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Time-varying H∞ Control for Discrete-time Switched Systems with Ad-
missible Edge-dependent Average Dwell Time
Rui-Hua Wang, Bing-Xin Xue* ■ , and Jing-Bo Zhao

Abstract: The problem of H∞ control for discrete-time switched systems is investigated via admissible edge-
dependent average dwell time (AED-ADT) method in this paper. By virtue of a convex combination of positive
definite matrices, a novel multiple piecewise convex Lyapunov function (MPCLF) is designed, which can relax the
restricted conditions of Lyapunov functions at switching points and interval interior points. Based on the MPCLF
approach, the time-varying H∞ state feedback controllers, guaranteeing that the corresponding closed-loop system is
globally uniformly exponentially stable (GUES) with a prescribed H∞ performance, are established for the consid-
ered switched system. Finally, three numerical examples are provided to illustrate the effectiveness of the proposed
approaches.

Keywords: Admissible edge-dependent average dwell time, discrete-time switched systems, H∞ state feedback
control, multiple piecewise convex Lyapunov function.

1. INTRODUCTION

Switched systems [1] are a special class of hybrid sys-
tems, which contain a series of subsystems and a switch-
ing signal that schedules the switchings of the subsys-
tems. In the last few decades, switched systems have
received considerable attention, not only for their theo-
retical value [2–12], but also for their widespread prac-
tical applications, such as network control systems [13],
DC/DC converters [14], oscillators [15], three-phase two-
level grid-connected power converters [16], etc. Stability
analysis is crucial in the research of switched systems. As
is known, the common Lyapunov function [17] is mainly
used to investigate the stability of switched systems un-
der arbitrary switching signals. To achieve flexibility, the
multiple Lyapunov function (MLF) [18,19] is proposed to
study the stability of switched systems with constrained
switching signals. Recently, for a class of slowly switched
systems, the authors in [20, 21] introduced a multiple dis-
continuous Lyapunov function (MDLF), where the Lya-
punov function for each subsystem is piecewise continu-
ous. Based on the MDLF, the stability results under the av-
erage dwell time (ADT) or mode-dependent average dwell
time (MDADT) with tighter bounds are obtained. How-
ever, a series of inequalities Pip ≤ ρiPi(p−1) of MDLF may
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lead to the infeasibility of related LMI conditions. This
motivates us to design a new Lyapunov function with more
degrees of freedom so that larger feasibility regions can be
achieved.

As a class of switching signals, ADT switching [22–
25] signifies that the switching times in a finite inter-
val is bounded and the average time between consecutive
switchings is not less than a constant, which is more gen-
eral than dwell time (DT) switching [26]. Subsequently,
the paper [27] proposed the MDADT switching [28–31]
with each mode carrying its own ADT, due to which the
MDADT switching is of less restrictiveness than the ADT
switching. Recently, a novel notion of AED-ADT was de-
veloped in [32, 33]. Its switching behavior is represented
by a directed graph, where each admissible transition edge
(ATE) means a directed switching between subsystems.
Owing to the choices of transition weights of ATEs, the
AED-ADT switching provides more flexibility compared
to the MDADT switching.

Since the disturbance is commonly found in practical
situations, H∞ control or l2-gain analysis has become an
attracting issue [34–38]. The H∞ control problem was in-
vestigated in [34–36] for a class of switched systems with
ADT. The authors in [36] studied the asynchronous finite-
time H∞ control problem for a class of switched linear
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systems with time-varying disturbances. In [37, 38], the
finite-time H∞ control of switched systems was consid-
ered under the MDADT switching, where the correspond-
ing closed-loop system is finite-time bounded with a pre-
scribed H∞ performance. However, there is no result avail-
able yet on H∞ control of discrete-time switched systems
with AED-ADT. Moreover, in the extant works, the ob-
tained l2-gains can not be reduced to low levels, which
severely affects the related practical applications.

In this paper, a novel MPCLF is firstly proposed to ana-
lyze the problem of H∞ control for discrete-time switched
systems. By employing the MPCLF approach, a time-
varying H∞ controller is designed. Under the AED-ADT
and MDADT switching, some sufficient conditions are de-
rived for the switched systems, which can ensure that the
resultant closed-loop system is GUES with a prescribed
H∞ performance. It should be pointed out that by using
our approach the tighter bounds are provided on the AED-
ADT, and the lower l2-gains can be achieved. The remain-
der of this paper is organized as follows: Section 2 gives
preliminaries and problem formulation. In Section 3, the
main results of this paper are put forth. A time-varying
H∞ controller is firstly given, and then H∞ performance
conditions are derived. Section 4 presents three numerical
examples to verify the validity of the developed results. In
the end, some conclusions are given in Section 5.

Notations: The notations in this paper are fairly stan-
dard. We use A > 0 (A < 0) to stand for a positive definite
(negative definite) matrix A. AT refers to the transpose
of a matrix A. Let Rn and Z≥0 denote the n-dimensional
Euclidean space and the set of nonnegative integers, re-
spectively. ∥ · ∥ is used to denote the vector Euclidean
norm. l2[0,∞) is the space of square summable infinite
sequence and for ω = {ω(k)} ∈ l2[0,∞), its norm is given
by ∥ω∥2 =

√
∑∞

k=0 ωT (k)ω(k). As is commonly used in
other literature, ∗ denotes the elements below the main di-
agonal of a symmetric matrix, and max and min, respec-
tively, stand for the maximum and minimum. In addition,
matrices, if not explicitly stated, are assumed to have com-
patible dimensions for algebraic operations.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following discrete-time switched linear
system

x(k+1) = Aσ(k)x(k)+Bσ(k)u(k)+Eσ(k)ω(k), (1)

z(k) =Cσ(k)x(k)+Fσ(k)ω(k), (2)

where x(k) ∈ Rnx and z(k) ∈ Rnz denote the system state
and objective signal, respectively. ω(k) ∈ Rnω is the
noise input, which belongs to l2[0,∞); σ(k) is a piece-
wise constant function of time, called a switching signal,
which takes its values in a finite set N = {1,2, · · · ,ns},

ns > 1 is the number of subsystems. For a switching sig-
nal σ(k), let k1 < k2 < · · · < km < · · · denote the switch-
ing instants of σ(k). The switching sequence is defined
as ζ = {x(t0);(i0,k0),(i1,k1), · · · ,(im,km), · · ·}. The ithm
subsystem is active during the time interval [km,km+1).
Besides, it is assumed that the switching signal σ(k) is
known prior to the controller design.

Now, some relevant definitions and lemma are recalled
for the derivation of the main results and later discussions.

Definition 1 [39]: The equilibrium x = 0 of system
(1) with u = 0 and ω = 0 is GUES under switching
signal σ(k), if there exist constants γ > 0, λ > 1 such
that the solution x(k) of system (1) satisfies ∥x(k)∥ ≤
γλ−(k−k0)∥x(k0)∥, ∀k ≥ k0.

