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H∞ Control of Markovian Jump Systems with Incomplete Knowledge of
Transition Probabilities
JaeWook Shin and Bum Yong Park* ■

Abstract: An H∞ state-feedback controller for Markovian jump systems with incomplete knowledge of transition
probabilities and input quantization is proposed. To derive the less conservative stabilization conditions, the condi-
tions are developed into the second-order matrix polynomials of the unknown transition rate using an appropriate
weighting method. Furthermore, the proposed controller not only accomplishes an H∞ performance but also re-
moves the matched disturbances and the effect of input quantization. Two examples show the effectiveness of the
proposed method.
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1. INTRODUCTION

During the past decades, Markovian jump systems
(MJSs) have received a lot of attention because the rep-
resentation of many dynamics systems subject to random
abrupt variations is achieved. Therefore, MJSs with mode
transition by a Markov chain taking values in a finite set
have been studied extensively [1–8]. Furthermore, MJSs
have been widely applied in many practical systems, such
as actuator saturation [2] , manufacturing systems [9], net-
worked control systems (NCSs) [9], and economic sys-
tems [11], power systems [12]. For these topics, many
studies about MJSs have been developed under the as-
sumption that the exact values of transition probabilities
are known [1, 4, 6, 8].

However, another issue has been focused on in the
MJSs with incomplete knowledge of transition probabil-
ities, because it is difficult to obtain the complete knowl-
edge of transition probabilities in the practical systems.
Recently, the research on controller synthesis for such
systems employed the free-connections weighting method
and the linear matrix inequalities (LMIs) [5,7,13] . The ro-
bust stabilization condition for the MJS with known tran-
sition probabilities and incomplete transition probabilities
with its bounds was introduced [13].

Furthermore, in modern control systems, the plant and
the controller are linked through a network. Such a struc-
ture is called network control systems (NCSs). NCSs re-
quire many kinds of data-processing devices, such as en-
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coders, decoders, A/D converters, and D/A converters.
This has such benefits as easy maintenance, simple instal-
lation, and flexibility of the system change [14–16]. These
systems have many advantages for the control system en-
gineering, but some new issues are found with packet
dropout, networked-induced delay, and input quantization.
These issues can degrade the performance of the control
systems and the stability of the systems [17]. Therefore,
a significant problem is not only the model uncertainty,
such as incomplete knowledge of the transition probabil-
ity, but also the uncertainty of the data transfer. In most
of the previous research, it has been assumed that the data
transfer is ideal without packet dropout, network induced
delay, and input quantization. However, it is not a prac-
tical system. Among the above issues, input quantization
has a serious effect on the performance of the control sys-
tems. Recently, many studies have addressed the stabi-
lization problem of the systems with input quantization
for NCSs [18] and non-NCSs [19, 20].

To the best of the author’s knowledge, intensive stud-
ies on H∞ control of MJSs with incomplete knowledge
of transition probabilities and input quantization have not
yet been conducted. Even if the state-feedback H∞ con-
troller and dynamic output-feedback controller for quan-
tized discrete-time linear time-invariant systems are pro-
posed using the dynamic quantizers [21, 22]. The switch-
ing controller for Takagi-Sugeno fuzzy systems are in-
troduced [23]. Recently, the stabilization of MJSs with
incomplete transition probabilities and input quantization

c⃝ICROS, KIEE and Springer 2019

http://www.springer.com/12555
https://orcid.org/0000-0001-9490-0365


H∞ Control of Markovian Jump Systems with Incomplete Knowledge of Transition Probabilities 2475

was handled [24], it is far from the stabilization of the
practical systems, because the disturbances are not con-
sidered.

