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Abstract: This paper focuses on the dynamical characteristics of complex-valued memristor-based BAM neural
network (CVMBAMNN) with leakage time-varying delay. With two different controllers, we have obtained fixed-
time and finite-time synchronization criteria respectively in complex domain for our special model, which few
work has studied before. Since fixed-time synchronous system can improve communication security, we designed a
scheme for RGB image encryption and decryption. In order to satisfy the requirement of much lower error in image
secure communication, our approach can get the error of fixed-time synchronization to about 1×10−13. Due to our
highly consistent system, we do get good encryption and decryption effect with encryption and decryption scheme.
Finally, numerical simulations are included to demonstrate the correctness of our theoretical results.

Keywords: Chaotic character, complex-valued MBAMNN, fixed-time synchronization, image encryption and de-
cryption, leakage time-varying delay.

1. INTRODUCTION

Bidirectional associative memories neural network
(BAMNN) is a two-layer nonlinear feedback network,
which has been proposed by Kosok in 1987 [1]. In recent
years, BAM has been applied to many fields. For instance,
authors in [2] used BAMNN model to achieve applica-
tion to inverter’s fault diagnosis. In [3], authors applied
BAMNN to industrial spectral signatures. Memristor-
based BAMNN (MABMNN) [4] is a kind of BAM neural
networks, connection weights of which are replaced by
memristor due to that the memristor can be better simu-
late the function of synapse. However, more studies on
MBAMNN are only in real domain. Since Fourier pro-
posed Fourier transform, signals are mapped to frequency
domain and complex domain with the method of Fourier
transform. Moreover, some problems cannot be solved

in real number domain. For example, authors in [5] in-
troduced that the symmetry problem and XOR problem
could be solved by complex-valued neurons with the or-
thogonal decision boundaries, while real-valued neurons
failed to do it.

Complex-valued neural network (CVNN) has become
popular in recent years, since nonlinear systems in real
number domains are not that fit with special issues or
requirements of some engineering applications. CVNN
[6–10], inputs/outputs, weights and activate functions of
which are all in complex domain, is different from tradi-
tional neural network.

Like BAM neural network, complex-valued MBAM
neural network (CVMBAMNN) is also a kind of chaotic
system. CVMBAMNN is different from MBAMNN on
that its parameters are separated into two parts: the real
part and the imaginary part, and the state of every neu-

Manuscript received September 20, 2018; revised February 21, 2019, February 23, 2019, and June 28, 2019; accepted July 3, 2019. Recom-
mended by Associate Editor Ohmin Kwon under the direction of Editor Euntai Kim. This work was supported in part by the National Key
Research and Development Program of China under Grant 2016YFB0800205, and the National Key Research and Development Program of
China under Grant No. 2018YFB0803505, and the National Natural Science Foundation of China under Grants U1836106, the Fundamental
Research Funds for the Central Universities FRF-TP-19-005A3, the National Nature Science Foundation of China under Grant U1836106, and
the University of Science and Technology Beijing-National Taipei University of Technology Joint Research Program under Grant TW201705.

Yongzhen Guo is with the School of Automation,Beijing Institute of Technology(BIT),China, and China Software Testing Center, China
(e-mail: yzguo@cstc.org.cn). Yang Luo is with the School of Automation and Electrical Engineering, University of Science and Technol-
ogy Beijing (USTB), Beijing 100083, China (e-mail: m18811355098@163.com). Weiping Wang and Manman Yuan are with the School
of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China, Beijing Key
Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China, and Institute of Physics, Humboldt-University, Berlin
10099, Germany (e-mails: weipingwangjt@ustb.edu.cn, yuanman_an_smile@163.com). Xiong Luo is with the School of Computer and
Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China (e-mail: xluo@ustb.edu.cn).
Chao Ge is with the Institute of Information Engineering, North China University of Science and Technology, Tangshan 063210, China
(e-mail: gechao365@126.com). Jürgen Kurths is with the Institute of Physics, Humboldt-University Berlin, 10099 Berlin, Germany, and
Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany (e-mail: kurths@pik-potsdam.de). Yang Gao is with China Infor-
mation Technology Security Evaluation Center, China (e-mail: gaoy@itsec.gov.cn).
* Corresponding author.

c⃝ICROS, KIEE and Springer 2020

http://www.springer.com/12555
https://orcid.org/0000-0003-3661-3047
https://orcid.org/0000-0002-6796-7596


Fixed-time Synchronization of Complex-valued Memristive BAM Neural Network and Applications in Image ... 463

ron is also in complex domain. Due to its randomness, er-
godicity, certainty and sensitivity to initial conditions, in
theory, chaotic system [11] may have infinite number of
states with different initial conditions. In our views, there
are few people to study the dynamic behaviors of CVM-
BAMNN, which encourages our idea.

In the human brain, the transmission of information
is often accompanied by time delays that usually change
with time and the state of neurons [12]. Found in the neg-
ative feedback term of system, leakage delay or forget-
ting delays [4] is one of the two time-varying delays, and
another one is named distribute time delays. Authors in
[13] illustrated that the time delay in the leakage term
would have a tendency to destabilize a system. To increase
model’s conservation, it is necessary to consider leakage
delay in the research of neural networks.

As one of the most important studies of neural net-
works, synchronization, which means that the dynamical
behaviors of master and slave systems tend to be consis-
tent, is a hot topic. Based on Lyapunov function and sta-
bility theory [14], synchronization studies can be divided
into finite-time synchronization [15, 16] and fixed-time
synchronization [17, 18]. Explained by authors in [17],
the settling time T of finite-time synchronization depends
on the initial synchronization errors of the system, which
means that the initial conditions should be known before-
hand. However, not all the initial values of the systems
are available in practice. Due to finite-time synchroniza-
tion’s weakness above, scholars proposed fixed-time syn-
chronization, and sufficient conditions of the fixed-time
synchronization of nonlinear systems were first given by
Polyakov [19]. The maximum stable time of fixed-time
synchronization just depends on the parameters of con-
trollers. Absent from the study, the main work of this pa-
per is the fixed-time synchronization of the CVMBAMNN
with leakage time-varying delays.

