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Fault Detection Method Using Multi-mode Principal Component Analysis
Based on Gaussian Mixture Model for Sewage Source Heat Pump System
Young-Jun Yoo ■

Abstract: This paper presents an algorithm for fault detection of a sewage heat pump system by designing multi-
mode principal component analysis with Gaussian mixture model. If the heat pump system fails, the loss of energy
and time is enormous, therefore the fault detection of the system is important. For this purpose, this study proposes a
fault detection method using multi-mode principal component analysis with Gaussian mixture model. The data were
clustered into multi-mode of Gaussian on principal component subspace. Based on the multi-model, the values of
Hotelling’s T 2 and SPE were calculated and used for the fault detection as indexes that are compared performance
with clustering model using k-means and k-medoids algorithm as well as conventional PCA. Actual data of the
sewage heat pump were used to verify the proposed method. The results of the fault detection performance show
that the proposed model shows the best performance of fault detection among the conventional, k-means, and k-
medoids PCA models.

Keywords: Fault clustering, fault detection, Gaussian mixture model, principal component analysis, sewage source
heat pump system.

1. INTRODUCTION

A heat pump is a high-efficiency device that transfers
heat from a colder area to a hotter area by using me-
chanical energy. In addition, the electrically driven heat
pump is a clean and safe system that operates with air,
water, geothermal (ground water) as a heat source, no
emission of harmful gas, no risk of explosion. Because
of the advantages of the system, many researchers have
conducted numerous studies about the heat pump system
recently. Baek [1] investigated the feasibility of the waste
water usage for a heat pump as a heat source and to ob-
tain engineering data for system design. Funamizu [2]
presented characteristics of heat energy in waste-water,
reuse plans, and some experiences in Japan. This paper
discusses full-scale reuse projects for heating and cooling
in the Tokyo metropolitan districts and project for melt-
ing snow in Sapporo city. The soft-dirt characteristic of
the heat-exchanging pipe in a sewage heat pump system
is studied [3, 4]. These studies present the technical and
economic analysis of the increase in heat pump tempera-
ture in the sewage disposal process. However, the sewage
heat pump system faults could be caused such as evap-
orator/condenser fault by reduction of heat transfer area
wastewater sludge, an increment of superheat temperature
by expansion valve malfunction, and volumetric efficiency
reduction by compressor malfunction [5]. The faults of
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the heat pump system may cause energy wastage, sys-
tem unreliability, and shorter equipment life. Therefore,
it is necessary to develop a fault detection algorithm of a
sewage source heat pump equipment to operate with high
efficiency [6].

When a mechanical and chemical system is defective
or damaged, the system downtime can be caused, and the
social and economic damage resulting from this can be
enormous. Therefore, it is important to carry out preven-
tive maintenance before a failure occurs, and most sys-
tems currently rely on preventive maintenance to be per-
formed at regular time intervals. However, periodic pre-
ventive maintenance is carried out at regular intervals, re-
gardless of whether the system is actually defective or not.
Therefore, it is costly to lose unnecessary replacement of
normal parts and there is a limit to prevent sudden system
failure. In order to prevent these sudden system failures,
research through the data-driven approach using statisti-
cal methods [7–12] or optimization algorithm [13–18] has
been conducted recently such as rotating machinery fields
[13, 14, 17, 18]. These kinds of approaches are to deduce
the reliability of the system.

A principal component analysis (PCA) is a one of the
most widely used the fault monitoring methods of the
data-driven method. PCA is a multivariate statistical anal-
ysis method that reduces dimensions while maintaining
essential information of huge data. This method improves
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defect detection and diagnostic capability. Studies on the
application to the PCA process industry are discussed in
[7, 8].

In the HVAC and refrigeration field, a study on fault
diagnosis using PCA [20–23] was carried out. The
study [20] proposes the method exploits PCA to distin-
guish anomalies from normal operation variability and a
reconstruction-based contribution approach to isolate vari-
ables related to faults. Some statistical training data clean-
ing strategy is presented [21] for PCA-based chiller sensor
fault detection, diagnosis and data reconstruction method.
In this study, the training data quality can be improved by
the presented data-cleaning strategy, finding and remov-
ing outliers from the original training data set. Nunzio
Cotrufo and Radu Zmeureanu [22] proposed new PCA-
based method of soft fault detection and identification for
the ongoing commissioning of chillers, which is com-
posed of the three main phases: threshold model train-
ing, outliers detection, and variables identification. PCA-
R-SVDD method [23] is proposed for the diagnosis of
chillers. The proposed method shows significant improve-
ment compared with the traditional methods due to the
better fault data distribution and tighter monitoring statis-
tic.