Definition 2 [2]: For γ > 0, system (1)-(2) with u = 0
is said to be GUES with an l2-gain, if under zero initial
condition, it is GUES and the inequality ∑∞

s=k0
zT (s)z(s)≤

∑∞
s=k0

γ2ωT (s)ω(s) holds for all nonzero ω(k) ∈ l2[0,∞).
Definition 3 [27]: For a switching signal σ and any in-

terval [k1,k2], let Nσ i(k1,k2) be the switching numbers that
the ith subsystem is activated over the interval [k1,k2], and
Ti(k1,k2) denote the total running time of the ith subsys-
tem over the interval [k1,k2],∀i ∈ N. We say that σ has a
mode-dependent average dwell time τai if there exist pos-
itive numbers N0i and τai such that

Nσ i(k1,k2)≤ N0i +
Ti(k1,k2)

τai
,∀k2 ≥ k1 ≥ 0. (3)

Definition 4 [33]: For a directed switching graph G and
i, j ∈ N (i ̸= j), if a directed edge from i to j is admissible,
then we call S(i, j) as an ATE of G. The set of ATEs is
denoted by S(N). An ATE S(i, j) has an admissible tran-
sition edge-dependent weight (ATEDW) βi, j, which de-
scribes the switching property from i to j and the set of
which is signified by W .

A directed graph of a switched system with three sub-
systems is shown in Fig. 1, where the set of ATEs is
S(N) = {S(1,2),S(1,3),S(2,1),S(2,3),S(3,1),S(3,2)},
and the set of ATEDWs is W = {β1,2,β1,3,β2,1,β2,3,β3,1,
β3,2}. In the following, the definition of AED-ADT is
introduced on the basis of Definition 4.

Definition 5 [33]: For any i, j ∈ N (i ̸= j), S(i, j) ∈
S(N), and a switching signal σ(k), let Nσ

i, j(k0,k) be the
switching count from i to j over the interval [k0,k), and
Ti, j(k0,k) denote the total duration of subsystem j within
the interval [k0,k), where i is the previously active subsys-
tem, and k ≥ k0 ≥ 0. We say that σ(k) has an admissible
edge-dependent average dwell time τa

i, j if there exist posi-
tive numbers N0

i, j and τa
i, j such that

Nσ
i, j(k0,k)≤ N0

i, j +
Ti, j(k0,k)

τa
i, j

,∀k ≥ k0 ≥ 0, (4)

where N0
i, j are called as the admissible edge-dependent

chatter bounds.
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Fig. 1. A directed switching graph G with N = {1,2,3}.

Lemma 1 [40]: Let ξ ∈ Rn,P = PT ∈ Rn×n, and H ∈
Rm×n such that rank(H) = r < n, and then the following
statements are equivalent:
(i) ξ TPξ < 0, for all ξ ̸= 0,Hξ = 0;
(ii) ∃X ∈ Rn×m such that P+XH+HTX T < 0.

The objective of this paper is to design an efficient H∞
controller and find a set of AED-ADT switching signals
such that the corresponding closed-loop system is GUES
and has a guaranteed H∞ disturbance attenuation perfor-
mance, i.e.„ ∥z∥2

2 ≤ γ2∥ω∥2
2 for a constant γ > 0.

3. MAIN RESULTS

3.1. Time-varying H∞ controller construction
In this subsection, a MPCLF is firstly designed for

studying the H∞ control of switched system (1)-(2) later.
To begin, we divide the switching interval [km,km+1) with
σ(km) = i ∈ N into qi segments: [km,km+1) =

∪qi−1
j=0 [km +

Ti j,km+Ti( j+1)), where Ti0 = 0,km+Tiqi = km+1. The MP-
CLF is given as follows:

Vi j(k) = xT (k)∑L
l=1 fi jl(k− km)Pi jlx(k)

△
= xT (k)Pi j(k)x(k), (5)

where ∀k ∈ [km +Ti j,km +Ti( j+1)), Pi jl ∈ Rn×n are posi-
tive definite matrices, and positive integer L denotes the
number of matrices Pi jl ; nonlinear continuous functions
fi jl(k − km) are defined on the segment [km + Ti j,km +
Ti( j+1)), and satisfy

fi jl(k− km)≥ 0, ∑L
l=1 fi jl(k− km) = 1. (6)

In order to continue our work, a simple and effective
construction method is proposed to construct the above
functions fi jl(k − km). For any i ∈ N, j ∈ {0,1, · · · ,qi −
1}, l ∈ L= {1,2, · · · ,L}, we define

fi jl(k− km) = a(k− km)+b, (7)

where a and b are unknown constants to be determined
immediately.

Set

fi jl(Ti j) = ai jl , fi jl(Ti( j+1)) = bi jl , (8)

where 0≤ ai jl ≤ 1,0≤ bi jl ≤ 1,∑L
l=1 ai jl = 1,∑L

l=1 bi jl = 1.
By integrating (7) and (8), we can obtain

a =
bi jl −ai jl

Ti( j+1)−Ti j
,b =

ai jlTi( j+1)−bi jlTi j

Ti( j+1)−Ti j
.

Thus, we have, i ∈ N, j ∈ {0,1, · · · ,qi −1}, l ∈ L,

fi jl(k− km) =
bi jl −ai jl

Ti( j+1)−Ti j
(k− km)

+
ai jlTi( j+1)−bi jlTi j

Ti( j+1)−Ti j
, (9)

and it can be checked that

fi jl(k− km)≥ 0,∑L
l=1 fi jl(k− km) = 1,

fi jl(k+1− km)− fi jl(k− km) =
bi jl −ai jl

Ti( j+1)−Ti j
. (10)

Remark 1: Obviously, larger parameter L yields more
degrees of freedom for the MPCLF. Nevertheless, it
should also be pointed out that parameter L should not
be too large since larger L will bring additional compu-
tational burden. Therefore, parameter L must be chosen
carefully according to practical situations.

Based on the MPCLF in (5), we provide the following
switched state feedback controller

u(k) = Kσ(k) j(k)x(k), (11)

Ki j(k) = ∑L
l=1 fi jl(k− km)Ki jl , (12)

where Ki jl , i∈N, j ∈{0,1, · · · ,qi−1}, l ∈L are controller
parameters to be determined afterwards.

Under the controller (11), the corresponding closed-
loop switched system becomes

x(k+1) = Aσ(k)(k)x(k)+Eσ(k)ω(k), (13)

z(k) =Cσ(k)x(k)+Fσ(k)ω(k), (14)

where

Aσ(k)(k) = Aσ(k)+Bσ(k)Kσ(k) j(k). (15)

Remark 2: Based on the MPCLF, an H∞ state feed-
back controller is designed. In this paper, the functions
fi jl(k − km) of MPCLF are simply constructed as linear
and quasi-time-dependent functions. Due to the partic-
ularity of functions fi jl(k − km), our controller is time-
varying and has multiple degrees of freedom, which al-
lows us to obtain more flexibility in designing controller
parameters.
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3.2. Stability and l2-gain analysis
Next, the MPCLF (5) will be utilised to deduce the

GUES conditions for system (1) with u = 0 and ω = 0.

