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Passive Fuzzy Control Design for a Class of Nonlinear Distributed Param-
eter Systems with Time-varying Delay
Xunwu Yin, Xiaona Song* � , and Mi Wang

Abstract: This paper is devoted to studying the issue of passive fuzzy controller design for a class of nonlinear
distributed parameter systems represented by semi-linear parabolic partial differential equations. The main objective
of this paper is to develop two kinds of fuzzy controllers, one is static output feedback controller (SOFC), the other
is dynamic output feedback controller (DOFC), which can guarantee both the stability and passivity of the designed
closed-loop system. For the purpose of achieving the anticipated target, in this paper, the semi-linear parabolic PDE
systems are assumed to be exactly represented by a Takagi-Sugeno (T-S) fuzzy parabolic PDE model. Furthermore,
two examples are given to demonstrate the effectiveness of the controller design scheme.
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1. INTRODUCTION

It is well known that stability problems are often linked
to the theory of dissipative systems. The passivity theory
is part of dissipativeness [1,2] that was firstly proposed in
the circuit [3], and passivity widely exists in physics, cir-
cuit systems, applied mathematics, mechanics and other
fields. The physical meaning of passivity is that the sys-
tem is required to absorb more energy from outside than
provides itself. Thus the essential feature of passivity is
to maintain the systems internally stable [4–6]. The main
reasons for studying passivity are as follows: Firstly, the
system can reduce noise only if passivity is satisfied; Sec-
ondly, passivity is an effective way to study the stability of
nonlinear systems, uncertain systems and high-order sys-
tems. Furthermore, passivity theory plays an important
role in control theory as well as many other practical sys-
tems, such as robotic systems, power systems, chemical
processes, etc. As a result, passivity theory has become a
hot topic in many research fields [7–10].

On another research front, fuzzy control strategy that is
based on fuzzy set theory, fuzzy language variables and
computer intelligent control of fuzzy reasoning is able to
offer a systematic method to address the complex systems
with numerous variables [11], which is essentially a kind
of non-linear control scheme. Systematic theory and a
large number of practical application background is one
of the main characteristics of fuzzy control strategy. In

particular, the so-called Takagi-Sugeno (T-S) fuzzy model
[12] has been widely employed for the controller design
in nonlinear systems. The fundamental idea of T-S fuzzy
model is to treat the complex nonlinear dynamical system
as a fuzzy approximation of multiple local linear systems.
To some degree, it can not only solve the difficulty of di-
rect research on complex non-linear system, but also bring
much convenience to controller design and stability analy-
sis of the fuzzy system. Thereby in recent decades, a large
number of conclusions have been extended to T-S fuzzy
systems [13–19].

For T-S fuzzy systems, a lot of results on passive con-
trol are obtained by various methods. For example, in
[20], passive control problems of continuous-time T-S
fuzzy systems have been discussed, and the problems of
discrete-time systems have been solved in [21]. However,
most of the above results require measurable state vari-
ables, while in practical application, the state of the sys-
tem is often not measurable, so it is very meaningful to
study the output feedback control. There are three kinds
of output feedback controllers mentioned in the existing
literatures, which are dynamic output feedback controller,
observer-based output feedback controller and static out-
put feedback controller. Compared with the other two
methods, static output feedback controller has attracted
more attention because of its simple structure. For in-
stance, static output feedback controller with time delay
was proposed in [22]. In [23], the authors considered the
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passive dynamic output feedback controller design prob-
lem of the uncertain T-S fuzzy systems with time-varying
delays.

Note that the above discussion is about ODE models,
but now many scholars have paid attention to fuzzy con-
troller design problem for PDE systems. More recently,
fuzzy controller design methods based on the fuzzy PDE
model directly have been proposed for a class of SLP-
PDE systems [24–26]. [24] studied the distributed fuzzy
P-sI controller design issue with a mixed H2/H∞ perfor-
mance for a class of semi-linear parabolic PDE systems.
However, the authors didn’t do any work on passivity in
[24–26]. To the best of authors’ knowledge, the issue of
fuzzy controllers design about guaranteeing the stability
and passivity of the closed-loop nonlinear parabolic sys-
tem system has not been studied yet, which greatly moti-
vates this study. Although the authors in [23] and [27, 28]
have designed the passive fuzzy controller to guarantee
stabilization and passivity of the system, their models are
all based on ODE systems.