Application of traditional process monitoring methods
based on the assumption that the process has only one sta-
ble operation region may cause false alarms when the pro-
cess is operated under another steady-state nominal oper-
ating mode. This is because of different modes of the pro-
cess that has different statistical properties such as mean
value, variance, and correlation between variables. The
multi-mode PCA modeling using Gaussian mixture model
[9, 10] or k-nearest neighbor algorithm [11, 12] are pre-
sented to cover multiple operation modes with different
statistical properties.

Likewise, sewage source heat pump system may not
have one feature of mean value, variance, and correla-
tion. The paper [6] proposes a fault detection algorithm
using PCA of one mean and variance. In this paper, the
PCA-based fault detection method has been proposed for
the sewage source heat pump system. Some actual op-
erational data of the sewage source heat pump unit were
collected and a PCA model is designed. The square pre-
diction error (SPE) and Hotelling’s T 2 are used to detect
faults. However, the accuracy of the fault detection de-
creases even though, Hotelling’s T 2 exceeds its limit at
some operation point.

This paper proposes a fault detection algorithm based
on multi-mode PCA for the sewage heat pump system.
Most of the multi-mode PCA is modeled in 2-dimensional
principal component subspace [9–12]. However, if the
proportion of accumulation of the eigenvalue of the first
and second principal components is not sufficient, the
clustered data could not describe the trend of the original
data. To extend the availability of the multi-mode PCA,

this paper clusters the data using Gaussian mixture model
in 3-dimensional principal component (PC) subspace that
includes the third PC component. Using the Gaussian
mixture model, the data are clustered recursively with the
parameters of the mean and standard deviation according
to the number of specified mode. Base on the clustered
data group, the PCA model can be designed. When test
data come in the Gaussian mixture model, the proposed
algorithm decides which group the data belongs to, calcu-
lates Hotelling’s T 2 and SPE for that group, and uses them
for fault detection. The faulty state is determined by the
proposed multi-mode clustering model without any previ-
ously defined set-point information. The proposed model
is verified with sewage heat pump data and compared
performance with clustering model using k-means and k-
medoids algorithm as well as conventional PCA. The T 2

chart and the SPE chart show that the proposed model
shows the best performance of fault detection among the
conventional, k-means, and k-medoids PCA models.

2. PRELIMINARY

2.1. Principal component analysis
PCA is a multivariate statistical analysis method that re-

duces dimensions while maintaining essential information
of huge data. This method reduces the dimensionality of
the data and analyzes them by newly setting the principal
component (PC) in the order that the variable’s covariance
is the largest.

The measured data matrix X ∈ Rn×p, which has n ob-
servations (samples) of p measurement variables, can be
decomposed to produce loading vectors corresponding to
the largest singular values in order to capture the varia-
tions of the variables optimally. PCA determines a set of
principal component loading matrix V ∈ Rn×p and diago-
nal matrix Λ ∈ Rp×p, ordered by the amount of variance
explained in the loading vector directions and solving an
eigenvalue decomposition of the sample covariance ma-
trix Σ ∈ Rn×n as

Σ =
1

n−1
XT X =V ΛV T , (1)

where Λ = diag(λ1,λ2, ·,λp) and λ1,λ2, ·,λp are arranged
in the descending order.

A PCA model is usually built from a few PCs. These
principal components are the results of decomposing a
data matrix X using PCA as follows:

X = TV T +E =
k

∑
i=1

tivT
i +E, (2)

where k is the number of principal component loading
vectors, T = [t1, t2, · · · , tk] ∈ Rn×k is a principal compo-
nent scores, V = [v1,v2, · · · ,vk] ∈ Rp×k is the loadings to
be estimated, E ∈ Rn×p is the residual term, vi ∈ Rp is a
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principal component loading vector and ti ∈ Rn is score
vector of the PCA model.