As a result of the above observations, an H∞ state-
feedback controller for MJSs with incomplete knowledge
of transition probabilities and input quantization is intro-
duced. The proposed H∞ controller consists of linear and
nonlinear parts: a linear part to accomplish H∞ perfor-
mance against the mismatched part of the external distur-
bances, and a nonlinear part to remove the matched part of
the external disturbances and the effect of input quantiza-
tion. In other words, the nonlinear part is an integer mul-
tiple of the quantization level that depends on the magni-
tude of the matched disturbance. It removes the energy in
the sense of Lyapunov caused by quantization errors and
the matched part of the external disturbances . The con-
troller is designed for each mode in the MJSs. The main
contributions of this research are as follows:

• A state-feedback controller was designed to accom-
plish asymptotic stability and H∞ performance for
MJSs with incomplete knowledge of transition prob-
abilities and input quantization, where such systems
have not yet been introduced.

• To improve the H∞ performance, the external dis-
turbances are divided into the matched part and the
mismatched part using the projection matrix for each
mode.

• To derive the less conservative stabilization con-
ditions, the derived conditions are developed into
the second-order matrix polynomials of the un-
known transition rate using an appropriate weighting
method.

The performance of the proposed controller is represented
by a numerical example and a practical example.

This work is organized as follows. Section 2 provides a
system description and some preliminary results. Section
3 introduces an H∞ controller for MJSs with incomplete
knowledge of transition probabilities and input quantiza-
tion. Section 4 shows simulation results for verifying the
proposed controller. Finally, Section 5 gives a summariza-
tion of the study.

Notation: The notations X ≥ Y and X > Y mean that
X −Y is positive semidefinite and positive definite, re-
spectively. The operator ⌈α⌉ denotes the nearest inte-
ger greater than or equal to a scalar α . The notation
diag(X ,Y ) indicates a diagonal matrix with diagonal en-
tries X and Y . In symmetric block matrices, (∗) is used as
an ellipsis for terms that are induced by symmetry. Fur-
thermore, He(X) = X +XT stands for any matrix X . For
any matrices Si and Si j,

[Si]i∈{1,2,...,N} = [S11,S12, ...,S1N ],

[Si j]i, j∈{1,2,...,N} =


S11 S12 · · · S1N

S21 S22
. . .

...
...

. . . . . .
...

SN1 · · · · · · SNN

 .
In symmetric block matrices, (∗) is used as an ellipsis
for therms that are induced by symmetry. We also use
∥x∥p to indicate the p-norm of x, i.e., ∥x∥p ≜ (|x1|p +
· · ·+ |xn|p)

1
p , p ≥ 1. When p = ∞, ∥x∥∞ ≜ max1≤i≤n |xi|.

For X ∈ Rm×n, ∥X∥p denotes the matrix p-norm, i.e.,
∥X∥p ≜ supx ̸=0

∥Xx∥p

∥x∥p
. The space of square-integrable func-

tions is denoted by L2, that is, for any x ∈ L2,

∥x∥2 ≜
(∫ ∞

0
xT (t)x(t)dt

)1/2

< ∞.

2. SYSTEM DESCRIPTION AND
PRELIMINARIES

Consider the following continuous-time MJS with input
quantization and external disturbance.

ẋ(t) = A(rt)x(t)+B(rt)Q(u(t))+D(rt)ω(t), (1)

z(t) =C(rt)x(t), (2)

where x(t) ∈ ℜn is the state, u(t) ∈ ℜm is the control in-
put, ω(t) ∈ ℜq is the disturbance, and z(t) ∈ ℜq is the
controlled output. Q(·) is the quantization operator. Here,
{rt , t ≥ 0} is a continuous-time Markov jumping process
in a finite set D = {1,2,3, ...,N} and has the mode transi-
tion probabilities

P(rt+δ = j|rt = i) =

{
πi jδ t +o(δ t) if i ̸= j,
1+πi jδ t +o(δ t) if i = j,

(3)

where δ t > 0, limδ t→0 o(δ t)/δ t = 0, and πi j is the transi-
tion rate from mode i to j at time t +δ t. For rt = i ∈ D, to
simplify the notation, A(rt) = Ai, B(rt) = Bi, D(rt) = Di,
and C(rt) =Ci.