In this paper, we will investigate the problem of static
and dynamic fuzzy controller design for a class of semi-
linear PDE systems. Two kinds of feedback controllers
are designed here to guarantee the stability and passivity
of considered system. By combining the Lyapunov’s di-
rect method, integration by parts, Wirting’s inequalities
and standard linear matrix inequalities, the less conserva-
tive results are obtained. The main novelty and contribu-
tions of this paper can be summarized as follows:

1) By using the sector nonlinearity approach, a T-S fuzzy
model is employed to accurately represent the delayed
semi-linear parabolic PDE system, which provides an
effective way for fuzzy control design.

2) In fact, fruitful works have been reported for parabolic
PDE systems. However, most of the results were
achieved based on an assumption that the system’s
states are measurable, which is difficult to hold in real
applications. Thus, this study determines to investigate
the dynamic output feedback control problem.

3) It is noteworthy that passivity performance plays an
important role in control design. Even though consid-
erable attenuation has been paid to ODE systems, the
passivity analysis remains an open issue for PDE sys-
tems.

2. PRELIMINARY AND PROBLEM
FORMULATION

Consider the semi-linear PDE systems in one spatial
dimension:

yt(z, t) = Θyzz(z, t)+ f1(y(z, t))+ fd(y(z, t− τ(t)))

+Gu1(y(z, t))u(z, t)+Gw1(y(z, t))w(z, t),
(1)

yc(z, t) = f2(y(z, t))+Gu2(y(z, t))u(z, t)

+Gw2(y(z, t))w(z, t), (2)

ym(z, t) = f3(y(z, t))+Gw3(y(z, t))w(z, t), (3)

subject to the homogeneous Dirichlet boundary condi-
tions: y(l1, t) = y(l2, t) = 0, and the initial condition:
y(z,0) = y0(z). y(z, t) ∈ Rn is the state vector, z ∈ [l1, l2]⊂
R and t ∈ [0,∞) is the spatial position and time, respec-
tively, yc(z, t) ∈ Rs is the control output, ym(z, t) ∈ Rq is
the measured output. u(·, t) ∈ Rm is the control input,
w(·, t) ∈ Rp is the exogenous disturbance. τ(t) is the time
delay and satisfies 0 ≤ τ(t) ≤ τ,0 ≤ τ̇(t) ≤ d < 1. Here
both τ and d are positive constants. Gui,Gwi, are known
matrix functions in y(z, t), Θ is real known matrix with
appropriate dimensions. For brevity, set

Ay(z, t) = Θyzz(z, t).

In this study, we assume that the semi-linear system (1)-
(3) can be exactly represented by the following T-S fuzzy
PDE model:
Plant Rule i: If ξ1(z, t) is Fi1 and · · · and ξl(z, t) is Fil

Then

yt(z, t) =Ay(z, t)+Aiy(z, t)+Ad,iy(z, t− τ(t))

+B1iu(z, t)+C1iw(z, t), (4)

yc(z, t) = Diy(z, t)+B2iu(z, t)+C2iw(z, t), (5)

ym(z, t) = Eiy(z, t)+C3iw(z, t). (6)

where Fi j, i ∈ S = {1,2, . . . ,r}, j = 1,2, . . . , l are fuzzy
sets. Ai,Adi,B1i,B2i,C1i,C2i,C3i,Di,Ei are known matri-
ces, r is the number of fuzzy IF-THEN rules. ξ j(z, t) is
the known premise variables. In order to avoid a compli-
cated defuzzification process of fuzzy controller, in this
study, these premise variables are assumed to be functions
of only the state y(z, t). By applying the center-average de-
fuzzifier, product interference and singleton fuzzifier, the
overall dynamics can be expressed as

yt(z, t) =Ay(z, t)+
r

∑
i=1

hi(ξ (z, t))

× [Aiy(z, t)+Ad,iy(z, t− τ(t))

+B1iu(z, t)+C1iw(z, t)], (7)

yc(z, t) =
r

∑
i=1

hi(ξ (z, t))[Diy(z, t)

+B2iu(z, t)+C2iw(z, t)], (8)

ym(z, t) =
r

∑
i=1

hi(ξ (z, t))[Eiy(z, t)+C3iw(z, t)]. (9)

To this end, the following definition and lemma are useful
for the development of control design in this study:
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Definition 1: For system (1)-(3), it is called passive if
there are constants α ≥ 0, β ∈ R such that

2
∫ tp

0

∫ l2

l1
yT

c (z, t)w(z, t)dzdt

≥−β
2−α

∫ tp

0

∫ l2

l1
wT (z, t)w(z, t)dzdt (10)

for all tp > 0.