2.2. Hotelling’s T 2 calculation
Hotelling’s T 2 statistic represents the difference be-

tween the point at which the original data set is projected
onto the PC and the PC center point. If the scores exceed
the confidence limit of Hotelling’s T 2 at i-th sample point,
an abnormality of the system behavior could be detected.
The T 2 statistic for the lower-dimensional space can be
calculated for each new observation x ∈ Rp by:

T 2 = xT P(Σa)
−2PT x, (3)

where Σa represents the non-negative real eigenvalues cor-
responding to the P principal components.
The upper confidence limit for T 2 is obtained using the
F-distribution:

T 2
a,n,α =

a(n−1)
(n−a)

Fa,n−a,α , (4)

where n is the number of samples in the data set, a rep-
resents the number of principal components and α shows
the level of significance.

Remark 1: SPE or Q statistics shows the variability
of the residual subspace (RS). This can also be used as
an indicator. SPE values and calculation formulas can be
found in [7–12].

2.3. Process flow of conventional PCA fault detection
The process using conventional PCA (Fig. 1) is de-

scribed for the fault detection. In order to make a PCA
model, pre-processing of model data should be performed
first. It is necessary to determine which variables to use,
remove outliers, and normalize the data to design PCA
modeling. PCA model is designed through the process of
selecting the number of PCs so that the cumulative value
of eigenvalue can represent the characteristics of the data
and determining the control limit. The method of monitor-
ing the fault is to calculate the value of T 2 by normalized
test data with the designed PCA model. In this method, it
is determined a fault operation depending on whether the
value of T 2 is exceeded or not.

Model data collection 
- Data Preprocessing 

- Data normalization 

PCA Modeling 
- Number of PC selection 

- Control limit calculation 

Hotelling’s 𝑇2  
Statistics Exceed? 

Test data collection 
- Data Preprocessing 

- Data normalization 

Test data is  

labeled  

as normal 

Test data is  

labeled  

as abnormal 

PCA Model 

Yes 

No 

Fig. 1. Flowchart of fault detection with the conventional
PCA.

3. PROPOSED METHOD

Conventional PCA-based fault monitoring methods are
assumed that the monitoring variables are normally dis-
tributed with single mean and covariance. However, for
real cases of the monitoring process, the variables have a
more complex distribution because of the nonlinearity or
the dynamics of the system and multi-operation mode. In
order to deal with these complex probability distributions,
this section provides a method to perform more accurate
fault monitoring.

3.1. Gaussian mixture clustering
Gaussian mixture clustering is an algorithm that finds

the most optimal Gaussian mixture model (GMM) of the
mean and covariance if the number of clustering groups
is decided. In other words, when the data are assumed to
be k-Gaussian, GMM algorithm finds k-group Gaussian
model that has values of mean and covariance which could
explain the most data well.

Among the most famous algorithm to solve the
GMM is Expectation Maximization (EM) algorithm. In
expectation-step (E-step), the value of the latent variable
is found with the highest “expectation” when µ , Σ, π are
currently given. In maximization-step (M-step), newly
estimated latent variable is used to calculate its value to
maximize µ , Σ, π . The EM algorithm is repeated E-step
and M-step are alternately performed until the likelihood
value is converged.

In order to solve this problem using the EM algorithm,
GMM will introduce a latent variable z ∈ Rk. The j-th
variable of z, z j is a binary random variable and satisfies
following conditions that p(z j = 1) = π j, Σ jz j = 1 and
Σ jπ j = 1.
The marginal probability of z can be computed as follows:

p(z) = Π jπ
z j
j , (5)

and the conditional distribution of the specified data x can
be expressed as

p(x | z) = Π jN(x | µ j,Σ j)
z j . (6)

Therefore, the joint distribution could be formulated and
marginalized as

p(x) = Σzp(x,z) = Σzp(z)p(x | z) = Σzπ jN(x | µ jΣ j).
(7)

Based on the above results, it is possible to apply the EM
algorithm. First, p(z j = 1 | x) is calculated in E-step. This
is the process of calculating probability or posterior be-
longing to the cluster of j for each sample data. This value
can easily be calculated via the Bayes’ rule as follows:

p(z j = 1 | x) =
p(z j = 1)p(x | z j = 1)

