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Adaptive Fault-tolerant Neural Control for Large-scale Systems with Ac-
tuator Faults
Jian-Ye Gong, Bin Jiang, and Qi-Kun Shen* ■

Abstract: The active adaptive fault-tolerant neural control problem is discussed for large-scale uncertain systems
against actuator faults. The unknown interconnections among subsystems are assumed to be nonlinear, not tra-
ditional linear. A general actuator fault model is proposed, which integrates bias and gain time-varying faults.
Then, based on Lyapunov stability theory, a novel fault diagnostic algorithm and accommodation scheme are pro-
posed, where the assumptions in the existing works are removed and fault-tolerant controller singularity problem is
avoided. Finally, simulation results of near space vehicle show the efficiency of the presented control approach.
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1. INTRODUCTION

Because many practical applications can be modeled
as large-scale system, these systems have attracted exten-
sive attention [1–5]. Generally speaking, according to the
nominal subsystem’s form, the large-scale systems can be
classified two categories: linear [3, 4] or nonlinear [6, 7].
For the large-scale systems, the key task is how to handle
the interconnection terms among subsystems. As pointed
out in [8], the relevant research are developed in two direc-
tions. One is to relax the boundedness assumptions on the
interconnection terms, namely, the interconnection terms
should be bounded by known linear function with/without
the unknown gains [3, 5]. In the cases, by using the ap-
proximation capability of fuzzy logical systems (FLSs) or
neural networks (NNs), the bounded restrictions are fur-
ther relaxed [9, 10]. The second is to relax the structural
constraints imposed on interconnection terms [11, 12].

In [4], for large-scale systems that do not satisfy the
above matching condition, a backstepping control was
proposed. However, the boundedness assumptions about
the interconnections were still necessary. In the practi-
cal systems, however, the interconnection terms are often
nonlinear and unknown. Furthermore, their bounds can
not be described as known functions. It is significant to
propose proper control methods for the nonlinear inter-
connected systems, which motivates us for this paper.

On the other hand, faults may occur in the con-
trolled systems and impose adverse effect on system per-
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formance. Hence, many effective fault-tolerant control
(FTC) approa-ches have been developed to enhance the
reliability and safety of the faulty systems. In general, pas-
sive FTC approach [11–15] have more conservatism than
active FTC one. Active FTC approach have the following
procedures: fault detection and isolation (FDI) [16–21],
fault estimation (FE) [22, 23] and fault accommodation
(FA) [24–26].

For large-scale systems, many results have been re-
ported as early as 1980s. For the systems, although some
results on FTC have been obtained [26], significant devel-
opments have not been made [21,26]. These above works
just focused on FD or FDI, and do not consider the fault
estimation and active FTC problems. For FTC of intercon-
nected systems, it still needs to be further studied, which
is another motivation of this paper.

In this paper, for a class of large-scale systems, we con-
sider the adaptive active FTC problem against actuator
faults. The main contributions are given as:

1) In contrast with [5] and [13], the bounds of the in-
terconnection terms considered in our paper are assumed
to be the sum of nonlinear functions. The assumption is
more reasonable in real cases;

2) Compared with [1–5] where only the normal con-
dition (no fault) were investigated, active adaptive FTC
against actuator fault is discussed in our paper. What’s
more, the fault model in our work can simultaneously han-
dle gain and bias faults. The proposed theoretic results
thus have wider applications;

c⃝ICROS, KIEE and Springer 2019

http://www.springer.com/12555
https://orcid.org/0000-0002-1749-2641


1422 Jian-Ye Gong, Bin Jiang, and Qi-Kun Shen

3) Based on an fault indicator that can be computed on-
line, a FDI decision threshold is given. Hence, the FDI
algorithm has more practical interesting;

4) In the FTC scheme presented in this paper, the con-
troller singularity problem is avoided without projection
algorithm. Further, some conventional assumptions in the
existing works are removes in the scheme.

The rest of this paper is organized as follows: The prob-
lem formulation and NNs’ description are presented in
Section 2. In Section 3, main results are presented, which
includes FDI, fault estimation and FA. Section 4 gives
simulation results, which show the efficient of the method.
Finally, the conclusions are drawn in Section 5.

2. PROBLEM STATEMENT AND DESCRIPTION
OF NEURAL NETWORKS

2.1. Problem statement
The uncertain large-scale system ∑ composed of N

linked subsystems, each subsystem has the following
form,

∑ :

{
ẋi = Ψ̄i(x)+Biui,

yi =Cixi,
i = 1,2 · · · ,N, (1)

where xi = [xi1,xi2, · · · ,x(ni−1)
i1

]T = [xi1,xi2, · · · ,xini ]
T ∈ Rni ,

yi ∈ Rq, ui ∈ Rmi denote the measurable state, out-
put, input of the ith subsystem, respectively; matri-
ces Bi and Ci are of appropriate dimensions; Ψ̄i(x) =
[ψ̄i1(x), · · · , ψ̄ini(x)]

T ∈ Rni is the uncertain interconnec-
tion between the ith subsystem and the other subsystems,
ψ̄i j ( j = 1, · · · ,ni) is an unknown function, which in-
cludes the lumped uncertainty of the ith subsystem, in-
cluding unknown parameter variation, model uncertainty,
external disturbance, and the ith subsystem uncertainty,
x = [x1

T , · · · ,xN
T ]T ∈ R∑N

i=1 ni denotes the overall system’s
state variable.

The control objective under fault-free condition is to de-
sign suitable controllers such that (1) is stable.

In this paper, actuator fault has the following form,

u f
i j(t) = (1−ρi j(t))ui j(t)+∑pi j

k=1 gi jk fi jk(t),

t > t j, i = 1, · · · ,N, j = 1, · · · ,mi, (2)

where fi jk(t) , k = 1, · · · , pi j denote bounded signals,
known constant pi j > 0, constant gi jk is unknown. With
no restriction, let us suppose p11 = · · · = p1m1 = pN1 =
· · · = pNmN = p with p being a known positive constant,
failure time instant t j is unknown. Consider the follow-
ing notation: ai jk(t) = gi jk fi jk(t). Then, (2) becomes the
following form,

u f
i j(t) = (1−ρi j(t))ui j(t)+∑p

k=1 ai jk(t),

t > t j, i = 1, · · · ,N, j = 1, · · · ,mi. (3)

Assumption 1: |ai jk(t)| ≤ āi jk1, |ȧi jk(t)| ≤ āi jk2,
|ρi j(t)| ≤ ρ̄i j1 and |ρ̇i j(t)| ≤ ρ̄i j2, where known real con-
stants ρ̄i j1 > 0, ρ̄i j2 > 0, āi jk1 > 0 and āi jk2 > 0.