Theorem 1: Consider the switched system

x(k+1) = Aσ(k)x(k). (16)

For given scalars 0 < αi < 1, 0 < ρi ≤ 1, i ∈ N, βi1,i2 > 1,
with ρqi2−1

i2 βi1,i2 > 1, i1, i2 ∈ N, i1 ̸= i2, suppose that there
exist positive definite matrices Pi jl and matrices Mi jl , i ∈
N, j ∈ {0,1, · · · ,qi −1}, l ∈ L, such that[

−αiPi jl ∗
Mi jlAi Ξ−Mi jl −MT

i jl

]
< 0, (17)

where Ξ = Pi jl +∑L
r=1

bi jr−ai jr

Ti( j+1)−Ti j
Pi jr, and the following in-

equalities can be satisfied

∑L
l=1 ai jlPi jl ≤ ρi ∑L

l=1 bi( j−1)lPi( j−1)l , (18)

∑L
l=1 ai20lPi20l ≤ βi1,i2 ∑L

l=1 bi1(qi1−1)lPi1(qi1−1)l , (19)

where (19) holds whenever the switching from i1 to i2 is
admissible. Then the switched system (16) is GUES with
AED-ADT τa

i1,i2 satisfying

τa
i1,i2 >

− ln(ρqi2−1
i2 βi1,i2)

lnαi2
, (20)

where the parameter βi1,i2 is ATEDW with respect to ATE
S(i1, i2).

Proof: Design matrices Mi j(k), where Mi j(k) =

∑L
l=1 fi jl(k − km)Mi jl , Mi jl ∈ Rn×n. By (10) and (17), it

is clear that[
−αiPi j(k) ∗
Mi j(k)Ai Pi j(k+1)−Mi j(k)−MT

i j(k)

]
< 0. (21)

From (5), we have ∀k ∈ [km +Ti j,km +Ti( j+1)),

Vi j(k+1)−αiVi j(k) =xT (k+1)Pi j(k+1)x(k+1)

−αixT (k)Pi j(k)x(k). (22)

On the basis of Lemma 1, (21) and (22), we obtain

Vi j(k+1)≤ αiVi j(k). (23)

At the interval interior points km+Ti j, j ∈ {1,2, · · · ,qi−
1}, inequality (18) yields

∑L
l=1 fi jl(Ti j)Pi jl ≤ ρi ∑L

l=1 fi( j−1)l(Ti j)Pi( j−1)l . (24)

It follows that

Vi j(km +Ti j)≤ ρiVi( j−1)(km +Ti j). (25)

At the switching points km, m = 1,2,3, · · · , assume
σ(km−1) = i1,σ(km) = i2, i1, i2 ∈ N. Inequality (19) brings
about

L

∑
l=1

fi20l(0)Pi20l ≤ βi1,i2

L

∑
l=1

fi1(qi1−1)l(Ti1qi1
)Pi1(qi1−1)l . (26)

One can obtain

Vi20(km)≤ βi1,i2Vi1(qi1−1)(km). (27)

From (23), we get ∀k ∈ [km +Ti j,km +Ti( j+1)),

Vσ(k)(k) =Vσ(k) j(k)

≤elnασ(km)(k−km−Tσ(km) j)Vσ(km) j(km +Tσ(km) j).
(28)

By integrating (25) with (28), it is directly obtained that

Vσ(k)(k)≤ elnασ(km)(k−km−Tσ(km) j)ρσ(km)

×Vσ(km)( j−1)(km +Tσ(km) j)

≤ elnασ(km)(k−km)ρ j
σ(km)

Vσ(km)0(km).

And then, according to (27), we get

Vσ(k)(k)≤ elnασ(km)(k−km)ρ j
σ(km)

βσ(km−1),σ(km)

×Vσ(km−1)(qσ(km−1)−1)(km).

Via similar steps, one can further obtain

Vσ(k)(k)≤ elnασ(km)(k−km)ρ j
σ(km)

βσ(km−1),σ(km)ρ
qσ(km−1)−1
σ(km−1)

× elnασ(km−1)(km−km−1)Vσ(km−1)0(km−1)

≤ elnασ(km)(k−km)elnασ(km−1)(km−km−1)ρ j
σ(km)

×ρ
qσ(km−1)−1
σ(km−1)

βσ(km−1),σ(km)βσ(km−2),σ(km−1)

×Vσ(km−2)(qσ(km−2)−1)(km−1)

≤ ·· ·

≤ elnασ(km)(k−km)elnασ(km−1)(km−km−1) · · ·

× elnασ(k1)(k2−k1)ρ j
σ(km)

ρ
qσ(km−1)−1
σ(km−1)

· · ·ρqσ(k1)−1
σ(k1)

×βσ(km−1),σ(km)βσ(km−2),σ(km−1) · · ·βσ(k0),σ(k1)

×Vσ(k0)(qσ(k0)−1)(k1)

≤ elnασ(km)(k−km)elnασ(km−1)(km−km−1) · · ·

× elnασ(k0)(k1−k0)ρ j
σ(km)

ρ
qσ(km−1)−1
σ(km−1)

· · ·ρqσ(k0)−1
σ(k0)

×βσ(km−1),σ(km)βσ(km−2),σ(km−1) · · ·βσ(k0),σ(k1)

×Vσ(k0)0(k0)

= elnασ(km)(k−km)ρ j+1−qσ(km)

σ(km)
ρqσ(k0)−1

σ(k0)

×
m−1

∏
r=0

(ρ
qσ(kr+1)−1
σ(kr+1)

βσ(kr),σ(kr+1))

×
m−1

∏
r=0

elnασ(kr )(kr+1−kr)Vσ(k0)0(k0). (29)
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By Definition 5, one gets that
m−1

∏
r=0

(ρ
qσ(kr+1)−1
σ(kr+1)

βσ(kr),σ(kr+1))

= e∑m−1
r=0 ln(ρ

qσ(kr+1)
−1

σ(kr+1)
βσ(kr ),σ(kr+1))

= e∑i2∈N ∑m−1
r=0 ∑i1∈N,i1 ̸=i2

ln(ρ
qi2

−1
i2

βi1 ,i2 )

= e∑i2∈N ∑i1∈N,i1 ̸=i2
Nσ

i1 ,i2
(k0,k) ln(ρ

qi2
−1

i2
βi1 ,i2 ), (30)

elnασ(km)(k−km)
m−1

∏
r=0

elnασ(kr )(kr+1−kr)