Σk
jp(z j = 1)p(x | z j = 1)
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=
π jN(x | µ j,Σ j)

Σk
jπ jN(x | µ j,Σ j)

. (8)

Next, when z is fixed, the remaining parameters can be
calculated as

µ j =
Σip(zi j = 1 | x)xi

Σip(z j = 1 | x)
, (9)

Σ j =
Σip(zi j = 1 | x)(xi −µ j)(xi −µ j)

T

Σip(z j = 1 | x)
, (10)

π j =
Σip(z j = 1 | x)

N
. (11)

The performance measure of GMM is log likelihood
function. That is, the objective of the GMM clustering
is to find a parameter that maximizes the probability of
the data x ∈ Rn of a given parameter. Log likelihood is
defined by ln p(x | θ), where p(x | θ) is the component
density given parameter θ . The parameter θ will be found
is composed of the mean µ j, covariance Σ j of each Gaus-
sian, and the probability π j that each sample data belongs
to each Gaussian. Therefore, if the multi-Gaussian distri-
bution of xi of given µ j, Σ j is defined as N(xi | µ j,Σ j),
and the latent variable z is introduced, the log likelihood
function can be written as

ln p(x | π,µ,Σ) =
n

∑
i

ln
k

∑
j

π jN(xi | µ j,Σ j). (12)

In summary, the likelyhood function (12) is used to update
the parameters (9), (10), and (11) in the M-step.

In this paper, the projected data on PC subspace is seg-
mented into mean and covariance for each group, cluster
them and design accurate stochastic modeling for various
operations and distributions using GMM with the EM al-
gorithm.

3.2. Hotelling’s T 2 or SPE calculation with mode de-
cision

In order to calculate T 2 of multi-mode PCA, it is neces-
sary to confirm what data set belongs to the correspond-
ing Gaussian model. The mode of the Gaussian model is
decided by the Mahalanobis distance corresponding sam-
ple data, sub-mode mean µsub j and sub-mode covariance
Σsub j . The mode that is the smallest Mahalanobis distance
among the sub-mode is selected (Fig. 2) to the mode of
the i-th data point xi. This can be formulated as follows:

mxi

= argmin
j∈[1,2,··· ,m]

√
(PT xi −µsub j)

T Σsub j(PT xi −µsub j).

(13)

With the i-th sample mode mxi , the Hotelling’s T 2 or the
square prediction error is calculated.

PC1 

PC2 

PC3 

𝑥𝑖 → 𝑃𝑥𝑖 

𝑃𝑥𝑛 

(𝜇𝑠𝑢𝑏3, Σ𝑠𝑢𝑏3 ) 

(𝜇𝑠𝑢𝑏1, Σ𝑠𝑢𝑏1 ) 

(𝜇𝑠𝑢𝑏2, Σ𝑠𝑢𝑏2 ) 

𝐷1 

𝐷2 

𝐷3 

min 𝐷𝑗 = 𝐷3  → 𝑚𝑥𝑖
= 3 

Fig. 2. Description of the sub-mode selection.

Remark 2: The proposed PCA modeling is achieved
in the following steps. First, data are projected to PC
subspace. In this step, the reduction in data dimension
achieved through PCA. Second, with projected data are
clustered by Gaussian mixture model. This method could
eliminate the difficulty of the determination of GMM by
[9]. The number of parameters in a mixture model with m
local Gaussian models increases by 2m(p+1) when a new
variable is added to p observed variables. Moreover, the
number of parameters increases by p2+ p when additional
local Gaussian model is added to mixture model.

Remark 3: The pseudo-code of the proposed cluster-
ing algorithm is shown in Fig. 3. The input data X ∈Rn×p

is clustered into the modes. This algorithm finds the pa-
rameters θm using Expectation and Maximization step un-
til the convergence of the parameter. After convergence,
the parameters are used to find the mode of the data sam-
ples and calculate the performance index of T 2 or SPE.