Lemma 1 (Vector-valued Wirtinger’s inequalities) [29]:
Let y ∈W1,2([l1, l2];Rn) be a vector function. Then for a
matrix S≥ 0, we have∫ l2

l1
yT (s)Sy(s)ds

≤ (l2− l1)2
π
−2
∫ l2

l1
(dy(s)/ds)T S(dy(s)/ds)ds. (11)

Remark 1: The symbol * is used as an ellipsis in ma-
trix expressions that are induced by symmetry. e.g.,[

[A+B+∗]+C X
∗ Y

]
=

[
[A+B+AT+BT ]+C X

XT Y

]
.

3. PASSIVITY AND STABILITY

3.1. Stability analysis
Firstly we study stability of the unforced disturbance-

free system of (7) (i.e., u(z, t) = w(z, t) = 0). Set u =
0,w = 0

yt(z, t) =Ay(z, t)

+
r

∑
i=1

hi(ξ (z, t))[Aiy(z, t)+Ad,iy(z, t− τ(t))].

(12)

Theorem 1: Consider the system (12), suppose τ̇(t)≤
d < 1, If there exist positive matrices P,Q such that the
following are satisfied: [PΘ+∗]> 0,[

Ωi PAd,i

∗ −(1−d)Q

]
< 0, (13)

where Ωi = P[Θ̃+Ai]+∗+Q,Θ̃ =−π2(l2− l1)−2Θ, then
(12) is asymptotically stable.

Proof: Consider the following Lyapunov functional
candidate

V (t) =
∫ l2

l1
yT (z, t)Py(z, t)dz

+
∫ l2

l1

∫ t

t−τ(t)
yT (z,α)Qy(z,α)dαdz. (14)

Then, the time derivative of V (t) is

V̇ (t)≤2
∫ l2

l1
yT (z, t)Pyt(z, t)dz

+
∫ l2

l1
yT (z, t)Qy(z, t)dz

−(1−d)
∫ l2

l1
yT (z, t−τ(t))Qy(z, t−τ(t))dz

=2
∫ l2

l1
yT (z, t)PAy(z, t)dz

+
∫ l2

l1
yT (z, t)

r

∑
i=1

hi(ξ (z, t))(PAi+∗)y(z, t)dz

+
∫ l2

l1
yT (z, t)

r

∑
i=1

hi(ξ (z, t))

× (PAd,i +∗)y(z, t− τ(t))dz

+
∫ l2

l1
yT (z, t)Qy(z, t)dz

−(1−d)
∫ l2

l1
yT (z, t−τ(t))Qy(z, t−τ(t))dz.

Utilizing Ay(z, t) = Θyzz(z, t) and boundary condition
y(l1, t) = y(l2, t) = 0, integrating by parts, we can find that

2
∫ l2

l1
yT (z, t)PAy(z, t)dz

= 2
∫ l2

l1
yT (z, t)PΘyzz(z, t)dz

= 2
∫ l2

l1

(
yT (z, t)PΘyz(z, t)

)
z dz

−2
∫ l2

l1
yT

z (z, t)PΘyz(z, t)dz

= 2yT (z, t)PΘyz(z, t)(z, t)|z=l2
z=l1

−2
∫ l2

l1
yT

z (z, t)PΘyz(z, t)dz

=−
∫ l2

l1
yT

z (z, t)[PΘ+∗]yz(z, t)dz. (15)

According to Lemma 1, we can easily obtain

2
∫ l2

l1
yT (z, t)PAy(z, t)dz

≤−π
2(l2− l1)−2

∫ l2

l1
yT (z, t)[PΘ+∗]y(z, t)dz

=
∫ l2

l1
yT (z, t)[PΘ̃+∗]y(z, t)dz. (16)

Consequently

V̇ (t)≤
r

∑
i=1

hi(ξ (z, t))
∫ l2

l1
ξ

T (z, t)Φ1iξ (z, t)dz, (17)

where ξ (z, t) =
[
yT (z, t) yT (z, t− τ(t))

]T
,

Φ1i =

[
Ωi PAd,i

∗ −(1−d)Q

]
,

where Ωi=P[Θ̃+Ai]+∗+Q. From Lyapunov stability the-
ory, we can know the result. This is the end of proof. �
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3.2. Passivity analysis
Set u = 0, then (7)-(8) becomes

yt(z, t) =Ay(z, t)+
r

∑
i=1

hi(ξ (z, t))[Aiy(z, t)

+Ad,iy(z, t− τ(t))+C1iw(z, t)], (18)

yc(z, t) =
r

∑
i=1

hi(ξ (z, t))[Diy(z, t)+C2iw(z, t)]. (19)

Theorem 2: Consider the system (18), suppose τ̇(t)≤
d < 1, If there exist positive matrices P, Q, and scalar α ≥
0 such that the following inequalities are satisfied: [PΘ+
∗]> 0,Ωi PAd,i PC1i−DT

i
∗ −(1−d)Q 0
∗ ∗ −(C2i +CT

2i +αI)

< 0, (20)

where Ωi = P[Θ̃+Ai]+∗+Q,Θ̃ =−π2(l2− l1)−2Θ, then
(18) is asymptotically stable and passive.