= elnασ(km)(k−km)+∑m−1
r=0 lnασ(kr )(kr+1−kr)

= e∑i2∈N ∑i1∈N,i1 ̸=i2
lnαi2 Ti1 ,i2 (k0,k). (31)

Substituting (30) and (31) into (29), one can obtain

Vσ(k)(k)≤ ρ j+1−qσ(km)

σ(km)
ρqσ(k0)−1

σ(k0)
e∑i2∈N ∑i1∈N,i1 ̸=i2

lnαi2 Ti1 ,i2 (k0,k)

× e
∑i2∈N ∑i1∈N,i1 ̸=i2

(N0
i1 ,i2

+
Ti1 ,i2

(k0 ,k)

τa
i1 ,i2

) ln(ρ
qi2

−1
i2

βi1 ,i2 )

×Vσ(k0)0(k0)

= e∑i2∈N ∑i1∈N,i1 ̸=i2
N0

i1 ,i2
ln(ρ

qi2
−1

i2
βi1 ,i2 )

× e
∑i2∈N ∑i1∈N,i1 ̸=i2

(lnαi2+
ln(ρ

qi2
−1

i2
βi1 ,i2

)

τa
i1 ,i2

)Ti1 ,i2 (k0,k)

×ρ j+1−qσ(km)

σ(km)
ρqσ(k0)−1

σ(k0)
Vσ(k0)0(k0).

If the constant τa
i1,i2 satisfies (20), we have lnαi2 +

ln(ρ
qi2

−1
i2

βi1 ,i2 )

τa
i1 ,i2

< 0. Then, one can obtain

Vσ(k)(k)≤ max
i∈N

{ρ1−qi
i }e∑i2∈N ∑i1∈N,i1 ̸=i2

N0
i1 ,i2

ln(ρ
qi2

−1
i2

βi1 ,i2 )

× e
maxi1 ,i2∈N,i1 ̸=i2{lnαi2+

ln(ρ
qi2

−1
i2

βi1 ,i2
)

τa
i1 ,i2

}(k−k0)

×Vσ(k0)0(k0).

Thus, the switched system (16) is GUES. □

Based on Theorem 1, the sufficient conditions will be
derived, which guarantee that the resulting closed-loop
system is GUES with an H∞ disturbance attenuation per-
formance.

Theorem 2: Consider the switched system

x(k+1) = Aσ(k)x(k)+Eσ(k)ω(k), (32)

z(k) =Cσ(k)x(k)+Fσ(k)ω(k). (33)

For given scalars 0 < αi < 1,0 < ρi ≤ 1, i ∈ N,βi1,i2 > 1,
with ρqi2−1

i2 βi1,i2 > 1, i1, i2 ∈ N, i1 ̸= i2, suppose that there
exist positive definite matrices Pi jl and matrices Mi jl , i ∈
N, j ∈ {0,1, · · · ,qi −1}, l ∈ L, such that

−αiPi jl ∗ ∗ ∗
Ci −I ∗ ∗

Mi jlAi 0 Ξ−Mi jl −MT
i jl ∗

0 FT
i ET

i MT
i jl −γ2I

< 0, (34)

where Ξ = Pi jl +∑L
r=1

bi jr−ai jr

Ti( j+1)−Ti j
Pi jr, and inequalities (18)

and (19) hold. Then system (32)-(33) is GUES with a
guaranteed H∞ performance index γ for any switching sig-
nal satisfying (20).

Proof: Firstly, we consider the GUES problem of sys-
tem (32) with ω = 0. Multiplying both sides of the in-
equality (34) by

I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 ,
we can rewrite (34) as

−αiPi jl ∗ ∗ ∗
Mi jlAi Ξ−Mi jl −MT

i jl ∗ ∗
Ci 0 −I ∗
0 ET

i MT
i jl FT

i −γ2I

< 0. (35)

From (35), we have immediately[
−αiPi jl ∗
Mi jlAi Ξ−Mi jl −MT

i jl

]
< 0. (36)

Considering (18) and (19), we have system (32) with ω =
0 is GUES according to Theorem 1.

Next, we will prove that the prescribed l2-gain of sys-
tem (32)-(33) can be ensured for all nonzero ω . By (10)
and (34), we obtain

−αiPi j(k) ∗ ∗ ∗
Ci −I ∗ ∗

Mi j(k)Ai 0 Π ∗
0 FT

i ET
i MT

i j(k) −γ2I

< 0, (37)

where Π = Pi j(k + 1) − Mi j(k) − MT
i j(k), Mi j(k) =

∑L
l=1 fi jl(k − km)Mi jl , Mi jl ∈ Rn×n. The inequality (37)

can be rewritten as follows:

Pi j(k)+Xi j(k)Hi +HT
i X T

i j (k)< 0, (38)

where

Pi j(k) =


−αiPi j(k) 0 0 0

0 I 0 0
0 0 Pi j(k+1) 0
0 0 0 −γ2I

 ,
Xi j(k) =

[
0 0 MT

i j(k) 0
0 I 0 0

]T

,

Hi =

[
Ai 0 −I Ei

Ci −I 0 Fi

]
. (39)

Define the augmented signal ξ as

ξ =
[

xT (k) zT (k) xT (k+1) ωT (k)
]T

, (40)
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and then, system (32)-(33) can be rewritten in the form of

Hiξ = 0. (41)

By Lemma 1 and (38), there holds

ξ TPi j(k)ξ < 0. (42)

Substituting (39) and (40) into (42), and assuming Γ(k) =
γ2ωT (k)ω(k)− zT (k)z(k), we have

∆Vi j(k)< (αi −1)Vi j(k)+Γ(k), (43)

the above inequality implies that

Vi j(k)≤ αk−k0
i Vi j(k0)+∑k−1

s=k0
αk−1−s

i Γ(s). (44)

Therefore, from (44), (18) and (19), one gets

Vσ(k)(k) =Vσ(k) j(k)

≤ elnα
k−km−Tσ(km) j
σ(km) Vσ(km) j(km +Tσ(km) j)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ elnα
k−km−Tσ(km) j
σ(km) ρσ(km)Vσ(km)( j−1)(km +Tσ(km) j)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ elnα
k−km−Tσ(km) j
σ(km) ρσ(km)

(
elnα

km+Tσ(km) j−km−Tσ(km)( j−1)
σ(km)

×Vσ(km)( j−1)(km +Tσ(km)( j−1))

+
km+Tσ(km) j−1

∑
s=km+Tσ(km)( j−1)

αkm+Tσ(km) j−1−s
σ(km)

Γ(s)

)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

= elnα
k−km−Tσ(km)( j−1)
σ(km) Vσ(km)( j−1)(km +Tσ(km)( j−1))

×ρσ(km)+ elnα
k−km−Tσ(km) j
σ(km) ρσ(km)

×
km+Tσ(km) j−1

∑
s=km+Tσ(km)( j−1)