▶ Input: Given measured data              for each instance 𝑥𝑖 ∊ 𝑅𝑝, 
            the correspondent mode 

𝑋 ∊ 𝑅𝑛×𝑝 
𝑚 ∊ {0,1, … , 𝑘} 

▶ Output: the mode 𝑚 of the each    

▶ Algorithm: 
 
    Do: 
    - Initialize Parameters θ𝑚 = { μ𝑗  9 , Σ𝑗 10 , π𝑗  11 } 

    - Repeat until convergence 
       : Expectation step 
            - compute Expectation using 8  
       : Maximization step  
            - update the parameters, μ𝑗  9 , Σ𝑗 10 , π𝑗  11  using 

    log likelihood function 12  
 
    - Save parameters μ𝑗 , Σ𝑗, π𝑗 with mode 𝑘 

    - Compute the mode decision each 𝑥𝑖 using 13  

𝑥𝑖 ∊ 𝑅𝑝 

Fig. 3. Pseudo code of the proposed clustering algorithm.
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3.3. Process flow of multi-mode PCA fault detection
Fig. 4 illustrates flowchart of the proposed fault detec-

tion method using multi-mode PCA using GMM. Simi-
lar to the conventional PCA method, model-data are col-
lected and normalized with the mean and the standard de-
viation of the global PCA model and projected into the
global PC subspace. The difference of the model between
the conventional and the proposed is that the number of
modes should be set to cluster multi-mode PCA using
GMM. After designing the multi-mode PCA model, test-
data are also normalized and matched the specified mode
by (13). After mode of the test data point is decided, the
Hotelling’s T 2 or SPE value are then calculated with the
matched mode. If Hotelling’s T 2 or SPE value exceeds
its limit, fault operation could be detected, if not, nor-
mal operation is decided. In the next chapter, the pro-
posed fault detection algorithm is described using multi-
mode PCA method by checking the value of T 2 or SPE for
sewage source heat pump system. The proposed scheme is
compared to conventional PCA as well as other clustering
methods such as k-means and k-medoids.

4. MONITORING RESULTS FOR SEWAGE
SOURCE HEAT PUMP SYSTEM

4.1. Sewage source heat pump system description
The heat pump system in [6] used for validation for

fault detection and monitoring is shown in Fig. 5. It re-
ceives heat from the sewage stage at the intermediate wa-
ter side and supplies heat to composite side through the
heat pump via phase change of R22 refrigerant. The heat
pump system consists of three heat exchangers. The heat
exchanger of sewage/intermediate water transfers the heat
of the sewage to the intermediate water. The transferred
heat is absorbed by the heat exchanger while the refriger-
ant vaporizes in the heat pump evaporator. The R22 refrig-
erant is liquefied in the heat exchanger of the condenser

Model data collection 
- Data Preprocessing 

- Data normalization 

PCA Modeling 
- Number of PC selection 

- Control limit calculation 

 

- Mode number selection 

- Mode clustering with 

     Gaussian  Mixture Model 

Hotelling’s 𝑇2  
Statistics Exceed? 

Test data collection 
- Data Preprocessing 

- Data normalization 

Test data is  

labeled  

as normal 

Test data is  

labeled  

as abnormal 

Operation Mode Decision  

based on Gaussian Model 

𝑇2 Calculation 

by Mode Decision 

PCA Model 

Yes 

No 

Fig. 4. Flowchart of a fault detection with the proposed
multi-mode PCA.

Table 1. Measured data details.

Data Description Unit

T1 Evaporator water inlet temperature ◦C

P1 Evaporator water inlet pressure Mpa

T2 Evaporator water outlet temperature ◦C

P2 Evaporator water outlet pressure Mpa

T3 Condenser water inlet temperature ◦C

P3 Condenser water inlet temperature Mpa

T4 Condenser water outlet temperature ◦C

P4 Condenser water outlet temperature Mpa

T5 Compressor gas temperature ◦C

P5 Compressor high temperature Mpa

P6 Compressor low temperature Mpa

I Compressor current A

side to release heat to the composite side to provide the
user with a warm heat source. Twelve measurement pa-
rameters were selected to detect the fault of the system,
shown in Table 1 which shows the details of the measure-
ments. In addition, Fig. 5 shows the measurements’ loca-
tion in the system.

As Fig. 5 shown, the main equipment of this sys-
tem includes sewage/intermediate heat exchanger, evapo-
rator, condenser, compressor and thermal expansion valve.
Also, the system data are shown as the measured tem-
perature (Fig. 6(a)(b)(c)), pressure (Fig. 6(d)(e)(f)), and
compressor current (Fig. 6(g)). The measurement point of
each variable is shown in the diagram of the sewage heat
pump (Fig. 5). The sampling rate was measured once ev-
ery 2 hours, and data were collected in December 2016.
Except for some points, it can be confirmed that the sys-
tem operated stably.