Since image secure communication [20, 21] is an im-
portant component in industrial applications, how to build
a strong encryption and decryption model is the key point.
Due to the complex dynamic behavior of neural networks,
more and more researches apply such character into image
encryption and decryption. Traditional image encryption
algorithm can be easily decrypted due to its insufficient
complexity. Instead, with chaotic characters, chaotic en-
cryption [22, 23] has become increasingly popular due to
its advantages of simplicity, efficiency and safety. Com-
bining the chaotic character, image encryption and de-
cryption are considered as an application, according to our
CVMBAMNN, which are rare.

The remaining chapters of this paper are arranged as
follows: 1) In Section 2, including its drive, response and
error systems, model of CVMBAMNN is constructed.
Some preliminaries are proposed in this section. 2) In
Section 3, we give the proof of fixed-time synchroniza-
tion of CVMBAMNN with leakage time-varying delay.

3) In Section 4, simulations are designed to demonstrate
our theory above. Applications in image encryption and
decryption are shown. 4) Finally, conclusions of the ob-
tained results in this paper are given in Section 5.

2. PRELIMINARIES

In this paper, the solutions of all the systems are based
on Filippov’s sense. Rn and Cn denote n-dimensional Eu-
clidean space and complex space. For complex-valued
function zu = zR + izI ∈ C, i is the imaginary unit and
satisfies i2 = −1. Consider the following MBAMNN
model with leakage time-varying delay with complex val-
ues(CVMBAMNN):

żu
1i(t) =−δ u

i (z
u
1i(t − τ(t)))zu

1i(t − τ(t))

+
m

∑
j=1

au
ji(z

u
1i(t)) f u

j (z
u
2 j(t))

+
m

∑
j=1

bu
ji(z

u
1i(t − τ(t))) f u

j (z
u
2 j(t −σ(t))),

żu
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where zu
1i(t) and zu

2 j(t) are complex-valued state vectors
of the ith and jth neuron, respectively, for i = 1, 2, ...,
m, j = 1, 2, ..., n. Let zu

1i(t) = (zu
11(t), zu

12(t),..., zu
1m(t))

T ,
and zu

2 j(t) = (zu
21(t), zu

22(t), ..., zu
2n(t))

T , u = R, I. The
initial values of system (1) are zu

1(0) = φ1u(s) and zu
2(0) =

φ2u(s). δ u
i > 0 and ρu

j > 0 are the rates of neuron self-
inhibition, and their values depend on the state of neuron
with leakage time-varying delay; f u

j (·) and gu
i (·) are the

activation functions; τ(t) and σ(t) are the time-varying
delays, which satisfy C1 < τ(t), C2 < σ(t), τ̇(t)≤C3 and
σ̇(t)≤C4 (C1, C2, C3 and C4 are constants). This paper
only discusses the case where the delays are continuous.
au

ji, bu
ji, cu

i j, du
i j are the memristive connection weights, and

their values also depend on the states of neurons.
Based on the properties of memristor, we set:
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cR
i j(z) =

{
C̆R

i j, |z| ≥ Λ j,
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Considering system (1) as the drive systems, the corre-
sponding response systems can be described as follows:
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i = 1, 2, ..., m, j = 1, 2, ..., n, where ui(t) and v j(t) are
the appropriate feedback controllers. Let z̃u
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T ,
the initial values of response system (2) are z̃u

1(0)= φ̃1u(s)
and z̃u

2(0) = φ̃2u(s).

Remark 1: Saturation limit is a kind of common ac-
tuator nonlinearities in practical control systems. When
controller meets input limit, the value of output would not
change [24]. Though our system is an interest nonlinear
one due to its hyper chaotic character, in this paper, we
would not discuss such saturation limit. But it deserves to
be our future research direction.

According to system (1) and (2), here we define syn-
chronization errors as eR
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for i = 1, 2, ..., n, j = 1, 2, ..., m, where we define
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∣∣, ∣∣Â∗R
ji

∣∣}, ∣∣áI+
ji

∣∣=max
{∣∣ĂI

ji

∣∣, ∣∣Â∗I
ji

∣∣};∣∣b́R+
ji

∣∣=max
{∣∣B̆R

ji

∣∣, ∣∣B̂∗R
ji

∣∣}, ∣∣b́I+
ji

∣∣=max
{∣∣B̆I

ji

∣∣, ∣∣B̂∗I
ji

∣∣};∣∣ćR+
i j

∣∣=max
{∣∣C̆R

i j

∣∣, ∣∣Ĉ∗R
i j

∣∣}, ∣∣ćI+
i j

∣∣=max
{∣∣C̆I

i j

∣∣, ∣∣Ĉ∗I
i j

∣∣};∣∣d́R+
i j

∣∣=max
{∣∣D̆R

i j

∣∣, ∣∣D̂∗R
i j

∣∣}, ∣∣d́I+
i j

∣∣=max
{∣∣D̆I

i j

∣∣, ∣∣D̂∗I
i j

∣∣}.
Lemma 1: |FR

i (t)| ≤ χR
i for χR

i = 2∑m
j=1[M

R
j (á

R
ji +

b́R
ji)+MI

j(á
I
ji + b́I

ji)], j = 1, 2, ..., m.

Proof: With Assumption 1, it can be proved as follows:

FR
i (t)≤

m

∑
j=1

{
aR

ji(z̃
R
1i(t))M

R
j −aR

ji(z
R
1i(t))M

R
j

+aI
ji(z

I
1i(t))M

I
j −aI

ji(z̃
I
1i(t))M

I
j

}

+
m

∑
j=1

{
bR

ji(z̃
R
1i(t − τ(t)))

−bR
ji(z

R
1i(t − τ(t)))

}
MR

j

+
m

∑
j=1

{
bI

ji(z
I
1i(t − τ(t)))

−bI
ji(z̃

I
1i(t − τ(t)))

}
MI

j

≤
m

∑
j=1

{
|aR

ji(z̃
R
1i(t))|+ |aR

ji(z
R
1i(t))|

}
MR

j

+ |aI
ji(z

I
1i(t))|MI

j + |aI
ji(z̃

I
1i(t))|MI

j

}
+

m

∑
j=1

{
|bR

ji(z̃
R
1i(t − τ(t)))|

+ |bR
ji(z

R
1i(t − τ(t)))

}
|MR

j

+
m

∑
j=1

{
|bI

ji(z
I
1i(t − τ(t)))

+ |bI
ji(z̃

I
1i(t − τ(t)))

}
|MI

j .