αkm+Tσ(km) j−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ elnα
k−km−Tσ(km)( j−2)
σ(km) Vσ(km)( j−2)(km +Tσ(km)( j−2))

×ρ2
σ(km)

+ elnα
k−km−Tσ(km)( j−1)
σ(km) ρ2

σ(km)

×
km+Tσ(km)( j−1)−1

∑
s=km+Tσ(km)( j−2)

αkm+Tσ(km)( j−1)−1−s
σ(km)

Γ(s)

+ elnα
k−km−Tσ(km) j
σ(km) ρσ(km)

×
km+Tσ(km) j−1

∑
s=km+Tσ(km)( j−1)

αkm+Tσ(km) j−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ ·· ·

≤ elnαk−km
σ(km)ρ j

σ(km)
Vσ(km)0(km)+ elnα

k−km−Tσ(km)1
σ(km)

×ρ j
σ(km)

km+Tσ(km)1−1

∑
s=km

αkm+Tσ(km)1−1−s
σ(km)

Γ(s)

+ · · ·+ elnα
k−km−Tσ(km) j
σ(km) ρσ(km)

×
km+Tσ(km) j−1

∑
s=km+Tσ(km)( j−1)

αkm+Tσ(km) j−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

= elnαk−km
σ(km)ρ j

σ(km)
Vσ(km)0(km)

+
j

∑
t=1

elnα
k−km−Tσ(km)t
σ(km) ρ j+1−t

σ(km)

×
km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

αkm+Tσ(km)t−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ elnαk−km
σ(km)βσ(km−1),σ(km)Vσ(km−1)(qσ(km−1)−1)(km)

×ρ j
σ(km)

+
j

∑
t=1

elnα
k−km−Tσ(km)t
σ(km) ρ j+1−t

σ(km)

×
km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

αkm+Tσ(km)t−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ elnαk−km
σ(km)ρ j

σ(km)
βσ(km−1),σ(km)

(
elnαkm−km−1

σ(km−1)

×ρ
qσ(km−1)−1
σ(km−1)

Vσ(km−1)0(km−1)+ρ
qσ(km−1)−1
σ(km−1)

×
km−1+Tσ(km−1)1−1

∑
s=km−1

α
km−1+Tσ(km−1)1−1−s
σ(km−1)

Γ(s)

× elnα
km−km−1−Tσ(km−1)1
σ(km−1) + · · ·

+
km−1

∑
s=km−1+Tσ(km−1)(qσ(km−1)

−1)

αkm−1−s
σ(km−1)

Γ(s)

)

+
j

∑
t=1

elnα
k−km−Tσ(km)t
σ(km) ρ j+1−t

σ(km)
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×
km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

αkm+Tσ(km)t−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

= elnαk−km
σ(km)elnαkm−km−1

σ(km−1) ρ j
σ(km)

ρ
qσ(km−1)−1
σ(km−1)

×βσ(km−1),σ(km)Vσ(km−1)0(km−1)

+ elnαk−km
σ(km)ρ j

σ(km)
βσ(km−1),σ(km)

×
qσ(km−1)

∑
j=1

elnα
km−km−1−Tσ(km−1) j
σ(km−1) ρ

qσ(km−1)− j
σ(km−1)

×
km−1+Tσ(km−1) j−1

∑
s=km−1+Tσ(km−1)( j−1)

α
km−1+Tσ(km−1) j−1−s
σ(km−1)

Γ(s)

+
j

∑
t=1

elnα
k−km−Tσ(km)t
σ(km) ρ j+1−t

σ(km)

×
km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

αkm+Tσ(km)t−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ ·· ·

≤ elnαk−km
σ(km) · · ·elnαk1−k0

σ(k0) ρ j
σ(km)

· · ·ρqσ(k0)−1
σ(k0)

×βσ(km−1),σ(km) · · ·βσ(k0),σ(k1)Vσ(k0)0(k0)

+ elnαk−km
σ(km) · · ·elnαk2−k1

σ(k1) ρ j
σ(km)

· · ·ρqσ(k1)−1
σ(k1)

×βσ(km−1),σ(km) · · ·βσ(k0),σ(k1)

×
qσ(k0)

∑
j=1

elnα
k1−k0−Tσ(k0) j
σ(k0) ρqσ(k0)− j

σ(k0)

×
k0+Tσ(k0) j−1

∑
s=k0+Tσ(k0)( j−1)

αk0+Tσ(k0) j−1−s
σ(k0)

Γ(s)+ · · ·

+ elnαk−km
σ(km)ρ j

σ(km)
βσ(km−1),σ(km)

×
qσ(km−1)

∑
j=1

elnα
km−km−1−Tσ(km−1) j
σ(km−1) ρ

qσ(km−1)− j
σ(km−1)

×
km−1+Tσ(km−1) j−1

∑
s=km−1+Tσ(km−1)( j−1)

α
km−1+Tσ(km−1) j−1−s
σ(km−1)

Γ(s)

+
j

∑
t=1

elnα
k−km−Tσ(km)t
σ(km) ρ j+1−t

σ(km)

×
km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

αkm+Tσ(km)t−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

= elnαk−km
σ(km)ρ j+1−qσ(km)

σ(km)
ρqσ(k0)−1

σ(k0)

m−1

∏
r=0

elnαkr+1−kr
σ(kr )

×ρ
qσ(kr+1)−1
σ(kr+1)

βσ(kr),σ(kr+1)Vσ(k0)0(k0)

+ elnαk−km
σ(km)ρ j

σ(km)
βσ(km−1),σ(km)

×
m−1

∑
h=1

(
m−1

∏
p=h

elnα
kp+1−kp
σ(kp) ρqσ(kp)−1

σ(kp)
βσ(kp−1),σ(kp)

×
qσ(kh−1)

∑
j=1

elnα
kh−kh−1−Tσ(kh−1) j
σ(kh−1) ρ

qσ(kh−1)
− j

σ(kh−1)

×
kh−1+Tσ(kh−1) j−1

∑
s=kh−1+Tσ(kh−1)( j−1)

α
kh−1+Tσ(kh−1) j−1−s
σ(kh−1)

Γ(s)

)

+ elnαk−km
σ(km)ρ j

σ(km)
βσ(km−1),σ(km)

×
qσ(km−1)

∑
j=1

elnα
km−km−1−Tσ(km−1) j
σ(km−1) ρ

qσ(km−1)− j
σ(km−1)

×
km−1+Tσ(km−1) j−1

∑
s=km−1+Tσ(km−1)( j−1)

α
km−1+Tσ(km−1) j−1−s
σ(km−1)

Γ(s)

+
j

∑
t=1

elnα
k−km−Tσ(km)t
σ(km) ρ j+1−t

σ(km)

×
km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

αkm+Tσ(km)t−1−s
σ(km)

Γ(s)

+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s)