Furthermore, the transition rate matrix Π belongs to

SΠ ≜
{
[πi j]i, j∈D|0 ≤ πi j for i ̸= j,πii =−

N

∑
j=1,i̸= j

πi j

}
.

(4)

In view of the above relations, πi j accords with the fol-
lowing relationships, for all i, j ∈ D:

µi jπi j ≥ 0,
N

∑
j=1

πi j = 0, −µi jπi j(πi j +πii)≥ 0, (5)

where

µi j =

{
1, i ̸= j,
−1, i = j.
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For later convenience, two sets are defined with respect
to the measurability of the transition rate for i, j ∈ D:

D+
i ≜ { j | πi j is known for i}, (6)

D−
i ≜ { j | πi j is unknown for i}. (7)

For the quantization, it is assumed that the operator Q(·)
is defined by a function round(·) that rounds toward the
nearest integer, i.e.,

Q(u(t))≜ εu round (u(t)/εu), (8)

where εu(> 0) is called a quantizing level and Q(·) is the
uniform quantizer with the fixed εu. It is noted that the
quantization error ∇u(t) is defined as

∇u(t)≜ Q(u(t))−u(t). (9)

Based on the quantization in (8) and the definition of
∇u(t), each component of ∇u(t) at time t is bounded by
the half of the quantizing level εu, i.e.,

∥∇u(t)∥∞ ≤ εu/2. (10)

The following lemmas are required to prove a main re-
sult.

Lemma 1 [5]: Suppose that there exist Pi > 0, for all
i ∈ D, and γ such that[

(1,1) PiDi

(∗) −γ2I

]
< 0, (11)

where (1,1) = He(PiAi) + ∑N
j=1 πi jPj +CT

i Ci. Then the
MJS in (1) with u(t) = 0 is stochastically stable with H∞
performance γ .

Lemma 2 (Hölder’s inequality): For α , β ∈ Rn, p ≥ 1,
and q ≥ 1, the following inequality holds:

|αT β | ≤ ||α||p||β ||q, p−1 +q−1 = 1. (12)

3. MAIN RESULTS

In this section, the H∞ state-feedback controller design
problem is considered. System (1) yields to

ẋ(t) = Aix(t)+Bi{Q(u(t))+ B̃iω(t)}+ B̄iω(t), (13)

where

B̃i = (BT
i Bi)

−1BT
i Di, B̄ = (I −Bi(BT

i Bi)
−1BT

i )Di.

The external disturbance Diω(t) can be separated into the
matched part B̃iω(t) and the mismatched part B̄iω(t) us-
ing the projection matrix. For B̃i and ω(t), it is assumed
that the following conditions are valid:

• (A1)

∥ω(t)∥∞ ≤ εω . (14)

• (A2)

∥B̃∥∞ = ρ. (15)

A controller is proposed for the system (1) as

u(t) = K(rt)x(t)+ ū(rt ,x(t)), (16)

where K(rt) is a linear controller part and ū(rt ,x(t)) is a
nonlinear controller part to reject the matched disturbance
B̃iω(t) and the effect of quantization errors. In the follow-
ing, for rt = i ∈ D, K(rt) = Ki and ū(rt ,x(t)) = ūi(x(t)).
Using the system (13) and the proposed controller (16),
the resultant closed-loop system is given as follows:

ẋ(t) =Aix(t)+Bi{Q(Kix(t)+ūi(x(t)))+B̃iω(t)}
+ B̄iω(t). (17)

Theorem 1: Consider the system (13) with incomplete
knowledge of the transition rate. For i, j ∈ D, suppose that
there exist symmetric matrices P̄i and Qi j, matrices K̄i, Λi j,
Yi j, Si0, Si j, Yi j, and a scalar γ such that

P̄i > 0, (18)