Assumption 2: The interconnection function |ψi j| ≤
∑N

k=1 εi jk(xk), i = 1, · · · ,N, j = 1, · · · ,ni, where εi jk(xk)
denotes an unknown function, which is dependent on the
state of the kth subsystem.

In the following, let ā1 = max1≤i≤N,1≤ j≤ni,1≤k≤p{āi jk1},
ρ̄1 = max1≤i≤N,1≤ j≤ni{ρ̄i j1}, ρ̄2 = max1≤i≤N,1≤ j≤ni{ρ̄i j2},
ā2 = max1≤i≤N,1≤ j≤ni,1≤k≤p{āi jk2}.

In the following, we will use the abbreviations Ψ̄i, ρi j

and ai jk, which denote Ψ̄i(·), ρi j(t) and ai jk(t), respec-
tively.

Considering the fault (2), we re-define the control ob-
jective: An active FTC scheme is designed to ensure that
(1) is stable in all cases. In normal case, ui(t), i = 1, · · · ,N
are designed to guarantee that system (1) is stable. At the
same time, the FDI algorithm is working. After detect-
ing and isolating a fault, the fault estimation algorithm is
activated. using he fault estimation, fault-tolerant control
inputs are designed to ensure (1) is stable in faulty case.

Beginning with controller design, we first transform
system (1) into the following form,

∑ :

{
ẋi = Aixi +Biui +Ψi(x),

yi =Cixi,
i = 1,2, · · · ,N, (4)

where Ψi = Ψ̄i −Aixi, matrix Ai is chosen such as the ma-
trix pairs (Ai,Bi) and (Ai,Ci), i= 1, · · · ,N, are controllable
and observable, respectively. In addition, it is assumed
that Bi is of full column rank.

2.2. Description of neural networks
NNs [11] are used to approximate a continuous function

h(Z) : Rp → R as follows:

h(Z,θ) = θ T ξ (Z),

where p is the NNs input dimension, Z = (z1, · · · ,zp)
T ∈

Rp is the input vector,

θ = (θ1, · · · ,θNθ )
T , xi(Z) = (ξ1(Z), · · · ,ξN(Z))

T ,

ξi(Z) = exp(−
∑p

j=1 (z j −ai, j)
2

(ci)
2 ),

where Nθ is NNs node number, ci > 0 is the width of the
receptive field, and ai, j ∈ R, i = 1,2, · · · ,N, j = 1,2, · · · , i,
are the center of the Gaussian function. Let

Ωθ = {θ : ||θ || ≤ θ̄m},
θ ∗ = arg min

θ∈Ωθ
[ sup
z∈ΩZ

|h(Z,θ)−h(Z)|],

where design parameter θ̄m > 0, compact set ΩZ is suf-
ficiently large. For a continuous function h(Z), it can be
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obtained h(Z) = θ ∗T ξ (Z)+ε(Z), where ε(Z) denotes the
optimal approximation error.

In this paper, NNs are respectively used to approximate
unknown continuous functions ψi jk(Zk) in the following
form, ψi jk(Zk) = θ ∗T

i ξi(Zi)+εi(Zi), where i = 1,2, · · · ,N,
j = 1,2, · · · ,ni and k = 1,2, · · · ,N.

Assumption 3: |εi jk| ≤ ε∗
i jk , ε∗

i jk ≤ Mi jk,ε and ||θ ∗
i jk
|| ≤

Mi jk,θ , where unknown constants ε∗
i jk > 0, Mi jk,ε > 0 and

Mi jk,θ > 0 .

3. MAIN RESULTS

3.1. Fault detection

In order to detect the actuator faults, we design an adap-
tive observer for the ith subsystem as follows:

˙̂xi = Aix̂i +Biui +Li(yi − ŷi)+ Ψ̂i

+ sgn(2eT
ixPi)M̂εθ i,

ŷi =Cix̂i,

(5)

where Ψ̂i = [ψ̂i1, · · · , ψ̂ini ]
T , ψ̂i j = θ̂ T

i jkξi jk(x̂k) is the esti-
mate of θ ∗T

i jk ξi jk(xk), M̂εθ i = [M̂εθ i1, · · · ,M̂εθ ini ]
T is the esti-

mate of Mεθ i = [∑N
k=1 Mεθ i1k, · · · , ∑N

k=1 Mεθ inik]
T , Mεθ i jk =

2Mi jk,θ +Mi jk,ε , sgn(eT
ixPi) = {sgn(eT

ixP1
i ), · · · ,sgn(eT

ixPni
i )},

P j
i ( j = 1, · · · ,ni denotes the jth column of matrix Pi de-

fined later, eix denotes the observer error defined in (6), Li

(i = 1, · · · ,N) denotes observer gain.
Denote

eix(t) = xi(t)− x̂i(t),eiy(t) = yi(t)− ŷi(t), (6)

then we have the following error dynamics,

ėix(t) =(Ai −LiCi)eix(t)+Ψi − Ψ̂i

− sgn(2eT
ixPi)M̂εθ i. (7)

Now, we will give the condition of the above observer’s
convergence.