In the end, we can prove that:

|FR
i (t)| ≤ χR

i

for χR
i = 2∑m

j=1[M
R
j (á

R+
ji + b́R+

ji )+MI
j(á

I+
ji + b́I+

ji )], j = 1,
2, ...,m.

Lemma 2: 1) |F I
i (t)| ≤ χ I

i for χ I
i = 2∑m

j=1[M
R
j (á

I+
ji +

b́I+
ji ) + MI

j(á
R+
ji + b́R+

ji )]; 2) |GR
j (t)| ≤ ΩR

i for ΩR
i =

2∑n
i=1[N

R
i (ć

R+
i j + d́R+

i j ) +NI
i (ć

I+
i j + d́I+

i j )]; 3) |GI
j(t)| ≤ ΩI

i

for ΩI
i = 2∑n

i=1[N
R
i (ć

I+
i j + d́I+

i j )+NI
i (ć

R+
i j + d́R+

i j )], for i= 1,
2, ..., n, j = 1, 2, ..., m. According to Assumptions 2, 3
and 4, proofs are similar with Lemma 1, so they are omit-
ted here.

Lemma 3 [25]: We have:∣∣∣−[
δ R

i (z̃
R
1i(t − τ(t)))z̃R

1i(t − τ(t))

−δ I
i (z̃

I
1i(t − τ(t)))z̃I

1i(t − τ(t))
]

+
[
δ R

i (z
R
1i(t − τ(t)))zR

1i(t − τ(t))

−δ I
i (z

I
1i(t − τ(t)))zI

1i(t − τ(t))
]∣∣∣

≤δ́ R+
i

∣∣∣z̃R
1i(t − τ(t))− zR

1i(t − τ(t))
∣∣∣

+ δ́ I+
i

∣∣∣z̃I
1i(t − τ(t))− zI

1i(t − τ(t))
∣∣∣, (8)∣∣∣−[

δ R
i (z̃

R
1i(t − τ(t)))z̃I

1i(t − τ(t))

−δ I
i (z̃

I
1i(t − τ(t)))z̃R

1i(t − τ(t))
]

+
[
δ R

i (z
R
1i(t − τ(t)))zI

1i(t − τ(t))

−δ I
i (z

I
1i(t − τ(t)))zR

1i(t − τ(t))
]∣∣∣
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≤ δ́ R+
i

∣∣∣z̃I
1i(t − τ(t))− zI

1i(t − τ(t))
∣∣∣

+ δ́ I+
i

∣∣∣z̃R
1i(t − τ(t))− zR

1i(t − τ(t))
∣∣∣, (9)∣∣∣−[

ρR
j (z̃

R
2 j(t −σ(t)))z̃R

2 j(t −σ(t))

−ρ I
j(z̃

I
2 j(t −σ(t)))z̃I

2 j(t −σ(t))
]

+
[
ρR

j (z
R
2 j(t −σ(t)))zR

2 j(t −σ(t))

−ρ I
j(z

I
2 j(t −σ(t)))zI

2 j(t −σ(t))
]∣∣∣

≤ ρ́R+
j

∣∣∣z̃R
2 j(t −σ(t))− zR

2 j(t −σ(t))
∣∣∣

+ ρ́ I+
i

∣∣∣z̃I
2 j(t −σ(t))− zI

2 j(t −σ(t))
∣∣∣, (10)∣∣∣−[

ρ I
j(z̃

I
2 j(t −σ(t)))z̃R

2 j(t −σ(t))

+ρR
j (z̃

R
2 j(t −σ(t)))z̃I

2 j(t −σ(t))
]

+
[
ρ I

j(z
I
2 j(t −σ(t)))zR

2 j(t −σ(t))

+ρR
j (z

R
2 j(t −σ(t)))zI

2 j(t −σ(t))
]∣∣∣

≤ ρ́R+
j

∣∣∣z̃I
2 j(t −σ(t))− zI

2 j(t −σ(t))
∣∣∣

+ ρ́ I+
i

∣∣∣z̃R
i (t −σ(t))− zR

2 j(t −σ(t))
∣∣∣. (11)

Lemma 4 [26]: If x1, x2, ..., xn ≥ 0, 0 < p ≤ 1, q > 1,
then we have:

n

∑
i=1

xp
i ≥ (

n

∑
i=1

xi)
p,

n

∑
i=1

xq
i ≥ n1−q(

n

∑
i=1

xi)
q. (12)

Definition 1: System (2) is said to be synchronized with
system (1) in finite time if there exists a constant t* and
|e(t)| ≡ 0 when ∀t ≥ t∗. e(t∗) = (eR

11(t), eR
12(t), ..., eR

1m(t),
eI

11(t), eI
12(t), ..., eI

1m(t), eR
21(t), eR

22(t), ..., eR
2n(t), eI

21(t),
eI

22(t), ..., eI
2n(t)). Besides, t∗ is called as the setting time

and e(t*) change with the differences of initial value.
Lemma 5 [27]: Suppose a nonnegative function V (t)

satisfies V̇ (t)≤−αV p(t), 0 < p < 1, where α > 0. Then
V (t)≡ 0 for all t ≥ Tmax, where Tmax =

V 1−p(0)
α(1−p) . Then sys-

tem is finite-time stable.
Definition 2: System (1) and (2) are said to achieve

fixed-time synchronization, if there exists a constant t∗
and |e(t)| ≡ 0 when ∀t ≥ t∗. And no matter what values
of e(0) are, the response system’s stable time t∗≤ Tmax for
Tmax > 0.

Lemma 6 [19]: Let V (·): Rn → R+ be a continuous
radically unbounded function. Suppose the following two
conditions hold:

1) V (e) = 0 ⇔ e = 0;
2) For a, b > 0 , 0 < p < 1 and q > 1, if e(t) of er-

ror system (3) satisfies V̇ (e(t))≤−aV p(e(t))−bV q(e(t)),
then the error system (3) is fixed-time stable, and Tmax =

1
a(1−p) +

1
b(q−1) . What is more, V (t) satisfies: V (t) ≡ 0,

t ≥ T (e0), and T (e0)≤ Tmax.