Λi j +ΛT
i j > 0,Yi j +Y T

i j > 0, (19)[
Qi j P̄j

(∗) P̄i

]
> 0, i ̸= j, (20)[

L̄i [L j] j∈D−
i

(∗) [L jl ] j,l∈D−
i

]
< 0, (21)

where

• i ∈ D+
i

L̄i =Ω0
i +Π+

i ET He(Si0)E

+ ∑
j∈D+

i

µi jπi jET He(Λi j)E

− ∑
j∈D+

i

µi jπi j(πi j +πii)ET He(Yi j)E,

L j =
1
2

ET Ω1
i j +ET Si0 +Π+

i ET Si j +µi jET Λi j

−µi jπiiETYi j,

L j j =He(Sil)−µi jHe(Yi j),

L jl =Sil +Si j,

• i ∈ D−
i

L̄i =Ω0
i +Π+

i ET He(Si0)E

+ ∑
j∈D+

i

µi jπi jET He(Λi j)E

− ∑
j∈D+

i

µi jπ2
i jE

T He(Yi j)E,

L j =
1
2

ET Ω1
i j +ET Si0 +Π+

i ET Si j +µi jET Λi j
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− ∑
j∈D+

i

ci jµi jπi jETYi j,

L j j =He(Sil)−2µi jHe(Yi j),

L jl =

{
Sil +Si j, l ̸= i,
Sil +Si j −µi jYi j, l = i,

Π+
i = ∑

j∈D+

πi j,

Ω0
i ≜

He(AiP̄i+BiK̄i)+∑ j∈D+
i

πi jGi j B̄i P̄iCT
i

(∗) −γ2I 0
(∗) (∗) −I

,
Ω1

i j ≜ κi jQi j +(1−κi j)P̄i, κi j =

{
1, i ̸= j,
0, i = j,

E =
[
I 0 0

]
∈ ℜn×(n+p+q).

Then, the proposed system (1) is stochastically stable
with γ-disturbance attenuation. Furthermore, the pro-
posed controller is constructed as u(t) = Kix(t)+ ūi(x(t))
for the mode i, where Ki = K̄iP̄−1

i and each component of
ūi(x(t)) is defined as

ūi,k(x(t)) =−εuNsgn(σi,k(x(t))), (22)

where

ūi(x(t)) =
[
ūi,1(x(t)) ūi,2(x(t)) · · · ūi,m(x(t))

]T
,

N =

⌈
εu/2+ρεω

εu

⌉
, σi(x(t))≜ BT

i Pix(t).

Proof: Choose V (x(t))= xT (t)P(rt)x(t) as a Lyapunov
function, where P(rt) is a positive definite matrix. Then,
the weak infinitesimal operator L of the stochastic process
x(t) acting on V (x(t)) is given by

LV =2xT (t)Piẋ(t)+ xT
N

∑
j=1

πi jPjx(t)

=2xT (t)PiAix(t)+2xT (t)PiBi{Q(u(t))+B̃iω(t))}

+2xT (t)PiB̄iω(t)+ xT (t)
N

∑
j=1

πi jPjx(t).

Using the quantization error (9), the second term of LV
can be rewritten as

2xT (t)PiBi{Q(u(t))+ B̃iω(t))}
= 2xT (t)PiBi{∇u(t)+u(t)+ B̃iω(t)}
= 2σ T

i (x(t)){∇u(t)+Kix(t)+ ūi(x(t))+ B̃iω(t)}.

Therefore, LV can be written as follows:

LV =2xT (t){PiAi +PiBiKi}x(t)

+2σ T
i (x(t))(∇u(t)+ ūi(x(t))+ B̃iω(t))

+2xT (t)PiB̄iω(t)+ xT (t)
N

∑
j=1

πi jPjx(t).