First, in the 73rd sample, the temperature of the con-
denser water out drops sharply from 42 ◦C to 4.175◦C.
The second operation fault point is indicated by the 253rd
sample, which can be checked in condenser temperature
(Fig. 6(a)) and pressure (Fig. 6(d)). The temperature drops
by 4 ◦C in water in/out and the pressure increases by
5.8% at 0.8 MPa for water in. In the case of water out,
it increases sharply by 3.97% from 0.78 MPa. For the
third fault point, the gas temperature (Fig. 6(c)) sharply
decreases at the 349th sample. In the following section,
the proposed anomaly detection method is compared with
the conventional PCA-based anomaly detection method
as well as other clustering method based on PCA for the
mentioned data.

4.2. PCA modeling with the proposed method
In order to model both the conventional PCA and the

proposed multi-mode PCA, the number of PCs must be
chosen. Three PCs were able to express the trend of 12
data (400 samples) in Section 4.1 by 77.3%, and reduced
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the dimension of data on three PCs.
The number of GMM models was determined to be

three. This is because the number of GMMs with a min-
imum average Hotelling’s T 2 value is most representative
of the probability of a normal state when a model is cre-
ated using given data. As shown in Table 2, the average
value of Hotelling’s T 2 is the smallest (1.9189) when the
number of Gaussian mixture models is three.

Remark 4: The minimum average of T 2 vaule shows
data distribution is close to gaussian models mean with
small covariance, therefore, the gaussian model with min-
imum average of T 2 vaule shows the more fittable the sta-
tistical bounds (95% or 99% confidence rate) with given
data. This could be shown in the result of the T 2 value
(Fig. 7) with various numbers of the Gaussian mixture
model. The red box regions show the fault points that is
judged incorrectly using Gaussian mixture model (red- (a)
model number 1, (b) model number 2,(c) model number 4
(d) model number 5).

In the three-dimensional representation of diminished
data, Hotelling’s T 2 limit when applying conventional
PCA was visualized in Fig. 8a. The inside of the black el-
lipsoid indicates the 95 % confidence interval (1.96 σ ) and
the outside indicates the 99% confidence interval (2.58 σ ).
As one can see in Fig. 8(a), several points exceed the con-
trol limit.

Fig. 8(b) shows the result of applying the proposed
multi-mode PCA. The data are clustered into three modes
using GMM. The means and covariances of the three
modes are the following values:

µsub1 =
[
−3.4052, 0.6909, 0.1822

]
,

Σsub1 =

3.1418 1.1626 0.2074
1.1626 2.6238 −0.5225
0.2074 −0.5225 1.9548

 ,

µsub2 =
[
0.6795, 0.2893, −0.4674

]
,

Σsub2 =

 3.4851 0.2019 −0.0360
0.2019 1.7552 0.0781
−0.0360 0.0781 1.1995

 ,

µsub3 =
[
1.6383, −0.1903, 0.2089

]
,

Σsub3 =

2.0000 0.6850 0.1776
0.6850 1.7832 0.1842
0.1776 0.1842 1.3753

 .

For proposed multi-mode PCA, 95% confidence inter-
vals were visualized in PCA in Fig. 8(b) like conven-
tional PCA in Fig. 8(a). The PC scores can be confirmed
that many points fall within the control limit (Fig. 8(b))
whereas several points are out of the confidence limit for
conventional PCA (Fig. 8(a)). In addition, the scores can
be clustered by the color of which mode belongs (mode-1:
blue, mode-2: red, mode-3: green).

Furthermore, two clustering algorithms of k-means
(Fig. 8(c)) and k-medoids (Fig. 8(d)) are applied to the
same data. Comparing the Fig. 8b,c,d of each algorithm
has some yellow highlighted points that belong to the dif-
ference the group. As a result, the mean and covariance
matrix of each group are different, and the shape of the
confidence rate bounds (Fig. 8(b), (c), (d) ellipsoid) are
different. The fault detection index (T 2 and SPE) val-
ues of the proposed multi-mode PCA using GMM will be
compared and analyzed in Section 4.3.