Proof: Choose the same Lyapunov function as (14)

V̇ (t)≤2
∫ l2

l1
yT (z, t)Pyt(z, t)dz

+
∫ l2

l1
yT (z, t)Qy(z, t)dz

−(1−d)
∫ l2

l1
yT (z, t− τ(t))Qy(z, t− τ(t))dz

= 2
∫ l2

l1
yT (z, t)PAy(z, t)dz

+
∫ l2

l1
yT (z, t)

r

∑
i=1

hi(ξ (z, t))(PAi +∗)y(z, t)dz

+
∫ l2

l1
yT (z, t)

r

∑
i=1

hi(ξ (z, t))

×(PAd,i +∗)y(z, t− τ(t))dz

+
∫ l2

l1
yT (z, t)

r

∑
i=1

hi(ξ (z, t))(PC1i +∗)w(z, t)dz

+
∫ l2

l1
yT (z, t)Qy(z, t)dz

−(1−d)
∫ l2

l1
yT (z, t− τ(t))Qy(z, t− τ(t))dz.

Considering the following

2yT
c (z, t)w(z, t)+αwT (z, t)w(z, t)

= 2
r

∑
i=1

hi(ξ (z, t))

×
[
yT (z, t) yT (z, t− τ(t)) wT (z, t)

]DT
i

0
CT

2i

w(z, t)

+αwT (z, t)w(z, t).

According (16) and above

V̇ (t)−2
∫ l2

l1
yT

c (z, t)w(z, t)dz−α

∫ l2

l1
wT (z, t)w(z, t)dz

≤
r

∑
i=1

hi(ξ (z, t))
∫ l2

l1
ξ

T (z, t)Φ2iξ (z, t)dz, (21)

where ξ (z, t) =
[
yT (z, t) yT (z, t− τ(t)) wT (z, t)

]T
,

Φ2i =

Ωi PAd,i PC1i−DT
i

∗ −(1−d)Q 0
∗ ∗ −(C2i +CT

2i +αI)

 , (22)

where Ωi = P[Θ̃+Ai]+∗+Q.
It follows that

V̇ (t)−2
∫ l2

l1
yT

c (z, t)w(z, t)dz

−α

∫ l2

l1
wT (z, t)w(z, t)dz≤ 0. (23)

By integrating with t over the time period 0 to tp, we can
get

2
∫ tp

0

∫ l2

l1
yT

c (z, t)w(z, t)dzdt ≥V (tp)−V (0)

−α

∫ tp

0

∫ l2

l1
wT (z, t)w(z, t)dzdt. (24)

From the definition of V (t), we have V (tp)≥ 0,V (0)≥ 0.
Thus

2
∫ tp

0

∫ l2

l1
yT

c (z, t)w(z, t)dzdt

≥−β
2−α

∫ tp

0

∫ l2

l1
wT (z, t)w(z, t)dzdt (25)

for all tp ≥ 0, where β =
√

V (0)/2. This is the end of
proof. �

Remark 2: According to Theorems 1 and 2, it is easy
to see that the passive properties of systems can keep the
systems internally stable.

3.3. Static passivity feedback control
In this subsection, we will design static feedback con-

trollers to guarantee the stabilization and passivity of the
system. Firstly, we consider the following fuzzy controller
which is called memoryless state feedback control law

u(z, t) =
r

∑
i=1

hi(ξ (z, t))Kiy(z, t). (26)

From the above (7)-(8), we have the following fuzzy PDE

yt(z, t) =Ay(z, t)

+
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))[Ai +B1 jKi]y(z, t)
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+
r

∑
i=1

hi(ξ (z, t))Ad,iy(z, t− τ(t))

+
r

∑
i=1

hi(ξ (z, t))C1iw(z, t), (27)

yc(z, t) =
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))[Di +B2 jKi]y(z, t)

+
r

∑
i=1

C2iw(z, t), (28)

where h̄i j(ξ (z, t)), hi(ξ (z, t))h j(ξ (z, t)).