Using the bound of the quantization error (10), the as-
sumption (14), (15), the relations |αT β | ≤ ||α||1||β ||∞
from Lemma 2, and ||Xα||∞ ≤ ||X ||∞||α||∞ from the def-
inition of the matrix p-norm, it is shown that ūi(x(t)) in
(22) ensures that the second term of L is negative, i.e.,

2σ T
i (x(t))(∇u(t)+ ūi(x(t))+ B̃ω(t))

=2σ T
i (x(t))∇u(t)+2σ T

i (x(t))ūi(x(t))+2σ T
i (x(t))B̃ω(t)

≤ 2∥σi(x(t))∥1∥∇u(t)∥∞ +2σ T
i (x(t))ūi(x(t))

+2∥σi(x(t))∥1∥B̃i∥∞∥ω∥∞

≤εu∥σi(x(t))∥1−2εuN∥σi(x(t))∥1+2ρεω∥σi(x(t))∥1

= 2
(εu

2
− εuN +ρεω

)
∥σi(x(t))∥1

= 2εu

(
εu/2+ρεω

εu
−N

)
∥σi(x(t))∥1,

where by choosing N as ⌈ εu/2+ρεω
εu

⌉ and using the relation
−⌈a⌉ ≤ −a for a scalar a ≥ 0, one can make the second
term of LV (x(t)) negative. Then, LV (x(t)) can be rewrit-
ten as

LV (x(t))≤2xT (t){PiAi +PiBiKi}x(t)

+2xT (t)PiB̄iω(t)+ xT (t)
N

∑
j=1

πi jPjx(t).

(23)

Using Lemma (1), equation (23) can be converted into
the following condition:[

He(PiAi +PiBiKi)+∑N
j=1 πi jPj +CT

i Ci PiB̄i

(∗) −γ2I

]
< 0.

(24)

By pre- and post-multiplying (24) with diag{P−1
i , I}

and its transpose,[
He(AiP̄i +BiK̄i)+∑N

j=1 πi jP̄iPjP̄i + P̄iCT
i CiP̄i B̄i

(∗) −γ2I

]
< 0, (25)

where P̄i = P−1
i and K̄i = KiP̄i.

Using Schur’s complement to (25) results inHe(AiP̄i+BiK̄i)+∑N
j=1 πi jP̄iPjP̄i B̄i P̄iCT

i
(∗) −γ2I 0
(∗) (∗) −I

< 0.

(26)

Note that for i = j, P̄iPjP̄i = P̄i and for i ̸= j, equation
(20) leads to P̄iPjP̄i ≤ Qi j, equation (26) holds by the fol-
lowing condition:He(AiP̄i +BiK̄i)+∑N

j=1 πi jGi j B̄i P̄iCT
i

(∗) −γ2I 0
(∗) (∗) −I

< 0,

(27)
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where Gi j ≜ κi jQi j +(1−κi j)P̄i.
To derive the linear matrix inequality (LMI) conditions,

equation (27) can be written as follows:

0 > Ωi ≜ Ω0
i + ∑

j∈D−
i

πi jET Ω1
i jE. (28)

In addition, from the condition (5), it follows under (19)
that

C1
i ≜ He

((
Π+

i + ∑
j∈D−

i

πi j

)
ET

(
Si0+ ∑

j∈D−
i

πi jSi j

)
E

)
= 0, (29)

C2
i ≜

N

∑
j=1

µi jπi jET He(Λi j)E ≥ 0, (30)

C3
i ≜−

N

∑
j=1

µi jπi j(πi j +πii)ET He(Yi j)E ≥ 0. (31)

Then, the positive definite matrix Ni is constructed by
(30) and (31) as the following form.

Ni ≜C1
i +C2

i +C3
i

=Ni0 + ∑
j∈D−

i

πi jHe(Ni jE)

+ ∑
j∈D−

i

∑
l∈D−

i ,l≥ j

πi jπilET He(Ni, jl)E ≥ 0,

where

• i ∈ D+
i

Ni0 =Π+
i ET He(Si0)E+ ∑

j∈D+
i

µi jπi jET He(Λi j)E

− ∑
j∈D+

i

µi jπi j(πi j +πii)ET He(Yi j)E,

Ni j =ET Si0 +Π+
i ET Si j +µi jET Λi j −µi jπiiETYi j,

Ni, jl =

{
Sil +Si j, j ̸= l,
Sil −µi jYi j, j = l,

• i ∈ D−
i

Ni0 =Π+
i ET He(Si0)E+ ∑

j∈D+
i

µi jπi jET He(Λi j)E

− ∑
j∈D+

i

µi jπ2
i jE

T He(Yi j)E,

Ni j =ET Si0 +Π+
i ET Si j +µi jET Λi j

− ∑
j∈D+

i

ci jµi jπi jETYi j,

Ni, jl =


Sil +Si j, j ̸= l, l ̸= i,
Sil +Si j −µi jYi j, j ̸= l, l = i,
Sil −2µi jYi j, j = l, l = i,

where

ci j =

{
1, i = j,
0, i ̸= j.