3. MAIN RESULTS

In this subsection, we give the proof of achieving fixed-
time synchronization between the drive system (1) and the
response systems (2). Here, we first give the following
feedback controllers that are added on the response system
(4) to achieve the fixed-time synchronization:

uR
i (t) =−λ R

1ie
R
1i(t − τ(t))−λ I

1ie
I
1i(t − τ(t))

− sign(eR
1i(t))

[
λ2i +λ3i|eR

1i(t)|α

+λ4i|eR
1i(t)

β |
]
,

uI
i (t) =−W R

1ie
R
1i(t − τ(t))−W I

1ie
I
1i(t − τ(t))

− sign(eI
1i(t))

[
W2i +λ3i|eR

1i(t)|α

+λ4i|eR
1i(t)

β |
]
,

vR
j (t) =−KR

1 je
R
2 j(t −σ(t))−KI

1 je
I
2 j(t −σ(t))

− sign(eR
2 j(t))

[
K2 j +K3 j|eR

2 j(t)|α

+K4 j|eR
2 j(t)

β |
]
,

vI
j(t) =−PR

1 je
R
2 j(t −σ(t))−PI

1 je
I
2 j(t −σ(t))

− sign(eI
2 j(t))

[
P2 j +K3 j|eI

2 j(t)|α

+K4 j|eI
2 j(t)

β |
]
,

(13)

where i = 1, 2, ..., m, j = 1, 2, ..., n, and constants λ R
1i,

λ I
1i, W R

1i , W I
1i, KR

1 j, KI
1 j, PR

1 j, PI
1 j, λ2i, W2i, K2 j, P2 j need to

be determined later. Meanwhile λ3i, λ4i, K3 j, K4 j are any
positive constants, 0 < α < 1, β > 1.
The symbolic function sign(e(t)) satisfies:

sign(e(t)) =

{
1, e(t)≥ 0,

−1, e(t)< 0.

Assumption 5: Let λ = min
{

min
{

λ3i
}
,min

{
K3 j

}}
,

and µ = min
{

min
{

λ4i
}
·m

1−β
2 ,min

{
K4 j

}
·n

1−β
2

}
.

Theorem 1: With Lemma 1-3, if λ R
1i,λ I

1i,W
R
1i ,W

I
1i,K

R
1 j,

KI
1 j,P

R
1 j,P

I
1 j,λ2i,W2i,K2 j,P2 j satisfy:

λ R
1i ≥ δ́ R+

i , λ I
1i ≥ δ́ I+

i , W R
1i ≥ δ́ I+

i , W I
1i ≥ δ́ R+

i , KR
1 j ≥ ρ́R+

j ,
KI

1 j ≥ ρ́ I+
j , PR

1 j ≥ ρ́ I+
j , PI

1 j ≥ ρ́R+
j , λ2i ≥ χR

i , W2i ≥ χ I
i ,

K2 j ≥ ΩR
i , P2 j ≥ ΩI

i , i = 1,2, ...,m, j = 1,2, ...,n, system
(1) and system (2) can achieve fixed-time synchronization
under the controllers (13). Then the fixed time is Tmax =

1
a(1−p) +

1
b(q−1) , where constants a, b, p and q are needed

to be determined later.
Proof: To prove this theorem, here we choose Lya-

punov function as follows:

V u(t) =V R
1 (t)+V I

1 (t)+V R
2 (t)+V I

2 (t)

=V u
1 (t)+V u

2 (t), (14)

where

V R
1 (t) =

1
2

m

∑
i=1

(eR
1i(t))

2, V I
1 (t) =

1
2

m

∑
i=1

(eI
1i(t))

2,
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V R
2 (t) =

1
2

n

∑
j=1

(eR
2 j(t))

2, V I
2 (t) =

1
2

n

∑
j=1

(eI
2 j(t))

2,

V u
1 (t) =V R

1 (t)+V I
1 (t), V u

2 (t) =V R
2 (t)+V I

2 (t).

Remark 2: Here we choose (e(t))2 as the basic term
of our Lyapunov function according to our specific model.
Comparing with that in [18] where authors chose |e(t)| as
the basic term, we do not need to discuss the positive and
negative errors separately, which makes it convenient for
us to calculate the derivation of the Lyapunov function.

The derivative of V R
1 (t):

V̇ R
1 (t) =

m

∑
i=1

eR
1i(t)ė

R
1i(t)

=
m

∑
i=1

|eR
1i(t)|sign(eR

1i(t))
{

δ R
i (z̃

R
1i(t − τ(t)))

×z̃R
1i(t−τ(t))−δ I

i (z̃
I
1i(t−τ(t)))z̃I

1i(t−τ(t))

+
[
δ R

i (z
R
1i(t − τ(t)))zR

1i(t − τ(t))

−δ I
i (z

I
1i(t − τ(t)))zI

1i(t − τ(t))
]

+FR
i (t)+uR

i (t)
}
,

V̇ R
1 (t)≤

m

∑
i=1

δ́ R+
i |eR

1i(t)||eR
1i(t − τ(t))|

+ δ́ I+
i |eI

1i(t − τ(t))||eR
1i(t)|

+
m

∑
i=1

|eR
1i(t)|sign(eR

1i(t))
{
−λ R

1ie
R
1i(t − τ(t))

−λ I
1ie

I
1i(t − τ(t))− sign(eR

1i(t))·[
λ2i +λ3i|eR

1i(t)|α +λ4i|eR
1i(t)|β

]}
+

m

∑
i=1

|eR
1i(t)||FR

i (t)|,

with Assumption 1 and Lemma 1, we have:

V̇ R
1 (t)≤

m

∑
i=1

{
(δ́ R+

i −λ R
1i)|eR

1i(t)||eR
1i(t − τ(t))|

+(δ́ I+
i −λ I

1i)|eR
1i(t)||eI

1i(t − τ(t))|
}

+
m

∑
i=1

(χR
i −λ2i)|eR

1i(t)|

−
m

∑
i=1

[
λ3i|eR

1i(t)|α+1 +λ4i|eR
1i(t)|β+1

]
≤−

m

∑
i=1

[
λ3i|eR

1i(t)|α +1+λ4i|eR
1i(t)|β+1

]
≤−min(λ3i)

m

∑
i=1

|eR
1i(t)|α+1

−min(λ4i)
m

∑
i=1

|eR
1i(t)|β+1

≤−min(λ3i)(
m

∑
i=1

|eR
1i(t)|2)

α+1
2

−min(λ4i)(
m

∑
i=1

|eR
1i(t)|2)

β+1
2 ·m

1−β
2

≤−min(λ3i)(V R
1 (t))

α+1
2 ·2

α+1
2

−min(λ4i)(V R
1 (t))

β+1
2 ·m

1−β
2 ·2

β+1
2 . (15)

Proofs of V I
1 (t), V R

2 (t) and V I
2 (t) are similar with that of

V R
1 (t).