Theorem 3: Consider the system (27), suppose τ̇(t)≤
d < 1, If there exist scalar α ≥ 0, positive matrices X , Q̃,
and Yi such that the following are satisfied: [ΘX +∗]> 0,Ω̃i j Ad,iX C1i−XDT

i −Y T
i BT

2 j
∗ −(1−d)Q̃ 0
∗ ∗ −(C2i +CT

2i +αI)

< 0, (29)

where Ω̃i j = [Θ̃X +AiX +B1 jYi] + ∗+ Q̃,Θ̃ = −π2(l2−
l1)−2Θ, then (27) is asymptotically stable and passive. In
this case, the control gain matrices Ki = YiX−1.

Proof: Using the same method as Theorem 2, we can
get

V̇ (t)−2
∫ l2

l1
yT

c (z, t)w(z, t)dz

−α

∫ l2

l1
wT (z, t)w(z, t)dz

≤
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))
∫ l2

l1
ξ

T (z, t)Φi jξ (z, t)dz,

where ξ (z, t) =
[
yT (z, t) yT (z, t− τ(t)) wT (z, t)

]T
,

Φi j =

Ωi j PAd,i PC1i−DT
i −KT

i BT
2 j

∗ −(1−d)Q 0
∗ ∗ −(C2i +CT

2i +αI)

 ,
(30)

where Ωi j = P[Θ̃+Ai +B1 jKi]+∗+Q
Let X = P−1, Q̃ = XQX ,Ki = YiX−1, pre- and post-
multiplying the matrices Φi j with diag{X ,X , I}, we have

Ψi j =

Ω̃i j Ad,iX C1i−XDT
i −Y T

i BT
2 j

∗ −(1−d)Q̃ 0
∗ ∗ −(C2i +CT

2i +αI)

 ,
(31)

where Ω̃i j = [Θ̃X +AiX +B1 jYi] + ∗+ Q̃. According to
theorem 2, we get the result. This is the end of proof. �

In order to reduce the conservativeness of the system,
we consider the following fuzzy controller which is called

memorial state feedback control law

u(z, t) =
r

∑
i=1

hi(ξ (z, t))[Kiy(z, t)+Kd,iy(z, t− τ(t))].

(32)

From the above (7)-(8), we have the following fuzzy PDE

yt(z, t) =Ay(z, t)+
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))[Ai+B1 jKi]y(z, t)

+
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))[Ad,i+B1 jKd,i]y(z, t−τ(t))

+
r

∑
i=1

hi(ξ (z, t))C1iw(z, t), (33)

yc(z, t) =
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))[Di +B2 jKi]y(z, t)

+
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))B2 jKd,iy(z, t− τ(t))

+
r

∑
i=1

hi(ξ (z, t))C2iw(z, t). (34)

Theorem 4: Consider the system (33), suppose τ̇(t)≤
d < 1, If there exist scalar α ≥ 0, positive matrices X , Q̃
and Yi,Yd,i such that the following are satisfied: [ΘX+∗]>
0, Ω̃i j Ad,iX +B1 jYd,i C1i−XDT

i −Y T
i BT

2 j
∗ −(1−d)Q̃ −Y T

d,iB
T
2 j

∗ ∗ −(C2i +CT
2i +αI)

< 0,

(35)

where Ω̃i j = [Θ̃X + AiX + B1 jYi] + ∗+ Q̃, then (33) is
asymptotically stable and passive. In this case, the control
gain matrices Ki = YiX−1,Kd,i = Yd,iX−1.

3.4. Dynamic passivity feedback control
Considering the following dynamic output feedback

controller

ŷt(z, t) =
r

∑
i=1

r

∑
j=1

hi(ξ (z, t))h j(ξ (z, t))

× [Aki j ŷ(z, t)+Bk jym(z, t)], (36)

u(z, t) =
r

∑
j=1

h j(ξ (z, t))Ck j ŷ(z, t). (37)

Here, ŷ(z, t) is state vector of controller, Aki j,Bk j,Ck j to be
determined. From (7)-(9) and the above, we have

yt(z, t) =Ay(z, t)+
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t)){Aiy(z, t)

+B1iCk j ŷ(z, t)+Ad,iy(z, t−τ(t))+C1iw(z, t)},
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yc(z, t) =
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))[Diy(z, t)

+B2iCk j ŷ(z, t)+C2iw(z, t)],

ŷt(z, t) =
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))[Bk jEiy(z, t)

+Aki j ŷ(z, t)+Bk jC3iw(z, t)].

Set

e(z, t) =
[

y(z, t)
ŷ(z, t)

]
, (38)

et(z, t) = Θ̄Hezz(z, t)

+
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t)){Ai je(z, t)

+ Ād,iHe(z, t− τ(t))+Bki jw(z, t)}, (39)

where

Ai j =

[
Ai B1iCk j

Bk jEi Aki j

]
, Ād,i =

[
Ad,i

0

]
,

Bki j =

[
C1i

Bk jC3i

]
, H =

[
I 0

]
, Θ̄ =

[
Θ

0

]
. (40)

Next we give passivity and stability analysis.