≤ max
i∈N

{ρ1−qi
i }e∑i2∈N ∑i1∈N,i1 ̸=i2

N0
i1 ,i2

ln(ρ
qi2

−1
i2

βi1 ,i2 )

× e
∑i2∈N ∑i1∈N,i1 ̸=i2

lnαi2+
ln(ρ

qi2
−1

i2
βi1 ,i2

)

τa
i1 ,i2

Ti1 ,i2 (k0,k)

×Vσ(k0)0(k0)+max
i∈N

{ρ1−qi
i }

×
m

∑
h=1

(
e∑i2∈N ∑i1∈N,i1 ̸=i2

N0
i1 ,i2

ln(ρ
qi2

−1
i2

βi1 ,i2 )

× e
∑i2∈N ∑i1∈N,i1 ̸=i2

lnαi2+
ln(ρ

qi2
−1

i2
βi1 ,i2

)

τa
i1 ,i2

Ti1 ,i2 (kh,k)

×
qσ(kh−1)

∑
j=1

elnα
kh−kh−1−Tσ(kh−1) j
σ(kh−1) ρ

qσ(kh−1)
− j

σ(kh−1)

×
kh−1+Tσ(kh−1) j−1

∑
s=kh−1+Tσ(kh−1)( j−1)

α
kh−1+Tσ(kh−1) j−1−s
σ(kh−1)

Γ(s)

)

+
j

∑
t=1

elnα
k−km−Tσ(km)t
σ(km) ρ j+1−t

σ(km)

×
km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

αkm+Tσ(km)t−1−s
σ(km)

Γ(s)
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+
k−1

∑
s=km+Tσ(km) j

αk−1−s
σ(km)

Γ(s). (45)

For i1, i2 ∈ N, i1 ̸= i2, from 0 < αi < 1, 0 < ρi ≤ 1,
βi1,i2 > 1 with ρqi2−1

i2 βi1,i2 > 1, and inequality (20), we
have

max
i∈N

{ρ1−qi
i } ≥ 1,e∑i2∈N ∑i1∈N,i1 ̸=i2

N0
i1 ,i2

ln(ρ
qi2

−1
i2

βi1 ,i2 ) ≥ 1,

0 < e
∑i2∈N ∑i1∈N,i1 ̸=i2

lnαi2+
ln(ρ

qi2
−1

i2
βi1 ,i2

)

τa
i1 ,i2

Ti1 ,i2 (kh,k)

≤ 1.

Hence, under zero initial condition, the above inequality
gives

Vσ(k)(k)≤ max
i∈N

{ρ1−qi
i }e∑i2∈N ∑i1∈N,i1 ̸=i2

N0
i1 ,i2

ln(ρ
qi2

−1
i2

βi1 ,i2 )
m

∑
h=1

qσ(kh−1)

∑
j=1

kh−1+Tσ(kh−1) j−1

∑
s=kh−1+Tσ(kh−1)( j−1)

Γ(s)+
j

∑
t=1

km+Tσ(km)t−1

∑
s=km+Tσ(km)(t−1)

×Γ(s)+
k−1

∑
s=km+Tσ(km) j

Γ(s)

= max
i∈N

{ρ1−qi
i }e∑i2∈N ∑i1∈N,i1 ̸=i2

N0
i1 ,i2

ln(ρ
qi2

−1
i2

βi1 ,i2 )

×
km−1

∑
s=k0

Γ(s)+
k−1

∑
s=km

Γ(s)

≤ max
i∈N

{ρ1−qi
i }e∑i2∈N ∑i1∈N,i1 ̸=i2

N0
i1 ,i2

ln(ρ
qi2

−1
i2

βi1 ,i2 )

×
k−1

∑
s=k0

Γ(s). (46)

Due to Vσ(k)(k)≥ 0, we can obtain

k−1

∑
s=k0

Γ(s)≥ 0, (47)

i.e.,
∞

∑
s=k0

zT (s)z(s)≤
∞

∑
s=k0

γ2ωT (s)ω(s). (48)

Thus, the system (32)-(33) has an l2-gain γ and the
proof is completed. □

In Theorem 2, if the MPCLF is replaced by the MLF,
we can obtain the following result.

Corollary 1: Consider the switched system (32)-(33).
For given scalars 0<αi < 1, i∈N,βi1,i2 > 1, i1, i2 ∈N, i1 ̸=
i2, suppose that there exist positive definite matrices Pi and
matrices Mi, i ∈ N, such that

−αiPi ∗ ∗ ∗
Ci −I ∗ ∗

MiAi 0 Pi −Mi −MT
i ∗

0 FT
i ET

i MT
i −γ2I

< 0, (49)

Pi2 ≤ βi1,i2 Pi1 , (50)

where (50) holds whenever the switching from i1 to i2 is
admissible. Then system (32)-(33) is GUES with a guar-
anteed H∞ performance index γ for any switching signal
satisfying

τa
i1,i2 >

− lnβi1,i2

lnαi2
. (51)

3.3. H∞ controller design
Now, we are in a position to deal with the design of H∞

controller for switched system (1)-(2).

Theorem 3: Consider the switched system (1)-(2). For
given scalars 0 < αi < 1,0 < ρi ≤ 1, i ∈ N,βi1,i2 > 1, with
ρqi2−1

i2 βi1,i2 > 1, i1, i2 ∈ N, i1 ̸= i2, suppose that there ex-
ist positive definite matrices Ni jl , matrices Yi jl , i ∈ N, j ∈
{0,1, · · · ,qi − 1}, l ∈ L, and symmetric invertible matrix
X , such that

−αiNi jl ∗ ∗ ∗
CiX −I ∗ ∗

AiX +BiYi jl 0 Θ−2X ∗
0 FT

i ET
i −γ2I

< 0, (52)

where Θ = Ni jl +∑L
r=1

bi jr−ai jr

Ti( j+1)−Ti j
Ni jr, and the following in-

equalities can be satisfied

∑L
l=1 ai jlNi jl ≤ ρi ∑L

l=1 bi( j−1)lNi( j−1)l , (53)

∑L
l=1 ai20lNi20l ≤ βi1,i2 ∑L

l=1 bi1(qi1−1)lNi1(qi1−1)l , (54)

where (54) holds whenever the switching from i1 to i2 is
admissible. Then there exists a time-varying state feed-
back controller in the form of (11) such that the system
(13)-(14) is GUES with a guaranteed H∞ performance in-
dex γ for any switching signal satisfying (20). Moreover,
a suitable controller realization is given as follows:

Ki j(k) = ∑L
l=1 fi jl(k− km)Ki jl , Ki jl = Yi jlX−1. (55)

Proof: According to (10) and (52), we get
−αiNi j(k) ∗ ∗ ∗

CiX −I ∗ ∗
AiX +BiYi j(k) 0 Ni j(k+1)−2X ∗

0 FT
i ET

i −γ2I

< 0.