Theorem 1: If there exist matrices Pi = PT
i > 0 and

Qi > 0 with appropriate dimensions such that

Pi(Ai−LiCi)+(Ai−LiCi)
T Pi ≤−Qi, i = 1,2, · · · ,N,

(8)

and adaptive laws (9) and (10) are used

˙̂θi jk =



0, if θ̂i jk = M̄i jk,θ and

2ηeT
ixP j

i ξi jk(x̂k)−ηθ θ̂i jk > 0,

or θ̂i jk =−M̄i jk,θ and

2ηeT
ixP j

i ξi jk(x̂k)−ηθ θ̂i jk < 0,

2ηeT
ixP j

i ξi jk(x̂k)−ηθ θ̂i jk, otherwise,

(9)

˙̂Mεθ i jk =



0, if M̂εθ i jk = 2M̄i jk,θ + M̄i jk,ε and

2η |eT
ixP j

i |+ηMM̂εθ i jk > 0,

or M̂εθ i jk =−2M̄i jk,θ − M̄i jk,ε and

2η |eT
ixP j

i |+ηMM̂εθ i jk < 0,

2η |eT
ixP j

i |−ηMM̂εθ i jk, otherwise,
(10)

where M̄i jk,θ , M̄i jk,θ , M̄i jk,ε , η , ηθ and ηM are design pos-
itive parameters, and Assumptions 1-3 hold, then (7) is
asymptotically stable, ∥eix∥ ≤

√
αiD/λmin(Pi), ||θ̃i jk|| ≤√

2η1αiD, ||M̃εθ i jk|| ≤
√

2η1αiD, where αiD = µiD/λiD +

ViD(0), λiD = min { λmin(Qi)
λmax(Pi)

, ηθ
2η ,

ηM
2η }, and µiD = ∑ni

j=1

∑N
k=1 [

ηθ
2η M2

i jk,θ +
ηM
2η (2Mi jk,θ +Mi jk,ε)

2].

Proof: Define

ViDe = eT
ix(t)Pieix(t). (11)

Differentiating ViDe with respect to time t, it yields

V̇iDe =eT
ix(Pi(Ai −LiCi)+(Ai −LiCi)

T P)eix

+2eT
ixPi(Ψi − Ψ̂i)−2eT

ixPisgn(eT
ixPi)M̂εθ i. (12)

From Assumption 2, it follows that

2eT
ixP j

i (ψi j − ψ̂i j)

≤ ∑N
k=1 2eT

ixP j
i [θ̃

T
i jkξi jk(x̂k)

+θ ∗T
i jk (ξi jk(xk)−ξi jk(x̂k))+ εi jk(xk)], (13)

where θ̃i jk = θ ∗
i jk− θ̂i jk, θ̂i jk is the estimate of θ ∗

i jk. Further,
one has

2eT
ixPi(Ψi − sgn(2eT

ixPi)Ψ̂i)

≤ ∑ni

j=1[2eT
ixP j

i ∑N
k=1 θ̃ T

i jkξ (x̂k)]

+∑ni

j=1 [|2eT
ixP j

i |∑N
k=1 Mεθ i jk], (14)

where the fact |ξi jk(·)|< 1 is used.
Substituting (14) into (12) and considering Assumption

2 and (13), one has

V̇iDe ≤− eT
ixQieix +∑ni

j=1 [2eT
ixP j

i ∑N
k=1 θ̃ T

i jkξ (x̂k)]

+∑ni

j=1 [|2eT
ixP j

i |∑N
k=1 M̃εθ i jk], (15)

where θ̃i jk = θ ∗
i jk − θ̂i jk,M̃εi jk = Mεi jk −M̂εi jk, M̂εθ i jk is the

estimate of Mεi j = 2Mi jk,θ +Mi jk,ε .
Consider the following Lyapunov function

ViD =ViDe +
1

2η ∑ni

j=1 ∑N
k=1 [θ̃

T
i jkθ̃i jk + M̃2

εθ i jk]. (16)

Differentiating it with respect to time t, it yields

V̇iD ≤− eT
ixQieix
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+∑ni

j=1 ∑N
k=1 [θ̃

T
i jk(2eT

ixP j
i ξi jk(x̂k)−

1
η

˙̂θ i jk)]

+∑ni

j=1 ∑N
k=1 [M̃εθ i jk(|2eT

ixP j
i |−

1
η

˙̂Mεθ i jk)].

(17)

Substituting the adaptive laws (9) and (10) into (17), it
yields

V̇iD =− eT
ixQieix

+∑ni

j=1 ∑N
k=1 (

ηθ

η
θ̃i jkθ̂i jk +

ηM

η
M̃εθ i jkM̂εθ i jk).

(18)

Since

ηθ

η
θ̃ T

i jkθ̂i jk ≤−ηθ

2η
θ̃ T

i jkθ̃i jk +
ηθ

2η
M2

i jk,θ , (19)

ηM

η
M̃εθ i jkM̂εθ i jk ≤−ηM

2η
M̃2

εθ i jk

+
ηM

2η
(2Mi jk,θ +Mi jk,ε)

2, (20)

one has

V̇iD ≤−λiDViD +µiD, (21)

where λiD = min{ λmin(Qi)
λmax(Pi)

, ηθ
2η ,

ηM
2η },

µiD = ∑ni
j=1 ∑N

k=1 [
ηθ
2η M2

i jk,θ +
ηM
2η (2Mi jk,θ +Mi jk,ε)

2].
Then, one has d

dt (ViD(t)eλiDt)≤ eλiDt µiD. Furthermore,

0 ≤ViD(t)≤
µiD

λiD
+ViD(0) = αiD.

Therefore, the error dynamics (10) is asymptotically sta-
ble, ∥eix∥ ≤

√
αiD / λmin(Pi), ||θ̃i jk|| ≤

√
2ηαiD and

||M̃εθ i jk|| ≤
√

2ηαiD. □

From Theorem 1, let us define the detection residual as

Ji(t) = ||yi(t)− ŷi(t)||,

and in the healthy case, one has,

Ji(t)≤ ∥Cieix∥ ≤ ∥Ci∥
√

αiD/λmin(Pi).

Then, the fault detection mechanism is given as:{
Ji(t)≤ Tid , no fault occurred in the overall system;

Ji(t)> Tid , fault has occurred in the overall system,

(22)

where threshold Tid is defined as Tid = ∥Ci∥
√

αiD/λmin(Pi).

3.2. Fault isolation
As pointed out in the previous subsection, Ji(t) > Tid

does not mean that the fault occurs only in the ith subsys-
tem because of the existence of the interconnections. So,

the problem we meet is how to isolate the fault. Before
fault isolation, let us recall the considered system (1),{

ẋi = Aixi +Biui +Ψi,

yi =Cixi,
i = 1, · · · ,N.