V̇ I
1 (t)≤−min(λ3i)(V R

1 (t))
α+1

2 ·2
α+1

2

−min(λ4i)(V R
1 (t))

β+1
2 ·m

1−β
2 ·2

β+1
2 ,

V̇ R
2 (t)≤−min(K3 j)(V R

2 (t))
α+1

2 ·2
α+1

2

−min(K4 j)(V R
1 (t))

β+1
2 ·n

1−β
2 ·2

β+1
2 ,

V̇ I
2 (t)≤−min(K3 j)(V I

2 (t))
α+1

2 ·2
α+1

2

−min(K4 j)(V I
1 (t))

β+1
2 ·n

1−β
2 ·2

β+1
2 . (16)

According to (14), we have:

V u(t) =V u
1 (t)+V u

2 (t)

=
1
2

m

∑
i=1

[(eR
1i(t))

2 +(eI
1i(t))

2]

+
1
2

n

∑
j=1

[(eR
2 j(t))

2 +(eI
2 j(t))

2],

V̇ u(t)≤−
{

min(λ3i)(V R
1 (t))

α+1
2 +min(λ3i)(V I

1 (t))
α+1

2

+min(K3 j)(V R
2 (t))

α+1
2 +min(K3 j)(V I

2 (t))
α+1

2
}

·2
α+1

2 −
{

min(λ4i)(V R
1 (t))

β+1
2 ·m

1−β
2

+min(λ4i)(V I
1 (t))

β+1
2 ·m

1−β
2

+min(K4 j)(V R
2 (t))

β+1
2 ·n

1−β
2

+min(K4 j)(V I
2 (t))

β+1
2 ·n

1−β
2
}
·2

β+1
2

≤−
{

min(λ3i) · [V R
1 (t)+V I

1 (t)]
α+1

2

+min(K3 j) · [V R
2 (t)+V I

2 (t)]
α+1

2
}
·2

α+1
2

−
{

min(λ4i) · [V R
1 (t)+V I

1 (t)]
β+1

2 ·m
1−β

2

+min(K4 j) · [V R
2 (t)+V I

2 (t)]
β+1

2 ·n
1−β

2
}
·2

≤−λ [(V u
1 (t))

1+α
2 +(V u

2 (t))
α+1

2 ] ·2
α+1

2

−µ[(V u
1 (t))

1+β
2 +(V u

2 (t))
β+1

2 ] ·2

≤−λ (V u(t))
1+α

2 ·2
α+1

2 −µ(V u(t))
1+β

2 ·2
3−β

2 .
(17)

According to the results above, they satisfy Lemma
6, so we can conclude that system (1) and system (2)
have achieved fixed-time synchronization under our con-
trollers above. Then the synchronization time: Tmax =

1
a(1−p) +

1
b(q−1) . And a = λ · 2 α+1

2 , p = α+1
2 , b = µ · 2

3−β
2 ,

q = 1+β
2 , where λ = min

{
min(λ3i), min(K3 j)

}
, µ =

min
{

min(λ4i) ·m
1−β

2 , min(K4 j) ·n
1−β

2

}
.
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Remark 3: The feedback controllers (13) consist of
several different parts, and every part has its different con-
tribution to achieve synchronization and stability between
system (1) and (2). According to our proof above, con-
stants λ R

1i, λ I
1i, W R

1i , W I
1i, KR

1 j, KI
1 j, PR

1 j, PI
1 j, λ2i, W2i, K2 j, P2 j

are the main contributors to reach stability of system (1)
and (2). Constants λ3i, λ4i, K3 j, K4 j are the main compo-
nent to achieve fixed-time synchronization, and the final
fixed settling time Tmax depends on them.

Corollary 1: Based on Lemma 5, we could achieve
finite-time synchronization under the following con-
trollers:



uR
i (t) =−λ R

1ie
R
1i(t − τ(t))−λ I

1ie
I
1i(t − τ(t))

− sign(eR
1i(t))

[
λ2i +λ3i|eR

1i(t)|α
]
,

uI
i (t) =−W R

1ie
R
1i(t − τ(t))−W I

1ie
I
1i(t − τ(t))

− sign(eI
1i(t))

[
W2i +λ3i|eR

1i(t)|α
]
,

vR
j (t) =−KR

1 je
R
2 j(t −σ(t))−KI

1 je
I
2 j(t −σ(t))

− sign(eR
2 j(t))

[
K2 j +K3 j|eR

2 j(t)|α
]
,

vI
j(t) =−PR

1 je
R
2 j(t −σ(t))−PI

1 je
I
2 j(t −σ(t))

− sign(eI
2 j(t))

[
P2 j +K3 j|eI

2 j(t)|α
]
,

(18)

where i = 1, 2, ..., m, j = 1, 2, ..., n, and constants
λ R

1i, λ I
1i, W R

1i , W I
1i, KR

1 j, KI
1 j, PR

1 j, PI
1 j, λ2i, W2i, K2 j, P2 j

need to be determined later. Meanwhile λ3i, K3 j, are
any positive constants, 0 < α < 1. In this paper, in or-
der to simplify our proof and subsequent experiments,
we set the same parameters of controller (18) as those
of controller (13). Similar to the previous proof of
fixed-time synchronization, by constructing the same Lya-
punov function, the finite stable maximum time: Tmax =

V 1−p(0)

min{min(λ3i),min(K3 j)}·2
1+α

2 (1−p)
.