(56)

Denote Ni j(k) = XT Pi j(k)X , Yi j(k) = Ki j(k)X , and X =
M−1, it is clear that

−αiM−1Pi j(k)M−1 ∗ ∗ ∗
CiM−1 −I ∗ ∗

AiM−1 +BiKi j(k)M−1 0 Φ−2M−1 ∗
0 FT

i ET
i −γ2I


< 0, (57)
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where Φ = M−1Pi j(k+1)M−1. Multiplying both sides of
(57) by diag{M, I,M, I}, we have

−αiPi j(k) ∗ ∗ ∗
Ci −I ∗ ∗

MAi(k) 0 Pi j(k+1)−2M ∗
0 FT

i ET
i M −γ2I

< 0,

(58)

which can ensure (37). Besides, inequalities (53) and (54)
guarantee inequalities (18) and (19), respectively. Hence,
the proof is completed. □

From Theorem 3, the following Corollary 2 can be di-
rectly obtained under the MDADT switching.

Corollary 2: Consider the switched system (1)-(2).
For given scalars 0 < αi < 1,0 < ρi ≤ 1,βi > 1, with
ρqi−1

i βi > 1, i∈N, suppose that there exist positive definite
matrices Ni jl , matrices Yi jl , i ∈ N, j ∈ {0,1, · · · ,qi −1}, l ∈
L, and symmetric invertible matrix X , such that

−αiNi jl ∗ ∗ ∗
CiX −I ∗ ∗

AiX +BiYi jl 0 Θ−2X ∗
0 FT

i ET
i −γ2I

< 0, (59)

where Θ = Ni jl +∑L
r=1

bi jr−ai jr

Ti( j+1)−Ti j
Ni jr, and the following in-

equalities can be satisfied

∑L
l=1 ai jlNi jl ≤ ρi ∑L

l=1 bi( j−1)lNi( j−1)l , (60)

∑L
l=1 ai20lNi20l ≤ βi2 ∑L

l=1 bi1(qi1−1)lNi1(qi1−1)l , (61)

where (61) holds whenever the switching from i1 to i2 is
admissible. Then there exists a state feedback controller
in the form of (11) such that the system (13)-(14) is GUES
with a guaranteed H∞ performance index γ for any switch-
ing signal satisfying

τai >
− ln(ρqi−1

i βi)

lnαi
, ∀i ∈ N. (62)

Moreover, a suitable controller realization is given by
(55).

Remark 3: It is apparent that our H∞ controller design
method is based on the known switching signals. Once the
switching signals are unknown, our method can not be ap-
plied. In the future work, we will consider the prediction
algorithms of switching signals, or develop new controller
design methods with no need for switching information.

4. NUMERICAL EXAMPLES

Now, we provide three examples to show the effective-
ness of the main results in this paper.

Example 1: Consider switched system (16) composed
of three subsystems:

A1 =

[
0.89 0.48

0 0.48

]
, A2 =

[
0.35 0.15
0.79 0.46

]
,

A3 =

[
0.18 0.5
0.61 0.15

]
.

For the MPCLF, we choose parameters:

q1 = q2 = q3 = 2, L = 2,

a101 = a102 = a111 = a112 = a201 = a202 = a211

= a212 = a301 = a302 = a311 = a312 = 0.5,

b101 = b111 = b201 = b211 = b301 = b311 = 0.4,

b102 = b112 = b202 = b212 = b302 = b312 = 0.6.

The directed switching graph of the above switched sys-
tem is shown in Fig. 1. In order to compare the results un-
der MPCLF with the ones under MLF in [33], the relevant
parameters and the corresponding results for Theorem 2
in [33] and our Theorem 1 are listed in Table 1. It can be
derived from Table 1 that the AED-ADTs obtained by our
Theorem 1 are smaller than the ones obtained by Theorem
2 in [33]. This is because the MPCLF is piecewise contin-
uous during the dwell time on an activated system mode
so that the restrictions of Lyapunov function at switching
points and interval interior points can be relaxed. As a
result, tighter bounds on AED-ADT can be achieved.

Example 2: Next, we compare the minimum H∞ per-
formance index γmin feasible for Theorem 2 and Corol-
lary 1. Consider switched system (32)-(33) including two
subsystems:

A1 =

[
−0.1 0.5

0 −0.3

]
, A2 =

[
0.4 0.3
0.5 −0.7

]
,

C1 =
[
−0.2 0.2

]
, C2 =

[
−0.1 0.15

]
,

E1 =

[
0.2
0.4

]
, E2 =

[
0.15
0.6

]
,

F1 = 0.4, F2 =−0.3.

The parameters of MPCLF are the same as those given
in Example 1. For the usage of Theorem 2, set ρ1 = ρ2 =
0.9. The corresponding comparison results are shown in
Table 2, from which we can see that the γmin can be se-
lected to be smaller via Theorem 2 (MPCLF) than that by
Corollary 1 (MLF). It is obvious that MPCLF outperforms
MLF. The MPCLF helps to achieve a better disturbance
attenuation performance and reduces the l2-gains to lower
levels.

Example 3: Through the comparison of MDADT
switching and AED-ADT switching, we demonstrate
the superiority of AED-ADT switching. Consider the
switched system given by (1) and (2), where

A1 =

[
−0.4 0.5
0.8 −2.3

]
, A2 =

[
−1.4 1.3
0.5 −2.7

]
,
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Table 1. Comparison results under two different Lyapunov function approaches.

Criteria Theorem 2 in [33] Theorem 1 in this paper

Parameters
β2,1=2.1, β3,1=2.3, β1,2=2.2

β3,2=2.4, β1,3 = 2.5, β2,3 = 2.2

α1=0.8, α2=0.78, α3=0.76

β2,1=2.1, β3,1=2.3, β1,2=2.2

β3,2=2.4, β1,3 = 2.5, β2,3 = 2.2

α1=0.8, α2=0.78, α3=0.76

ρ1=0.62, ρ2=0.6, ρ3=0.6

Switching signal

τa∗
2,1=3.3249, τa∗

3,1=3.7326

τa∗
1,2=3.1734, τa∗

3,2=3.5236

τa∗
1,3=3.3388, τa∗

2,3=2.8730

τa∗
2,1=1.1827, τa∗

3,1=1.5903

τa∗
1,2=1.1174, τa∗

3,2=1.4676

τa∗
1,3=1.4774, τa∗

2,3=1.0116

Positive definite matrices

P1 =

[
25.1486 24.8655
24.8655 49.5807

]

P2 =

[
37.6171 15.9693
15.9693 24.2868

]

P3 =

[
28.8311 13.1975
13.1975 30.7291

]
P101 =

[
18.0290 15.6095
15.6095 18.1244

]
P102 =

[
5.5205 −1.0457
−1.0457 2.8735

]

P111 =

[
10.3641 8.4025
8.4025 10.2779

]
P112 =

[
2.6600 −1.4377
−1.4377 0.8336

]
Due to the limit of the space, the rest of Pi jl are omitted.