Let A = diag{A1, · · · ,AN} , B = diag{B1, · · · ,BN} , C =
diag{C1, · · · ,CN} , x = [xT

1 , · · · ,xT
N ]

T , u = [uT
1 , · · · ,uT

N ]
T

, y = [yT
1 , · · · ,yT

N ] , Ψ = [ΨT
1 , · · · ,ΨT

N ]
T , then the whole

large-scale system can be written as{
ẋ(t) = Ax(t)+Bu+Ψ,

y =Cx.
(23)

In order to describe conveniently the following fault iso-
lation design, we re-number the actuators as the 1th, 2th,
· · · , m̄th, where m̄ = ∑N

i=1 mi. Correspondingly, the fault
model (2) becomes

u f
i (t) =(1−ρi(t))ui(t)+∑p

j=1 ai j(t),

i = 1, · · · , m̄, t ≥ t j.

Obviously, from Assumption 1, one has

|ρi(t)| ≤ ρ̄1, |ρ̇i(t)| ≤ ρ̄2,

|ai j(t)| ≤ ā1, |ȧi j(t)| ≤ ā2. (24)

Notice that, in this paper, at one time, only single fault
is assumed to occurs in one subsystem. Hence, for the
overall system (1), there are m̄ possible faulty cases.

Without loss of generality, it is assumed that the lth ac-
tuator becomes faulty. In the faulty case, (1) becomes,{

ẋ = Ax+Bu−bl [ρl(t)ud
l
−∑p

j=1 al j(t)]+Ψ,

y =Cx,
(25)

where ρl(t) and al j(t) denote the lth actuator fault de-
fined by (2), ud

l
is the control input when actuator l is

healthy, B = [b1,b2, · · · ,bm̄], bl ∈ R(∑N
j=1 n j)×1,1 ≤ l ≤ m̄,

j = 1,2, · · · , p.
To isolate the fault occurred in the actuator, we propose

the following adaptive observers
˙̂xs = Ax̂s +L(y− ŷs)+Bu

−bsµs[ρ̄u
s
|ud

s
|+∑p

j=1 āu
s j
]+ Ψ̂,

ŷs =Cx̂s,

(26)

where 1 ≤ s ≤ m̄, x̂s(t) and ŷs(t) are the state and output
of the sth observer, respectively; µs = [ − eT

xsP
1bs , · · · ,

−eT
xsP∑N

i=1 ni bs]
T , σs is a design parameter, Pi is the ith col-

umn of P satisfying (29); L is the observer gain matrix
with appropriate dimensions for the sth observer which
is chosen to ensure that A−LC is Hurwitz; ρ̄u

s
= ρ̄1 and

āu
s j
= ā1 denote the upper bounds of the sth actuator’s gain

fault ρ̄s and bias fault as j; exs = xs − x̂s and eys = y− ŷs.



Adaptive Fault-tolerant Neural Control for Large-scale Systems with Actuator Faults 1425

In the following, l is used to denote the practical faulty
case, namely, the faulty actuator is actuator l.

For s = l , the error dynamics between (28) and (29) is:

ėxs =(A−LC)exs −bs(ρsud
s
−µsρ̄u

s
|ud

s
|)

+bs ∑p
j=1 (as j −µsāu

s j
)+ Ψ̃, (27)

and for s ̸= l, one has

ėxs =(A−LC)exs − (bsρsud
s
−bl µl ρ̄u

l |ud
l
|)

+∑p
j=1 (bsas j −bl µl āu

l j)+ Ψ̃, (28)

where Ψ̃ = Ψ− Ψ̂, ρ̄u
l
= ρ̄1 and āu

l j
= ā1 denote the upper

bounds of the lth actuator’s gain fault ρ̄l and bias fault al j.

Theorem 2: If there exist matrices P = PT > 0, L,Q >
0 with appropriate dimensions such that

(A−LC)T P+P(A−LC)≤−Q, (29)

and the following adaptive laws are employed

˙̂θs jk =



0, if θ̂s jk = M̄s jk,θ and

2ηeT
xsP

jξs jk(x̂k)−ηθ θ̂s jk > 0,

or θ̂s jk =−M̄s jk,θ and

2ηeT
xsP

jξs jk(x̂k)−ηθ θ̂s jk < 0,

2ηeT
xsP

jξs jk(x̂k)−ηθ θ̂s jk, otherwise,

(30)

˙̂Mεθs jk =



0, if M̂εθs jk = 2M̄s jk,θ + M̄s jk,ε and

2η |eT
xsP

j|+ηMM̂εθs jk > 0,

or M̂εθs jk =−2M̄s jk,θ − M̄s jk,ε and

2η |eT
xsP

j|+ηMM̂εθs jk < 0,

2η |eT
xsP

j|−ηMM̂εθs jk, otherwise,
(31)

and Assumptions 1-3 hold, then, if the faulty actuator is
actuator l,

i) for s = l, exs ∈ Ωexs =: {exs| ||exs|| ≤
√

αI/λmin(P)},
θ̃i jk ∈ Ωθi jk =: { θ̃i jk

∣∣ ||θ̃i jk|| ≤
√

2ηαI} and M̃εi jk ∈ ΩMεi jk

=: {M̃εs j
∣∣ ||M̃εs j|| ≤

√
2ηαI};

ii) for s ̸= l , exs /∈ Ωexs , θ̃s jk /∈ Ωθs jk and M̃εs jk /∈ ΩMεs jk .

Proof: 1) For s = l , according to (27), one has

ėxs =(A−LC)exs −bs(ρsud
s
−µsρ̄u

s |ud
s
|)

+bs ∑p
j=1 (as j −µsāu

s j)+ Ψ̃.

Define VIe = eT
xsPexs. Differentiating VIe and considering

(27), it yields

V̇Ie ≤− eT
xsQexs +2eT

xsPbs[(−ρsud
s
+µsρ̄u

s |ud
s
|)

+∑p
j=1 (as j +µsāu

s j)]+2eT
xsPΨ̃. (32)

From the definition of µs and Assumption 1, one has

2eT
xs(t)Pbs[(−ρsud

s
+µsρ̄u

s |ud
s
|)

= ∑∑ni

i=1[2eT
xs(t)P

ibsρsud
s
− sgn(2eT

xs(t)P
ibs)ρ̄u

s |ud
s
|]

≤ 0. (33)

Similarly, one has

2eT
xs(t)Pbs ∑p

j=1 (as j −µsāu
s j)≤ 0. (34)

Substituting (33) and (34) into (32), it yields

V̇Ie ≤−eT
xs(t)Qexs(t)+2eT

xs(t)PbsΨ̃. (35)

Similar to (14) in the previous subsection, we have

2eT
xsP(Ψ− Ψ̂)≤∑∑N

i=1 ni

j=1 [2eT
xsP

j ∑N
k=1 θ̃ T

s jkξ (x̂k)]

+∑∑N
i=1 ni

j=1 [|2eT
xsP

j|∑N
k=1 Mεθs jk].