Theorem 5: Consider the system (39), suppose 0 ≤
τ(t)≤ τ, τ̇(t)≤ d < 1. If there exist scalar α ≥ 0, positive
matrices P, Q, and R such that the following are satisfied:
[PΘ+∗]> 0,

Ω̂i j PĀd,i 0 PBki j−DT
ki j

∗ −(1−d)Q 0 0
∗ ∗ µ̂R 0
∗ ∗ ∗ Ĉ2i

< 0, (41)

where Ω̂i j = P[Ai j + Θ̂H] + ∗+HT QH + µτHT RH,Θ̂ =
−π2(l2 − l1)−2Θ̄, µ̂ = −µτ(1− d),Ĉ2i = −(C2i +CT

2i +
αI), then (39) is asymptotically stable and passive.

Proof: Consider the following Lyapunov functional
candidate

V (t) =V1 +V2 +V3

=
∫ l2

l1
eT (z, t)Pe(z, t)dz

+
∫ l2

l1

∫ t

t−τ(t)
eT (z,α)HT QHe(z,α)dαdz

+µ

∫ l2

l1

∫ 0

−τ(t)

∫ t

t+l
eT (z,β )HT RHe(z,β )dβdldz.

The time derivative of V (t) along the solution to the sys-
tem (39)

V̇1(t) =2
∫ l2

l1
eT (z, t)Pet(z, t)dz

=2
∫ l2

l1
eT (z, t)PΘ̄Hezz(z, t)dz

+2
∫ l2

l1

r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))eT (z, t)P{Ai je(z, t)

+ ĀdiHe(z, t− τ(t))+Bki jw(z, t)}dz.

Considering 0≤ τ(t)≤ τ,0≤ τ̇ ≤ d < 1

V̇2(t) =
∫ l2

l1
eT (z, t)HT QHe(z, t)dz− (1− τ̇(t))

×
∫ l2

l1
eT (z, t− τ(t))HT QHe(z, t− τ(t))dz

≤
∫ l2

l1
eT (z, t)HT QHe(z, t)dz− (1−d)

×
∫ l2

l1
eT (z, t− τ(t))HT QHe(z, t− τ(t))dz,

V̇3(t) = µ

∫ l2

l1

∫ 0

−τ(t)
eT (z, t)HT RHe(z, t)dldz

−µ

∫ l2

l1

∫ 0

−τ(t)
eT (z, t+l)HT RHe(z, t+l)dldz

+µτ̇(t)
∫ l2

l1

∫ t

t−τ(t)
eT (z,β )HT RHe(z,β )dβdz.

Considering∫ l2

l1

∫ 0

−τ(t)
eT (z, t + l)HT RHe(z, t + l)dlds

=
∫ l2

l1

∫ t

t−τ(t)
eT (z,β )HT RHe(z,β )dβdz. (42)

Consequently

V̇3(t)

≤ µτ

∫ l2

l1
eT (z, t)HT RHe(z, t)dz

−µ(1−d)
∫ l2

l1

∫ t

t−τ(t)
eT (z,β )HT RHe(z,β )dβdz.

Integrating by parts and taking into account of boundary
conditions

2
∫ l2

l1
eT (z, t)PΘ̄Hezz(z, t)dz

=−2
∫ l2

l1
eT

z (z, t)PΘ̄Hez(z, t)dz

≤−π
2(l2− l1)−2

∫ l2

l1
eT (z, t)[PΘ̄H +∗]e(z, t)dz

=
∫ l2

l1
eT (z, t)[PΘ̂H +∗]e(z, t)dz.

Considering

yc(z, t) =
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t)){Dki je(z, t)+C2iw(z, t)}.
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Here Dki j =
[
Di B2iCk j

]
, so

2yT
c (z, t)w(z, t)+αwT (z, t)w(z, t)

= 2
r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))eT (z, t)DT
ki jw(z, t)

+
r

∑
i=1

hi(ξ (z, t))wT (z, t)(C2i+CT
2i+αI)w(z, t). (43)

Let

ξ
T (z, t,β )

=
[
eT (z, t) eT (z, t− τ(t))HT eT (z,β )HT wT (z, t)

]
.

