1,−2,−4,−3]T . Fig. 9 shows that the agents
form a rectangular pattern, and the COF asymptotically
track the desired trajectory.

In this section, we first introduce some cases where the
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Fig. 7. Responses of agents states (xi, i = {1,2,3,4},
when r2 : x = 3sin(2t)) with CNF-PD (top) and
RISCE (middle) based cooperative control meth-
ods. The sub-figure on the bottom represents the
errors of the centre of formation (COF) w.r.t the
trajectory r2 by using these two controllers.

convergence rate increases in terms of the increase of the
minimum eigenvalue of interaction matrix. Then, the sim-
ulation results validate that the proposed cooperative con-
trol can guarantee an asymptotic convergence of an MAS.
Furthermore, it shows better performance than the CNF-
PD cooperative control.

6. CONCLUSION

In this paper, the interaction matrix is first proposed to
analyse the consensus of agents states and the convergence
of desired trajectory tracking error. Some important prop-
erties, such as the convergence and convergence rate of the
desired trajectory tracking error of an MAS are proven to
be related to the smallest eigenvalue of the interaction ma-
trix. Then, in order to obtain an asymptotic convergence,
we develop a nonlinear cooperative control based on ro-
bust integral signum cooperative error (RISCE) method,
where the interaction matrix is used. Both the theoretical
proof and the simulation results show that the proposed
controller make the multi-agent system attaining asymp-
totic convergence to arbitrary trajectory tracking error. A
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Fig. 8. Responses of agents states (xi, i = {1,2,3,4},
when r3 : x = 3sin(3t)) with CNF-PD (top) and
RISCE (middle) based cooperative control meth-
ods. The sub-figure on the bottom represents the
errors of the centre of formation (COF) w.r.t the
trajectory r3 by using these two controllers.
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Fig. 9. The formation of four agents with their COF track-
ing the desired trajectory, using the RISCE based
cooperative control.

comparison of the proposed control approach is given to
show the improvements on the trajectory tracking w.r.t the
CNF-PD controller.
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