Further, we have

V̇Ie ≤− eT
xs(t)Qexs(t)

+∑∑N
i=1 ni

j=1 [2eT
xsP

j ∑N
k=1 θ̃ T

s jkξ (x̂k)]

+∑∑N
i=1 ni

j=1 [|2eT
xsP

j|∑N
k=1 Mεθs jk]. (36)

Define the following Lyapunov function

VI =VIe +
1

2η1
∑∑N

i=1 ni

j=1 ∑N
k=1 (θ̃

T
s jkθ̃s jk + M̃2

εθs jk),

where θ̃s jk = θ ∗
s jk − θ̂s jk, M̃εθs jk = Mεθs jk − M̂εθs jk, M̂εθs jk

is the estimate of Mεθs jk = 2Ms jk,θ + εs jk,ε .
Similar to Theorem 1, differentiating VI and considering

(30), (31) and (36), it yields

V̇I ≤−λIVI +µI , (37)

where λI = min{ λmin(Q)
λmax(P)

, ηθ
2η1

, ηM
2η1

},

µI = {∑∑N
i=1 ni

j=1 ∑N
k=1 [

ηθ
2η1

M2
s jk,θ +

ηM
2η1

(2Ms jk,θ + M̄s jk,ε)
2
]}.

Then, one has d
dt (VI(t)eλIt)≤ eλIt µI . Furthermore,

0 ≤VI(t)≤
µI

λI
+[VI(0)−

µI

λI
]e−λIt ≤ µI

λI
+VI(0)

=αI .

Therefore, ∥exs∥ ≤
√

αI/λmin(P), ||θ̃s jk|| ≤
√

2η1αI and
||M̃εθs jk|| ≤

√
2η1αI .

2) For s ̸= l , from (25) and (26), we have,

ėxs(t) =(A−LC)exs − (bsρsud
s
−bl µl ρ̄u

l |ud
l
|)

+∑p
j=1 (bsas j −bl µl āu

l j)+ Ψ̃.

Since B = diag(B1, · · · ,BN) = [b1,b2, · · · ,bm̄] and Bi is of
full column rank, B is of full column rank. Further, bs and
bl are linearly independent. So, the following inequality
does not hold

2eT
xsP(bsρsud

s
−bl µl ρ̄u

l |ud
l
|)
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+2eT
xsP∑p

j=1 (bsas j −bl µl āu
l j)≤ 0. (38)

What’s more, it is noted that 2eT
xsP(bsρsud

s
−bl µl ρ̄u

l |ud
l
|)+

2eT
xsP∑p

j=1 (bsas j −bl µl āu
l j) varies infinitely since s ̸= l,ud

s

̸= ud
l ,ρs(t) ̸= ρl(t) and as j(t) ̸= al j(t). This further causes

that VI(t) varies infinitely. Hence, by using the above
adaptive laws (30) and (31) under the condition (29), the
observer error exs does not converge Ωexs , namely, esx /∈
Ωexs .

From 1) and 2), the conclusion is easily obtained. □

Now, let us define the following residuals,

Js(t) = ∥ŷs(t)− y(t)∥ , 1 ≤ s ≤ m̄.

From Theorem 2, we know, if the faulty actuator is the lth
one, namely, s = l , Js(t) must converge to Ωesx ; ifs ̸= l,
Js(t) does not basically converge to Ωesx . Therefore, we
can design the actuator fault isolation law in this paper as{

Js(t)> TI , l ̸= s,

Js(t)≤ TI , l = s ⇒ the lth actuator is faulty ,
(39)

where TI = ||C||
√

αI
λmin(P)

is a threshold.

3.3. Fault estimation
In this section, we will estimate the occurred fault by

constructing a adaptive fault estimation observer. Assume
the faulty actuator is the sth one, and the faulty system has
the following form,

ẋ(t) = Ax(t)+Bu(t)−bsρs(t)us(t)

+∑p
j=1 as j(t)+Ψ,

y(t) =Cx(t).

(40)

An adaptive fault estimation observer is designed as:
˙̂x(t) =Ax̂(t)+L(y(t)− ŷ(t))+Bu(t)

−bs[ρ̂sus −∑p
j=1 âs j]+ Ψ̂,

ŷ(t) =Cx̂(t),

(41)

where state estimation error ex = x− x̂, ρ̂s and âs, j are the
estimations of ρs(t) and as j(t).

Using (40) and (41), we have

ėx = (A−LC)ex −bs(ρ̃sus −∑p
j=1 ãs j)+ Ψ̃, (42)

where ρ̃s = ρs − ρ̂s, ãs j = as j − âs j, and Ψ̃ = Ψ− Ψ̂.

Theorem 3: If there exist real matrices P = PT > 0,
L,Q > 0 with appropriate dimensions such that

(A−LC)T P+P(A−LC)≤−Q, (43)

and adaptive laws (44)-(47) are employed

˙̂ρs =


0, if ρ̂s = ρ̄1 and−2η1eT

x Pus − ρ̂s > 0 or

ρ̂s =−ρ̄1 and−2η1eT
x Pus − ρ̂s < 0;

−2η1eT
x Pus −ηρ ρ̂s, otherwise,

(44)

˙̂as j =


0, if âs j > ā1 and 2η2eT

x P− âs j > 0 or

âs j <−ā1 and 2η2eT
x P− âs j < 0;

2η2eT
x P−ηα âs j,otherwise, j = 1,2, · · · , p,

(45)

˙̂θ jk =



0, if θ̂ jk = M̄ jk,θ and

2η3eT
x P jξ (x̂k)−ηθ θ̂ jk > 0,

or θ̂ jk =−M̄ jk,θ and

2η3eT
x P jξ (x̂k)−ηθ θ̂ jk < 0,

2η3eT
x P jξ (x̂k)−ηθ θ̂ jk, otherwise,

(46)