4. ILLUSTRATIVE EXAMPLE

In this section, two examples are shown: Example 1 is
to demonstrate the effects of Theorem 1, and Example 2 is
an application in chaotic image encryption and decryption
based on drive system (1) and response system (2).

Example 1: Considering a two-dimensional memristor-
based complex-valued neural network with leakage time-
varying delays, we construct our simulation model in this
part. The drive system with two-dimension is determined
as follows:

żu
1i(t) =−δ u

i (z
u
1i(t − τ(t)))zu

1i(t − τ(t))

+
2

∑
j=1

au
ji(z

u
1i(t)) f u

j (z
u
2 j(t))

+
2

∑
j=1

bu
ji(z

u
1i(t − τ(t))) f u

j (z
u
2 j(t −σ(t))),

żu
2 j(t) =−ρu

j (z
u
2 j(t −σ(t)))zu

2 j(t −σ(t))

+
2

∑
i=1

cu
i j(z

u
2 j(t))g

u
i (z

u
1i(t))

+
2

∑
i=1

du
i j(z

u
2 j(t −σ(t)))gu

i (z
u
1i(t − τ(t))). (19)

The response system:
˙̃z

u
1i(t) =−δ u

i (z̃
u
1i(t − τ(t)))z̃u

1i(t − τ(t))

+
2

∑
j=1

au
ji(z̃

u
1i(t)) f u

j (z̃
u
2 j(t))

+
2

∑
j=1

bu
ji(z̃

u
1i(t − τ(t))) f u

j (z̃
u
2 j(t −σ(t)))

+uu
i (t),

˙̃z
u
2 j(t) =−ρu

j (z̃
u
2 j(t −σ(t)))z̃u

2 j(t −σ(t))

+
2

∑
i=1

cu
i j(z̃

u
2 j(t))g

u
i (z̃

u
1i(t))

+
2

∑
i=1

du
i j(z̃

u
2 j(t −σ(t)))gu

i (z̃
u
1i(t − τ(t)))

+ vu
j(t), (20)

i = 1, 2, j = 1, 2; Ti = T
′

j = 0, ∆i = ∆′

i = 1, Λ j = Λ′

j = 0,
δ u

i = ρu
j = 1+ i1 and f R

j (z) = f I
j (z) = sin(|z|), gR

i (z) =
gI

i (z) = cos(|z| − 1), τ(t) = t + 0.1sin(t), σ(t) = t −
0.1cos(t). The initial values of system (21) are: φ1R(s) =
(1.5,2.1)T , φ1I(s) = (1.35,−1)T ; φ2R(s) = (0.4,1.25)T ,
φ2I(s) = (1,0.25)T . The initial values of system (22) are:
φ̃1R(s) = (0.95,−1)T , φ̃1I(s) = (1.1,0.75)T , φ̃2R(s) =
(0.85,−0.75)T , φ̃2I(s) = (−0.6,1.35)T . Meanwhile, the
memristor-based connection weights are listed as follows:

AR =

(
0.7 −0.3
0.5 0.1

)
, A∗R =

(
−0.5 0.2
−0.6 −1

)
,

AI =

(
−0.8 0.5
−0.8 −1.2

)
, A∗I =

(
0.7 0.1
−0.1 −1.1

)
,

BR =

(
0.3 0.1
0.7 −0.6

)
, B∗R =

(
0.4 0.2
0.3 −0.4

)
,

BI =

(
−0.9 0.7
−0.2 0.7

)
, B∗I =

(
−1.2 0.8
−0.4 0.9

)
,

CR =

(
−1.5 2.5
0.8 −1.3

)
, C∗R =

(
−1.5 2.8
0.8 −1.3

)
,

CI =

(
−1.1 0.2
1.1 −1.3

)
, C∗I =

(
−1.3 0.5
1.0 −1.0

)
,

DR =

(
−1.5 0.4
0.3 −2

)
, D∗R =

(
−1.8 0.5
0.1 1.5

)
,

DI =

(
−1.1 0.5
0.4 −1.5

)
, D∗I =

(
−1.2 0.6
0.5 −1.8

)
.

Some real and imaginary parts of drive system (19) are
shown in Figs. 1-4. Errors of drive system (19) and re-
sponse system (20) without feedback controller is shown
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Fig. 1. Phase plot of real part of system (1) with initial
conditions zR

11(0) = 1.5,zR
12(0) = 2.1.

Fig. 2. Phase plot of imaginary part of system (1) with ini-
tial conditions zI

11(0) = 1.35,zI
12(0) =−1.

Fig. 3. Phase plot of real part of system (1) with initial
conditions zR

21(0) = 0.4,zR
22(0) = 1.25.

in Fig. 5. That would be not always equal to zero because
the difference of their initial values, if the response system
are without controller.

Here, we choose:

λ R
1i = λ I

1i =W R
1i =W I

1i = KR
1 j = KI

1 j = PR
1 j = PI

1 j = 1;

λ3i = λ4i = 0.4; k3 j = K3 j = 0.6; for i = j = 1,2.

λ21 = λ22 =W21 =W22 = 12; K21 = K22 = P21

= P22 = 20.

So our feedback controllers are:

uR
1 (t) =−eR

11(t−τ(t))−eI
11(t−τ(t))

−sign(eR
11(t))[12+0.4|eR

11(t)|α+0.4|eR
11(t)|β ],

Fig. 4. Phase plot of imaginary Part of system (1) with ini-
tial conditions zI

21(0) = 1,zI
22(0) = 0.25.