Consequently

V̇ (t)−2
∫ l2

l1
yT

c (z, t)w(z, t)dz

−
∫ l2

l1
αwT (z, t)w(z, t)dz

≤ 1
τ

r

∑
i=1

r

∑
j=1

h̄i j(ξ (z, t))

×
∫ l2

l1

∫ t

t−τ(t)
ξ

T (z, t,β )ϒi jξ (z, t,β )dβdz,

where

ϒi j =


Ω̂i j PĀd,i 0 PBki j−DT

ki j
∗ −(1−d)Q 0 0
∗ ∗ µ̂R 0
∗ ∗ ∗ Ĉ2i

 ,
where Ω̂i j, µ̂,Ĉ2i are stated as (41). This is the end of
proof. �

The following is the solvable of passive dynamic output
feedback control problem.

Theorem 6: Consider the system (39) and controller
(36), (37), suppose 0≤ τ(t)≤ τ , τ̇(t)≤ d < 1, If there ex-
ist scalar α ≥ 0, positive matrices X , Y , Q, R, Ωi, Φi, and
Ψi (1≤ i≤ r) such that the following inequalities hold:[

−Y −I
−I −X

]
< 0, (44)[

X S
ST −STYW−T

]
Θ+∗> 0, (45)

γ11i j γ12i 0 γ14i j

∗ −(1−d)Q 0 0
∗ ∗ µ̂R 0
∗ ∗ ∗ Ĉ2i

< 0, (46)

where

γ11i j =

[
Z11i j Z12i

Z21 j Z22i j

]
, γ12i =

[
Ad,i

XAd,i

]
,

γ14i j =

[
C1i−Y T DT

i −ΨT
i

XC1i +ΦiC3i−DT
i

]
,

Z11i j = [AiY +B1iΨ j +ΘY ]+∗+Y T Q1Y,

Z12i = [Ai +Θ]+∗Y T Q1,

Z21 j = [Ω j +XΘW T +∗+Q1Y,

Z22i j = [XAi +Φ jEi +XΘ]+∗+Q1,

Q1 = Q+µτR,

then (39) is asymptotically stable and passive. In this
case, the control gain matrices Aki,Bki,Cki are given
as Aki = S−1(Ωi − XAiY − XB1iΨi −ΦiEiY )W−T ,Bki =
S−1Φi, Cki = ΨiW−T , S and W satisfy SW T = I−XY .

Proof: From (44), we can know I−XY is nonsingu-
lar. So there exist nonsingular matrix S and W, such that
SW T = I−XY . Set

Π1 =

[
Y I

W T 0

]
, Π2 =

[
I X
0 ST

]
, (47)

we choose

P = Π2Π
−1
1 =

[
X S
ST −STYW−T

]
. (48)

After some derivation, we can obtain P > 0. Pre- and
post-multiplying the matrix (46) with diag{Π−T

1 , I, I, I}
and diag{Π−1

1 , I, I, I}, we can get (41). According to The-
orem 5, we can see the result is correct. This is the end of
proof. �

4. TWO NUMERICAL EXAMPLES

This section provides two simulation examples to illus-
trate the effectiveness of proposed dynamic output feed-
back control design method.

Example 1: Consider a T–S fuzzy system with the form
of (39), the corresponding parameters are given as fol-
lows:

Θ =

[
0.1 0
0 0.1

]
, A1 =

[
1 2
2 1

]
, A2 =

[
−1 3
2 1

]
,

B11 = B12 = I, B21 = B22 = I, C11 =C12 = 0.1I,

D1 = D2 = 0.1I, E1 = E2 = 0.1I, C21 =C22 = 10I,

C31 =C32 = 0.1I, Ad,1 = Ad,2 = 0.1I, τ(t) = 0.1,

h1(y(z, t)) =
y2(z, t)+1.2

1.7
,

h2(y(z, t)) = 1− y2(z, t)+1.2
1.7

.

The states of the open-loop system are presented in
Figs. 1-2, it is obvious that the system is unstable. It is
necessary to stabilize the system.

Before control designing, we choose α = 1, β = 3, µ =
1, τ = 0.2, d = 0.5, Q = 2I, W = 0.1I, and R = 0.1I. Then
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Fig. 1. Open-loop trajectory of y1(z, t).

Fig. 2. Open-loop trajectory of y2(z, t).

based on Theorem 6, we can obtain the controller as

Ak11 =

[
- 285.5200 - 254.2706
- 255.6626 - 347.1601

]
,

Ak12 =

[
- 285.5200 - 254.2706
- 255.6626 - 347.1601

]
,

Ak21 =

[
- 301.9097 - 250.3246
- 269.0234 - 344.0255

]
,

Ak22 =

[
- 301.9097 - 250.3246
- 269.0234 - 344.0255

]
,

and

Bk1 =

[
117.6636 118.0398
121.6092 142.7050

]
,

Bk2 =

[
117.6636 118.0398
121.6092 142.7050

]
,

Ck1 =

[
- 207.3755 - 0.9285

- 0.8382 - 207.2884

]
,

Ck2 =

[
- 207.3755 - 0.9285

- 0.8382 - 207.2884

]
.