˙̂Mεθ jk =



0, if M̂εθ jk = 2M̄ jk,θ + M̄ jk,ε and

2η3|eT
x P j|+ηMM̂εθ jk > 0,

or M̂εθ jk =−2M̄ jk,θ − M̄ jk,ε and

2η3|eT
x P j|+ηMM̂εθ jk < 0,

2η3|eT
x P j|−ηMM̂εθ jk, otherwise,

(47)

and Assumptions 1-3 hold, then the error system
(42) is asymptotically stable, ||ex|| ≤

√
αE/λmin(P),

|ρ̃s| ≤
√

2η1αE , |ãs j| ≤
√

2η2αE , ||θ jk|| ≤
√

2η3αE

and |M̃εθ jk| ≤
√

2η3αE , αE = µE
λE

+ VE(0) and λE =

min{ λmin(Q)
λmax(P)

, ηρ
2η1

, ηα
η2
, ηθ

2η3
, ηM

2η3
}, where P j is the jth row

of P; η1 > 0, η2 > 0, η3 > 0, ηρ > 0, ηα > 0, ηθ > 0
and ηM > 0 denote design parameters, respectively;
P = diag{P1, · · · ,PN}, L = diag{L1, · · · ,LN},
Q = diag{Q1, · · · ,QN}.

Proof: Define

VE =eT
x Pex +

1
2η1

ρ̃2
s +∑p

j=1

1
2η2

ã2
s j

+
1

2η3
∑∑N

i=1 n j

j=1 ∑N
k=1 (θ̃

T
jkθ̃ jk + M̃2

εθ jk). (48)

Differentiating VE , it yields

V̇E =− eT
x Qex +2eT

x PΨ̃

− 1
η3

∑∑N
i=1 n j

j=1 ∑N
k=1 (θ̃

T
jk

˙̂θ jk + M̃εθ jk
˙̂Mεθ jk)

+ ρ̃s(−2eT
x Pbsus +

1
η1

ρ̇s −
1

η1

˙̂ρ s)

+∑p
j=1 ãs j(2eT

x Pbs +
ȧs j

η2
−

˙̂as j

η2
). (49)

Since |ρ̂s(t)| ≤ ρ̄1 and |âs j(t)| ≤ ā1, which can be guar-
anteed by adaptive laws (48) and (49), and Assumptions
1-3 (i.e. |ρs(t)| ≤ ρ̄1 , |ρ̇s(t)| ≤ ρ̄2, |as j(t)| ≤ ā1, and
|ȧs(t)| ≤ ā2 ) are satisfied, one has

ρ̃sρ̇s

η1
=

(ρs − ρ̂s)ρ̇s

η1
≤ (|ρi|+ |ρ̂i|)|ρ̇i|

η1
≤ 2ρ̄1ρ̄2

η1
,

(50)
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∑p
j=1

ãs jȧs j

η2
≤ ∑p

j=1

2ā1ā2

η2
. (51)

Similar to Theorem 1, from adaptive laws (49) and (50), it
follows

2eT
x PΨ̃− 1

η3
∑∑N

i=1 n j

j=1 ∑N
k=1 (θ̃

T
jk

˙̂θ jk + M̃εθ jk
˙̂Mεθ jk)

≤−∑∑N
i=1 ni

j=1 ∑N
k=1 [

ηθ

2η3
θ̃ 2

jk +
ηM

2η3
M̃2

εθ jk]+∆1, (52)

where ∆1 = ∑∑N
i=1 n j

j=1 ∑N
k=1[

ηθ
2η3

M2
jk,θ +

ηM
2η3

(2M jk,θ +M jk,ε)
2]

From (49)-(52), it follows

V̇E =− eT
x Qex −∑∑N

i=1 ni

j=1 ∑N
k=1 [

ηθ

2η3
θ̃ 2

jk +
ηM

2η3
M̃2

ε jk]

+
2ρ̄1ρ̄2

η1
+∑p

j=1

2ā1ā2

η2
+ρ̃s(−2eT

x Pbsus−
1

η1

˙̂ρ s)

+∑p
j=1 ãs j(2eT

x Pbs −
˙̂as j

η2
)+∆1.

Considering adaptive laws (43) and (44), we further have

V̇E =− eT
x Qex −∑∑N

i=1 ni

j=1 ∑N
k=1 [

ηθ

2η3
θ̃ 2

jk +
ηM

2η3
M̃2

ε jk]

+
2ρ̄1ρ̄2

η1
+∑p

j=1

2ā1ā2

η2
+∆1 +

1
η1

ρ̃sρ̂s

+∑p
j=1

ãs jâs j

η2
. (53)

Applying Young’s inequality, one has

ηρ

η1
ρ̃sρ̂s ≤−

ηρ

2η1
ρ̃2

s +
ηρ

2η1
ρ̄2

1 . (54)

Similarly, one has

∑p
j=1

ηα

η2
ãs jâs j ≤−∑p

j=1

ηα

η2
ã2

s j +∑p
j=1

ηα

η2
ā2

1. (55)

Substituting (53) and (55) into (53), it yields

V̇E ≤−λEV (t)+µE ,

where µE =
ηρ
2η1

ρ̄2
1 + ηα

2η2
pā2

1 +
2

η1
ρ̄1ρ̄2 +

2
η2

pā1ā2 + ∆1,

λE = min{ λmin(Q)
λmax(P)

,
ηρ
2η1

, ηα
η2
, ηθ

2η3
, ηM

2η3
}.

Then, one has d
dt (VE(t)eλE t)≤ eλE t µE . Furthermore,

0 ≤VE(t)≤
µE

λE
+[V (0)− µE

λE
]e−λE t ≤ µE

λE
+VE(0).