Fig. 5. Synchronization errors without controllers.

uI
1(t) =−eR

11(t−τ(t))−eI
11(t−τ(t))

−sign(eI
11(t))[12+0.4|eI

11(t)|α+0.4|eI
11(t)|β ],

uR
2 (t) =−eR

12(t−τ(t))−eI
12(t−τ(t))

−sign(eR
12(t))[12+0.4|eR

12(t)|α+0.4|eR
12(t)|β ],

uI
2(t) =−eR

12(t−τ(t))−eI
12(t−τ(t))

−sign(eI
12(t))[12+0.4|eI

12(t)|α+0.4|eI
12(t)|β ],

vR
1 (t) =−eR

21(t−τ(t))−eI
21(t−ρ(t))

−sign(eR
21(t))[20+0.6|eR

21(t)|α+0.6|eR
21(t)|β ],

vI
1(t) =−eR

21(t−τ(t))−eI
21(t−ρ(t))

−sign(eI
21(t))[20+0.6|eI

21(t)|α+0.6|eI
21(t)|β ],

vR
2 (t) =−eR

22(t−τ(t))−eI
22(t−ρ(t))

−sign(eR
22(t))[20+0.6|eR

22(t)|α+0.6|eR
22(t)|β ],

vI
2(t) =−eR

22(t−τ(t))−eI
22(t−ρ(t))

−sign(eI
22(t))[20+0.6|eI

22(t)|α+0.6|eI
22(t)|β ].

(21)

Remark 4: System (19) and (20) can achieve fixed-
time synchronization under the controllers (21) with ap-
propriate parameters according to Theorem 1. Obviously,
all the parameters follow these detailed inequalities as fol-
lows: λ R

1i ≥ δ́ R+
i = 1, λ I

1i ≥ δ́ I+
i = 1, W R

1i ≥ δ́ I+
i = 1, W I

1i ≥
δ́ R+

i = 1, KR
1 j ≥ ρ́R+

j = 1, KI
1 j ≥ ρ́ I+

j = 1, PR
1 j ≥ ρ́ I+

j = 1,
PI

1 j ≥ ρ́R+
j = 1, for i = j = 1, 2. λ21 ≥ χR

1 = 11.2, W21 ≥
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χ I
1 = 11.2, λ22 ≥ χR

2 = 11, W22 ≥ χ I
2 = 11, K21 ≥ ΩR

1 =
18.4, P21 ≥ ΩI

1 = 18.4, K22 ≥ ΩR
2 = 18, P22 ≥ ΩI

2 = 18.

Remark 5: In the controllers above or in (13), (18),
etc., discontinuous signum function may be unsuitable in
practical applications and signum function can produce
the undesired chattering [28], which degrades the perfor-
mance. So we choose function e(t)/(e(t)+ δ ) to replace
the symbolic function, where δ is sufficiently small. In
this way, we can weaken this chattering.

Instead, with Theorem 1, we know that the fixed-time
synchronization Tmax = 11.89 under our own controllers.
The result of synchronization errors is shown in Fig. 8, and
some parts of the state trajectories are shown in Figs. 6-
7 and Figs. 9-10. In our simulation, the fixed stable time
T (e0)= 0.26, when V (T (e0))≡ 0, and obviously, T (e0)≤
Tmax. So it can definitely demonstrate the effectiveness of
the results in Theorem 1.

According to Corollary 1, we achieve finite-time syn-
chronization under our feedback controllers as follows:

uR
1 (t) =− eR

11(t − τ(t))− eI
11(t − τ(t))

− sign(eR
11(t))[12+0.4|eR

11(t)|α ],
uI

1(t) =− eR
11(t − τ(t))− eI

11(t − τ(t))
− sign(eI

11(t))[12+0.4|eI
11(t)|α ],

Fig. 6. The state trajectories of zR
11, z̃R

11 with initial condi-
tions zR

11(0) = 1.5, z̃R
11(0) = 0.95.

Fig. 7. The state trajectories of zI
11, z̃I

11 with initial condi-
tions zI

11(0) = 1.35, z̃I
11(0) = 1.1.

Fig. 8. Synchronization errors with controllers.

Fig. 9. The state trajectories of zR
12, z̃R

12 with initial condi-
tions zR

12(0) = 2.1, z̃R
12(0) =−1.

Fig. 10. The state trajectories of zI
12, z̃I

12 with initial condi-
tions zI

12(0) =−1, z̃I
12(0) = 0.75.

uR
2 (t) =− eR

12(t − τ(t))− eI
12(t − τ(t))

− sign(eR
12(t))[12+0.4|eR

12(t)|α ],
uI

2(t) =− eR
12(t − τ(t))− eI

12(t − τ(t))
− sign(eI

12(t))[12+0.4|eI
12(t)|α ],

vR
1 (t) =− eR

21(t − τ(t))− eI
21(t −ρ(t))

− sign(eR
21(t))[20+0.6|eR

21(t)|α ],
vI

1(t) =− eR
21(t − τ(t))− eI

21(t −ρ(t))
− sign(eI

21(t))[20+0.6|eI
21(t)|α ],

vR
2 (t) =− eR

22(t − τ(t))− eI
22(t −ρ(t))
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Fig. 11. Finite-time synchronization errors with the new
initial values.

Fig. 12. Fixed-time synchronization errors with the new
initial values.

− sign(eR
22(t))[20+0.6|eR

22(t)|α ],
vI

2(t) =− eR
22(t − τ(t))− eI

22(t −ρ(t))
− sign(eI

22(t))[20+0.6|eI
22(t)|α ]. (22)

To distinguish the difference between finite-time and
fixed-time synchronization better, here we enlarge the
initial synchronization errors. The new initial val-
ues of neurons are: φ1R(s) = (1.5,2.1)T ; φ1I(s) =
(1.35,−1)T ; φ2R(s) = (10.4,1.25)T ; φ2I(s) = (1,4.25)T ;
φ̃1R(s) = (0.95,−1)T ; φ̃1I(s) = (1.1,0.75)T ; φ̃2R(s) =
(0.85,−0.75)T ; φ̃2I(s) = (−0.6,1.35)T . The finite-time
synchronization errors are shown in Fig. 11, and the fixed-
time synchronization errors are shown in Fig. 12 with the
same new initial values above. According to Theorem
1, we can calculate that the finite-time synchronization
Tmax = 22.98 under controllers (22), and the fixed-time
synchronization Tmax = 11.89 under controllers (21) ac-
cording to Corollary 1. With the new initial values, the
curve of controllers (21)(22) are shown in Figs. 13 and
14.

Remark 6: In simulation, with the new initial values,
the fixed stable time T (eO) = 0.60, while T (eO) = 0.26
with old initial values in our first simulation. So the sta-
ble time T (e0) can change with the initial values, but Tmax

would not change no matter what the initial errors are. In

Fig. 13. The curve of controller (21) with the new initial
values.