Set the initial condition as y1(z,0) = sin(0.25πz),
y2(z,0) = 2sin(0.25πz) , where z∈ [0, 8] and the perturba-
tion input is chosen as w(z, t) =

[ 0.1
30t+50 ,

0.1
30t+50

]T . Then

Fig. 3. closed-loop trajectory of y1(z, t).

Fig. 4. closed-loop trajectory of y2(z, t).

0 0.5 1 1.5 2

t 

-10

0

10

20

30

40

The trajectory of ||u
1
(z,t)||

2

The trajectory of ||u
2
(z,t)||

2

Fig. 5. The trajectories of ‖u1(z, t)‖2 and ‖u2(z, t)‖2.

the simulation results are given as follows: the trajectories
of states are presented in Figs. 3-4, the control input are
given in Fig. 5. From the figures above, we can conclude
that our proposed method is effectiveness.
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Fig. 6. Open-loop trajectory of y1(z, t).

Fig. 7. Open-loop trajectory of y2(z, t).

Example 2: Consider the following delayed reaction-
diffusion equation:

y1,t(z, t) = 0.1y1,zz(z, t)+ y1(z, t)− y1(z, t− τ(t))

− y2(z, t)+u1(z, t)+0.1w1(z, t),

y2,t(z, t) = 0.1y1,zz(z, t)−0.1y2(z, t)− y2(z, t− τ(t))

+0.45y1(z, t)+u2(z, t)+0.1w2(z, t),

with yi(0, t)= yi(1, t)= 0, (i= 1,2), y1(z,0)= 0.2sin(πz),
and y2(z,0) = 0.5sin(πz). The open-loop trajectory of
y(z, t) is given in Figs. 6–7, from which we can observe
y(z, t) ∈ [0, α], α = 0.5.

Define υ(z, t) = y2
1(z, t). Based on [30], the nonlinear

system can be represented by the following T–S fuzzy
model:

yt(z, t) =Θyzz(z, t)+
2

∑
i=1

hi(υ(z, t))[Aiy(z, t)

+Ad,iy(z, t− τ(t))+Biu(z, t)+C1,iw(z, t)],

where h1(υ(z, t)) = α−2υ(z, t), h2(υ(z, t)) = 1 −
h1(υ(z, t)), and

Θ =

[
0.1 0
0 0.1

]
, A1 =

[
1−α2 −1
0.45 −0.1

]
,

A2 =

[
1 −1

0.45 −0.1

]
, Ad,i =

[
−1 0
0 −1

]
,

Bi =

[
1 0
0 1

]
, C1,i =

[
0.1 0
0 0.1

]
, i = 1,2.

Choosing the same control and measured output in Ex-
ample 1, one can obtain

Ak11 = Ak12 =

[
−58.2111 −3.9846
−0.9009 −28.4839

]
,

Ak21 = Ak22 =

[
−57.7335 −3.9880
−0.8912 −28.4840

]
,

Bk1 = Bk2 =

[
16.2609 2.3622
1.2385 2.2402

]
,

Ck1 =Ck2 =

[
−136.0627 0.0285
−0.0605 −132.4640

]
.

Then, the corresponding simulation results are pre-
sented in Figs. 8-10, where Figs. 8 and 9 show the closed-
loop trajectory of y(z, t) and Fig. 10 presents the control
input.

Fig. 8. closed-loop trajectory of y1(z, t).

Fig. 9. closed-loop trajectory of y2(z, t).
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Fig. 10. The trajectories of ‖u1(z, t)‖2 and ‖u2(z, t)‖2.
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Remark 3: It is note worthy that one can easily observe
the unexpected states’ evolutions from the open-loop tra-
jectories. Therefore, a dynamic controller is designed.
From the closed-loop trajectories, we find that the stabi-
lization time is smaller than the open-loop system. Fur-
thermore, the norm of the control input is also shown in
Fig. 10 to understand the system design.

5. CONCLUSION

In this paper, static and dynamic fuzzy controllers are
designed for a class of nonlinear distributed parameter
systems with time-varying delay. They both guarantee
the stability and passivity of the closed-loop system. Our
work is based on the assumption that the semi-linear sys-
tems can be represented by the T-S fuzzy PDE model. We
investigate stability, passivity, static fuzzy controller and
dynamic fuzzy controller. Finally, two numerical exam-
ples have been given to show the correctness of the derived
results.
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