4.3. Comparison of fault detection performance
In the flowchart (Fig. 4), the value of Hotelling’s T 2

is a measure of making decisions whether the operation
is abnormal or normal. In the case of the conventional
PCA (Fig. 9(a) - gray), some interval may be decided as
an abnormal operation in red areas (sample interval of the
17−26th, the 82−90th, and the 267−274th) despite the
normal operation. The proposed method (Fig. 9(a) - blue)
detects as a fault for three samples. The first point is the
condenser water out temperature drop point (73rd sam-
ple). The second one is the 253rd sample point of con-
denser temperature falling and pressure rising. The final
point is the 349th point that is monitored by gas tempera-
ture falling.

Fig. 9(b) shows T 2 chart values using various clustering
algorithms to compare the performance of the proposed
multi-mode PCA to the other clustering algorithm based
models. The T 2 chart of k-medoids (Fig. 9(b) - red) shows
that the fault detection model using k-means clustering is
not suitable as a fault detection model because most of T 2

values exceed control limits and are considered faulty in
normal operation. The similar trend can be shown in the
k-medoids models (Fig. 9(b) - green).

Fig. 10 shows SPE values to quantify the perfor-
mance of the algorithm. The proposed multi-mode PCA
(Fig. 10(a) -blue) model detect the faults at the sample
of the 73rd (the condenser water out temperature drop),
and 349th (gas temperature falling) whereas conventional
PCA (Fig. 10(a) -gray) detects incorrectly faults with sev-
eral points.

Fig. 10(b) shows SPE chart values using various clus-
tering algorithms (Fig. 10(b)- blue (proposed) , red (k-
means), green (k-medoids)) to compare the performance
of the proposed multi-mode PCA. The results were not
significant differences in SPE values except for the con-
ventional PCA model. This results show that the resid-
ual values projected points are all small on each model of
the clustering algorithm(10(b)- blue (proposed) , red (k-
means), green (k-medoids)).

5. CONCLUSION

This paper presents the fault detection of sewage source
heat pump using multi-mode principal component anal-
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Fig. 5. The sewage source heat pump system.
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Fig. 6. Data of the heat pump system: (a) temperature data of the condenser (b) temperature data of the evaporator (c)
temperature data of the gas (d) pressure data of the condenser (e) pressure data of the evaporator (f) pressure data
of the compressor (g) current data of the compressor.
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(a) (b) (c) (d) 

Fig. 7. T 2 chart according to the number of GMM: (a) model number 1 vs. 3, (b) model number 2 vs. 3,(c) model number
4 vs. 3 (d) model number 5 vs. 3.

1 2 
3 

                  Proposed model on PC axis                       Conventional model on PC axis         

(a)     (b) 

(c)     (d) 

Fig. 8. A specific view of score plot of the operation data: (a) conventional PCA score (b) proposed multi-mode PCA
score (c) multi-mode score using k-means clustering (d) multi-mode score using k-medoids clustering.

Table 2. Average T 2 according to the number of GMM

number of the GMM 1 2 3 4 5
Average T 2 vaule 3.000 2.6623 1.9189 2.0538 2.2766
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(a) (b) 

Fig. 9. T 2 plot : (a) the conventional PCA and the proposed multi-mode PCA (b) the proposed multi-mode PCA, conven-
tional PCA, k-means PCA, and k-medoids PCA.
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Fig. 10. SPE plot : (a) the conventional PCA and the proposed multi-mode PCA (b) the proposed multi-mode PCA,
conventional PCA, k-means PCA, and k-medoids PCA.

ysis based on Gaussian mixture model. When the fault
detection performance is evaluated with real sewage heat
pump data, the Gaussian mixture integrated multi-mode
model PCA results more accurate detection capability
than other clustering algorithms such as k-means and k-
medoids as well as conventional PCA based model. Since
the faults of the heat pump system downtime may cause
energy wastage, system unreliability, and shorter equip-
ment life. Therefore, it is important to develop a fault de-
tection algorithm of the sewage source heat pump equip-
ment for safety and cost-effectiveness. Considering the
results of the proposed methodology, it is expected that
the proposed Gaussian integrated multi-mode model PCA

model will play an important role in monitoring the heat
pump system.
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