Fig. 14. The curve of controller (22) with the new initial
values.

result, the fixed-time synchronization maximum time Tmax

with new initial values is equal to the previous one.

Example 2: Here we use the chaotic characters of drive
system (19) and response system (20) to achieve appli-
cations in image encryption and decryption. In this ex-
ample, we define the initial values of system (21) are:
φ1R(s) = (1.5,2.1)T ; φ1I(s) = (1.35,−1)T ; φ2R(s) =
(0.4,1.25)T ; φ2I(s) = (3.6,4.25)T ; The initial values
of response system (22) are: φ̃1R(s) = (0.95,−1)T ;
φ̃1I(s)= (1.1,0.75)T ; φ̃2R(s)= (0.85,−0.75)T ; φ̃2I(s)=
(−0.6,1.35)T .

According to the drive system (19), our encryption al-
gorithm is designed as follows:

Step 1: We choose the classical picture "Lena", and its
size is M×N in RGB, M = 256, N = 256.

Step 2: According to our drive system (19), we can
get the sequence of zR

11(k1)
= [zR

11(1),z
R
11(2), ...,z

R
11(256·128)],

and zI
11(k2)

= [zI
11(1),z

I
11(2), ...,z

I
11(256·128)]. δ1 = sort(round

(zR
11(k1)

,−3)) and δ2 = sort(round(zI
11(k2)

,−3)). δ1 is
used to reorder one half of this picture, and δ2 is used
to reorder another half of this picture:

R(i)=R(δ1(i)); G(i)=G(δ1(i)); B(i)=B(δ1(i));

R(i+length/2)=R(δ2(i)+length/2);

G(i+length/2)=G(δ2(i)+length/2);

B(i+length/2)=B(δ2(i)+length/2);
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NR=reshape(R,M,N); NG=reshape(G,M,N);

NB=reshape(B,M,N); for i=1,2, ..., length/2.
(23)

Step 3: The real part sequences of the left three neu-
rons of system (19) encrypt the even point of picture, and
the imaginary part sequences encrypt the odd point of this
picture:

z1(k)=zR
12(k), z2(k)=zI

12(k), for k=1,2, ...,256×256;

if mod (i,2) == 0

z11(i, j) = 1e15∗ (z1(k)− f loor(z1(k)));

z11(i, j) = f loor(mod(z11(i, j),256));

newR(i, j) = bitxor(z11(i, j),NR(i, j));

else

z22(i, j) = 1e15∗ (z2(k)− f loor(z1(k)));

z22(i, j) = f loor(mod(z22(i, j),256));

newR(i, j) = bitxor(z22(i, j),NR(i, j)). (24)

According to CVMBAMNN and fixed-time synchro-
nization between drive and response system, the flow chart
of image encryption and decryption is shown in Fig. 17.
With our encryption algorithm, the result of encryption is
shown in Fig. 16, while its original picture is shown in
Fig. 15. From the histograms of original picture and en-
crypted picture shown in Fig. 18-19, it can be said that
image becomes highly unordered after encryption. The
correlation coefficient of R for original and encrypted
pictures is shown in Figs. 20-21 respectively. After en-
cryption, the image correlation coefficient become much
lower.

Based on fixed-time synchronization between drive sys-
tem (19) and response system (20), the decryption algo-

Fig. 15. Original picture “Lena”.

Fig. 16. The encrypted picture.

rithm is the contrary method of encryption algorithm, and
the decrypted picture is shown in Fig. 23. Besides, be-
cause its susceptibility of initial values, when the initial
value of any one of these neurons change, it would be not
decrypted successfully. Here we give the false decrypted
picture shown in Fig. 22 with zR

11(0) = 1.5+10−13.
Based on our image encryption algorithm, horizontal

correlation coefficient of R channel for encrypted “Lena”
is shown in Table 1. Tables 2 and 3 list the comparative
analysis of average value of correlation coefficient and in-
formation entropy obtained from our algorithm with oth-

Fig. 17. Flow chart of encryption and decryption algorithm.
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Fig. 18. Histograms of RGB for original picture.

Fig. 19. Histograms of RGB for encrypted picture.

Fig. 20. Horizontal, vertical and diagonal correlation co-
efficient of R for original picture.

Fig. 21. Horizontal, vertical and diagonal correlation co-
efficient of R for encrypted picture.

Fig. 22. The false decrypted picture when the initial value
of zR

11(0) = 1.5+10−13.

Fig. 23. The right decrypted picture.

Table 1. Horizontal correlation coefficient.

R G B
Original Lena 0.9572 0.9432 0.9284

Encrypted Lena 0.0035 0.0011 0.0021

Table 2. Comparison of correlation coefficients of en-
crypted “Lena” (average value of the color chan-
nels).

Horizontal Vertical Diagonal
Our algorithm 0.0022 -0.0004 -0.0007

[29] 0.0038 0.0041 0.0036
[30] 0.0445 -0.0186 -0.0022
[31] 0.0816 0.0401 0.0047
[32] 0.0075 0.0128 0.0049

Table 3. Information entropy results.

R G B
Our algorithm 7.9972 7.9974 7.9976

[29] 7.9976 7.9971 7.9968
[30] 7.9278 7.9744 7.9705
[33] 7.9901 7.9898 7.9896

ers, respectively. Obviously, most results of our algorithm
are much better than those of the previous others, espe-
cially in average correlation coefficient.
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5. CONCLUSION

In this paper, we construct the model of CVMBAM
neural network with leakage time-varying delays, which
little work has been studied before. By analyzing the dy-
namic characteristics of CVMBAM neural network, we
have observed that such neural network inherits the hy-
per chaotic character of BAM neural network. Besides,
to ensure the efficiency, rapidity and stability of image
transmission, we design feedback controllers to achieve
fixed-time and finite-time synchronization with compara-
tive analysis experiment. In the end, the effectiveness of
our results is validated by numerical examples, and ap-
plications in chaotic image encryption and decryption are
shown above. Due to high consistence of our system, cor-
responding initial values of decryption are highly sensi-
tive. In future research, we will study with the case where
leakage time-varying delays and the bound of the rates of
neuron self-inhibition are unknown, which may better im-
prove the neurodynamic model.
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