Let αE = µE
λE

+VE(0), one has ||ex|| ≤
√

αE
λmin(P)

,

|ρ̃s| ≤
√

2η1αE , |ãs j| ≤
√

2η2αE , ||θ jk|| ≤
√

2η3αE and
|M̃εθ i jk| ≤

√
2η3αE . □

3.4. Fault accommodation
After fault estimation, the FTC problem of the faulty

system (40) will be considered, and a FTC law is designed
to recover the system performance when an actuator fault

of a subsystem occurs. Let us firstly consider the follow-
ing nominal system (fault-free):{

ẋi = Aixi +Biui +Ψi,

yi =Cixi,

where i = 1, · · · ,N. Let us design the controller for the
system:

ui(t) = Kix(t)−B+
i Ψ̂i, (56)

where Ki denotes gain matrix, which will be defined in the
following theorem, and Ψ̂i denotes the estimate of Ψi, B+

i
is the generalized inverse matrix of Bi that has the prop-
erty: BiB+

i = Ini×ni .
Consider the system with (59), we give the following

theorem, which guarantees the closed-loop system stabil-
ity.

Theorem 4: If there exist matrices Pi = PT
i > 0 and

Qi > 0 with appropriate dimensions such that

Pi(Ai +BiKi)+(Ai +BiKi)
T Pi ≤−Qi, i = 1, · · · ,N,

(57)

and consider the following adaptive laws

˙̂θi jk =



0, if θ̂i jk = M̄i jk,θ and

2η1xT
i P j

i ξ (x̂k)−ηθ θ̂i jk > 0,

or θ̂i jk =−M̄i jk,θ and

2η1xT
i P j

i ξ (x̂k)−ηθ θ̂i jk < 0,

2η1xT
i P j

i ξ (x̂k)−ηθ θ̂i jk, otherwise,

(58)

˙̂Mεθ i jk =



0, if M̂εθ i jk = 2M̄i jk,θ + M̄i jk,ε and

2η1|xT
i P j

i |+ηMM̂εθ i jk > 0,

or M̂εθ i jk =−2M̄i jk,θ − M̄i jk,ε and

2η1|xT
i P j

i |+ηMM̂εθ i jk < 0,

2η1|xT
i P j

i |−ηMM̂εθ i jk, otherwise,

(59)

and Assumptions 1-4 hold, then the healthy system (1)
under the controller (56) is asymptotically stable with all
closed-loop system signals asymptotically converge to a
neighborhood of the origin, namely ∥xi∥ ≤

√
αi/λmin(Pi),

||θ̃i jk|| ≤
√

2η1αi and ||M̃εθ i jk|| ≤
√

2η1αi, where αi =

µi/λi +Vi(0), λi = min{ λmin(Qi)
λmax(Pi)

, ηθ
2η1

, ηM
2η2

}, µi = ∑ni
j=1 ∑N

k=1

[ ηθ
2η1

M2
i jk,θ +

ηM
2η2

(2 ·Mi jk,θ + M̄i jk,ε)
2].

From the proof of the previous Theorems, the conclu-
sion is easily obtained. To save pages, the detailed deriva-
tion is omitted.

By using the fault estimation, FTC input is designed as

us =
(1− ρ̂s)(ud

s −∑pi
j=1 âi, j)

(1− ρ̂s)
2 +σ

, (60)

where σ > 0 ∈ R, ρ̂s, âi, j are the estimations of ρs,ai, j, and
ud

s is the sth desired control input.
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Theorem 5: For the faulty system (40), if there exist
matrices Pi = PT

i > 0, Li and Qi > 0, i = 1,2, · · · ,N such
that

Pi(Ai +BiKi)+(Ai +BiKi)
T Pi ≤−Qi, (61)

˙̂ρs =


0, if ρ̂s = ρ̄1 and−2η1xT

i Pus − ρ̂s > 0 or

ρ̂s =−ρ̄1 and−2η1xT
i Pus − ρ̂s < 0;

−2η1xT
i Pus −ηρ ρ̂s, otherwise,

(62)

˙̂as j =


0, if âs j > ā1 and 2η2xT

i P− âs j > 0 or

âs j <−ā1 and 2η2xT
i P− âs j < 0;

2η2xT
i P−ηα âs j,otherwise, j = 1,2, · · · , p,

(63)

˙̂θi jk =



0, if θ̂i jk = M̄i jk,θ and

2η1xeT
i P j

i ξ (x̂k)−ηθ θ̂i jk > 0,

or θ̂i jk =−M̄i jk,θ and

2η1xT
i P j

i ξ (x̂k)−ηθ θ̂i jk < 0,

2η1xT
i P j

i |ξ (x̂k)−ηθ θ̂i jk, otherwise,

(64)

˙̂Mεθ i jk =



0, if M̂εθ i jk = 2M̄i jk,θ + M̄i jk,ε and

2η1|xT
i P j

i |+ηMM̂εθ i jk > 0,

or M̂εθ i jk =−2M̄i jk,θ − M̄i jk,ε and

2η1|xT
i P j

i |+ηMM̂εθ i jk < 0,

2η1|xT
i P j

i |−ηMM̂εθ i jk, otherwise,

(65)

and Assumptions 1-3 hold, then the faulty system
is asymptotically stable, ||x|| ≤

√
α/λmin(P), |ρ̃s| ≤√

2η1α , |ãs j| ≤
√

2η2α , ||θi jk|| ≤
√

2η3α and |M̃i jk| ≤√
2η3α , where α = µ

λ +V (0) and λ = min{ λmin(Q)
λmax(P)

, ηρ
2η1

,
ηα
η2

, ηθ
2η3

, ηM
2η3

}, µ =
ηρ
2η1

ρ̄2
1 +

ηα
2η2

pā2
1 +

2
η1

ρ̄1ρ̄2 +
2

η2
pā1ā2 +

∆1, λ = min{ λmin(Q)
λmax(P)

, ηρ
2η1

, ηα
η2

, ηθ
2η1

, ηM
2η2

}, P = diag{P1, · · · ,
PN}, L = diag{L1, · · · , LN}, Q = diag{Q1, · · · , QN}, P j is
the jth row of P, η1 > 0, η2 > 0, η3 > 0, ηρ > 0, ηα > 0,
ηθ > 0 and ηM > 0 are design parameters, respectively.