Table 2. Comparison results of minimum H∞ performance index γmin.

Parameters
α1=0.9, α2 = 0.9

β2,1=2, β1,2=3

α1=0.8, α2 = 0.7

β2,1=2, β1,2=3

α1=0.8, α2 = 0.9
β2,1=3, β1,2=2.5

Theorem 2 0.8370 1.8197 0.8363
Corollary 1 0.9711 6.4046 0.9711

Parameters
α1=0.6, α2 = 0.8

β2,1=3, β1,2=2.5

α1=0.85, α2 = 0.76

β2,1=3.4, β1,2=4

α1=0.75, α2 = 0.88
β2,1=3.4, β1,2=4

Theorem 2 1.0589 1.2293 0.8680
Corollary 1 1.4836 2.0328 1.0333

A3 =

[
0.2 −1
1.5 −1.4

]
, B1 =

[
−2.2 1.5

1 1.8

]
,

B2 =

[
3.1 2
1 2.4

]
, B3 =

[
1.5 0.8
2 2.6

]
,

E1 =

[
0.2
0.4

]
, E2 =

[
0.35
0.15

]
, E3 =

[
0.15
0.6

]
,

C1 =
[
−0.2 0.2

]
, C2 =

[
0 0.15

]
,

C3 =
[
−0.1 0.15

]
, F1 = 0.4, F2 = F3 =−0.3.

The MPCLF parameters are the same as in Example 1.

The corresponding results under MDADT switching
and AED-ADT switching with γ = 0.43 are shown in Ta-
ble 3, from which we can conclude that the H∞ perfor-
mance index γ = 0.43 obtained by MDADT τ∗

ai, i ∈ N can
also be guaranteed by selecting a smaller AED-ADT τa∗

i1,i2 ,
i1, i2 ∈ N, i1 ̸= i2.

The controller parameters Λ1 and Λ2 obtained by Theo-
rem 3 and Corollary 2, respectively, are listed as follows:

Λ1:

K101 =

[
−0.1993 0.6519
0.3290 0.2044

]
,

K102 =

[
−0.2000 0.6518
0.3337 0.2050

]
,

K111 =

[
−0.2021 0.6517
0.3146 0.2183

]
,

K112 =

[
−0.2027 0.6520
0.3034 0.2223

]
,

K201 =

[
0.8153 −1.5232
−0.6224 1.8122

]
,

K202 =

[
0.8096 −1.5193
−0.5960 1.7897

]
,

K211 =

[
0.8115 −1.5228
−0.6032 1.8109

]
,

K212 =

[
0.8115 −1.5231
−0.6107 1.8162

]
,

K301 =

[
0.0994 0.6209
−0.8274 0.1695

]
,
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Table 3. Comparison results under MDADT and AED-ADT with γ = 0.43.

Switching schemes MDADT AED-ADT
Criteria Corollary 2 Theorem 3

Parameters
β1=2.2, β2=3, β3=2.5

α1=0.8, α2 = 0.7, α3 = 0.8

ρ1=0.68, ρ2=0.9, ρ3=0.7

β2,1=1.9, β3,1=2.2, β1,2=3

β3,2=2.1, β1,3 = 2, β2,3 = 2.5

α1=0.8, α2=0.7, α3=0.8

ρ1=0.68, ρ2=0.9, ρ3=0.7

Switching signal
τ∗

a1=1.8051

τ∗
a2=2.7848

τ∗
a3=2.5079

τa∗
2,1=1.1481, τa∗

3,1=1.8051

τa∗
1,2=2.7848, τa∗

3,2=1.7848

τa∗
1,3=1.5079, τa∗

2,3=2.5079

K302 =

[
0.1078 0.6242
−0.8282 0.1685

]
,

K311 =

[
0.0797 0.6596
−0.8126 0.1569

]
,

K312 =

[
0.0855 0.6352
−0.8200 0.1654

]
.

Λ2:

K101 =

[
−0.1959 0.6489
0.3270 0.2000

]
,

K102 =

[
−0.1964 0.6488
0.3303 0.2008

]
,

K111 =

[
−0.1990 0.6487
0.3149 0.2140

]
,

K112 =

[
−0.1991 0.6487
0.3036 0.2182

]
,

K201 =

[
0.8071 −1.5185
−0.5910 1.7854

]
,

K202 =

[
0.8062 −1.5174
−0.5818 1.7767

]
,

K211 =

[
0.8072 −1.5196
−0.5858 1.7948

]
,

K212 =

[
0.8079 −1.5202
−0.5924 1.7993

]
,

K301 =

[
0.0785 0.6362
−0.8252 0.1654

]
,

K302 =

[
0.0844 0.6374
−0.8259 0.1650

]
,

K311 =

[
0.0637 0.6693
−0.8118 0.1545

]
,

K312 =

[
0.0595 0.6617
−0.8175 0.1580

]
.

Set the initial value x(0) =
[

3 −1
]T , and the peri-

odic switching path 1 → 3 → 2 → 1 → 3 → 2 · · · . Based
on the solutions of Table 3, Fig. 2 and Fig. 4 with τa1 =
2,τa3 = 3,τa2 = 3 are given to show the corresponding
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Fig. 2. State response x(k) and switching signal σ(k) un-
der MDADT switching.
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Fig. 3. State response x(k) and switching signal σ(k) un-
der AED-ADT switching.
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Fig. 4. Controlled output response z(k) under MDADT
and AED-ADT switching.

state response x(k), switching signal σ(k) and controlled
output response z(k) under the MDADT switching. From
Fig. 2 and Fig. 4, we can get that the switched system is
stable under MDADT switching.

Meanwhile, choose initial value x(0) =
[

2 −1
]T

and periodic switching path 1 → 3 → 2 → 1 → 3 →
2 · · · . Under the AED-ADT switching with τa

1,3 = 2,τa
3,2 =

2,τa
2,1 = 2, the corresponding state response x(k), switch-

ing signal σ(k) and controlled output response z(k) are
displayed in Fig. 3 and Fig. 4, respectively, which il-
lustrate that the switched system under the AED-ADT
switching also has a good performance even if the dwell
time is smaller than the MDADT switching. Hence, we
can summarize that AED-ADT switching provides better
flexibility than MDADT switching, and can further relax
the constraints of MDADT switching.

5. CONCLUSIONS

This paper concerns the problem of H∞ control for
discrete-time switched systems. By the aid of the MPCLF
approach combined with AED-ADT switching, a time-
varying H∞ state feedback controller has been designed
such that the corresponding closed-loop system is GUES
with a guaranteed H∞ performance. Eventually, three nu-
merical examples have also been given to illustrate the ef-
fectiveness of the developed results.
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