Proof: To save pages, the detailed derivation is omit-
ted. In fact, from the proof of the previous Theorems, the
conclusion is easily obtained. □

4. SIMULATION

4.1. Near space vehicle dynamics
In re-entry phase, near space vehicle (NSV) attitude dy-

namics has the following form [21]:{
γ̇ = R(·)ω,

Jω̇ =−ΩJω +δ ,
(66)

where angular rate vectorω = [ω1,ω2,ω3]
T = [p,q,r]T , r,q

and p and respectively denote the yaw rate, roll and pitch
of NSV; γ = [ϕ ,β ,α]T , α , β and ϕ respectively are the at-
tack angles, sideslip, and bank of NSV; J = JT > 0 ∈ R3×3

Fig. 1. The diagram of near space vehicle.

denotes moment of inertia tensor; control surface deflec-
tion δ = [δe,δα ,δr]

T ∈ R3×1, δα ,δe and δr respectively de-
note the aileron deflection, elevator deflection and rudder
deflection of NSV; R(·) and Ω respectively defines as:

R(·) =

 cosα 0 sinα
sinα 0 −cosα

0 1 0

 ,

and

Ω =

 0 −ω3 ω2

ω3 0 −ω1

ω2 ω1 0

 .

From [21], equation (66) can be divided into the outer
loop γ (slow loop) and inner loop ω (fast loop) shown in
Fig. 1. Correspondingly, (66) can be expressed by a inter-
connected system consisting of slow subsystem (67) and
fast subsystem (68).{

ẋγ = f (xγ , t)yω ,

yγ = xγ ,
(67){

ẋω = f (xω)+g(xω)u(t),

yω = xω ,
(68)

where f (xγ) =R(·), xω =ω,xγ = γ , g(xω) = J−1, f (xω) =
J−1Ω(ω)Jxω .

The control objectives is to design u(t) to ensure that
limt→∞(xω −ωd) = 0 ⇒ limt→∞(γγ −γd) = 0, where yω(=
ωd) and yd respectively are the ideal angular rate and the
desired reference signal.

In this paper, it is assumed that the slow subsystem is
always healthy, and has been stable, which means ωd =
[0,0,0]T . Hence, our main task is, for the fast subsystem,
how to design the proper fault-tolerant controller such that
can guarantees the tracking performance in normal and
faulty conditions, namely, the fast subsystem’s output can
tracks the desired command yω(= ωd = [0,0,0]T ) in spit
of actuator fault.

In this simulation, the case is considered, where altitude
H = 40km and speed V = 2500 m/s. Further, we have

J=

 554486 0 −23002
0 1136949 0

−23002 0 1376852

=

 ā 0 b̄
0 d̄ 0
b̄ 0 c̄

 .

Further, one has

J−1 =1.0e - 005 ×

 0.1805 0 0.0030
0 0.0880 0

0.0030 0 0.0727
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=

 a 0 b
0 d 0
b 0 c

 ,

where a = 0.1805 × 10−5,b = 0.0030 × 10−5,c =
0.0727 × 10−5,d = 0.0880 × 10−5, ā = 554486, b̄ =
−23002, c̄ = 1376852, d̄ = 1136949. Denote x =
[x1, x2, x3]

T =
[ω1,ω2,ω3]

T , then

Ω =

 0 −x3 x2

x3 0 −x1

x2 x1 0

 .

Further, one has

ẋ =

 f11x1x2 + f11x2x3

f21x1x3 + f22x2
1 + f23x2

3
f31x1x2 + f32x2x3

+

 au1 +bu3

du2

bu1 + cu3

 .

Now, we can transform the fast subsystem into intercon-
nected systems form.{

˙̄x1 = A1 +B1ū1 +Ψ1(x̄1, x̄2),

˙̄x2 = A2 +B2ū2 +Ψ2(x̄1, x̄2),

x̄1 =

[
x1

x3

]
, x̄2 = x2, ū1 =

[
u1

u3

]
, ū2 = u2,

A1 =

[
0 1
1 0

]
, A2 = 1,B1 =

[
a b
b c

]
, B2 = d,

Ψ1(x̄1, x̄2) =

[
f11x2 −11 f12x2

f31x2 f32x2

][
x1

x3

]
,

Ψ2(x̄1, x̄2) = f21x1x3 − x1 + f22x2
1 + f23x2

3,

Ψ1(x̄1, x̄2) =

[
f11x2 −11 f12x2

f31x2 f32x2

][
x1

x3

]
,

Ψ2(x̄1, x̄2) = f21x1x3 − x1 + f22x2
1 + f23x2

3.

4.2. Simulation results
In this simulation, ωd = [0,0,0]T , γ(0)= [0,0,0]T ,ω(0)

= [0.01,0.02,−0.01]T . The parameters in (66) are taken
as in [21]. It also is assumed that only one actuator be-
comes faulty at one time. The faulty case can be described
as:

u f
1(t) =

{
u1(t), t < 5,

g1(t)u1(t)+ f1(t), t ≥ 5,

u f
2(t) = u2(t), u f

3(t) = u3(t),

where g1(t) = 0.4, f1(t) = (0.5+ cos(t))×105. By using
Matlab LMI control toolbox, the matrices inequalities (8)
and (29) are solved, L and Li thus are obtained, and the
corresponding fault diagnostic observers (5) and (26) fur-
ther are designed. Then, By solving (43), the fault estima-
tion observer (41) is constructed, and the fault information
is obtained by (44)-(47). Further, by solving (57), we can
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Fig. 2. The state responses without fault.
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Fig. 3. Detection residual.

obtain P1 and Ki. Hence, normal control (56) is designed.
Based on (56) and the obtain fault information, FTC input
(60) can be designed.

The simulation results are presented in Figs. 2-5. From
Fig. 2, it is seen that, under normal operating condition,
system states are asymptotically bounded and converge to
the small neighborhood of the origin. If a fail occurs in
the first actuator at t = 5s, the detection residual deviates
significantly from the small neighborhood of the origin,
as shown in Fig. 3, while that the isolation residual sig-
nals shows in Fig. 4. As shown in Fig. 5, using the pro-
posed FTC (60), the system states become asymptotically
bounded, again.

5. CONCLUSIONS

In this paper, the problem of adaptive FTC for a class
of large-scale systems with nonlinear interconnections is
investigated. A general actuator fault model is proposed,
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Fig. 4. Isolation residuals.
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Fig. 5. The state response with FTC.

which integrates varying bias and gain faults, and a bank
of adaptive fuzzy observers are designed to provide a bank
of residuals for FDI. Based on Lyapunov stability theory,
a novel fault diagnostic algorithm is proposed, which re-
moves some classical assumptions.
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