By the S-procedure, if Ωi < 0 whenever Ni ≥ 0, then the
following sufficient condition is formulated as

Ni +Ωi < 0, (32)

which can be converted into the following LMI condition.[
I

[πi jE]Tj∈D−
i

]T [
L̄i [L j] j∈D−

i

(∗) [L jl ] j,l∈D−
i

][
I

[πi jE]Tj∈D−
i

]
< 0,

(33)

where

L̄i = Ω0
i +Ni0, L j =

1
2

ET Ω1
i j +Ni j, L jl = Ni, jl .

Then, (33) holds by the LMI conditions (18)-(21). □

4. NUMERICAL EXAMPLES

In this section, the H∞ performance of the proposed
controller is considered to verify the effectiveness of the
proposed method.

4.1. Example 1
Consider an MJS with four modes(N = 4), whose sys-

tems matrices are

A1 =

[
0.35 −7.30
1.48 0.81

]
, A2 =

[
0.89 −3.11
1.48 0.21

]
,

A3 =

[
−0.11 −0.85
2.31 −0.10

]
, A4 =

[
−0.17 −1.48
1.59 −0.27

]
,

B1 =

[
0.57
1.23

]
, B2 =

[
0.78
−0.49

]
, B3 =

[
1.34
0.39

]
,

B4 =

[
−0.38
1.07

]
,

C1 =

[
0.0
−0.1

]
, C2 =

[
0.1
0.0

]
,

C3 =

[
0.0
0.1

]
, C4 =

[
0.1
0.0

]
,

D1 =

[
0.5
0.1

]
, D2 =

[
0.15
0.0

]
,

D3 =

[
0.0
0.4

]
, D4 =

[
0.2
0.3

]
,

Π =


−1.3 0.2 π13 π14

π21 π22 0.3 0.3
0.6 π32 −1.5 π34

0.4 π42 π43 π44

 , εu = 0.1,
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Fig. 1. State trajectories for Example 1.

where π13, π14, π21, π22, π32, π34, π42, π43, and π44 are un-
known transition probabilities. Using the above transition
probability matrix, the following sets can be obtained.

D+
1 = {1,2}, D+

2 = {3,4},
D+

3 = {1,3}, D+
4 = {1},

D−
1 ={3,4}, D−

2 ={1,2},
D−

3 ={2,4}, D−
4 ={2,3,4}.

Letting the initial condition x(0) = [−1.2 0.5]T , the
state trajectories of the closed-loop system shown in Fig. 1
is stochastically stable with incomplete knowledge of tran-
sition rates under the input quantization and the external
disturbances.

By Theorem 1, the H∞ performance γ = 1.6634×1010

and the proposed controller gains are obtained as follows.

K1 =
[
−4.1749×10−1 −3.3041×103

]
,

K2 =
[
−1.2015×103 1.4393

]
,

K3 =
[
−3.6401×10−1 −1.9419×103

]
,

K4 =
[
1.5652×104 1.6342

]
.

Fig. 2 shows the control input, where r0 = 2 and for
10≤ t ≤ 15, ω(t) = 0.1sin(3t2+0.8)+0.2 and otherwise,
ω(t) = 0.

4.2. Example 2
Consider the following inverted pendulum system [25]

with two modes.

ẋ1(t) = x2(t),

ẋ2(t) =
g
l

sinx1(t)+
NKm

ml2 x3(t),

Laẋ3(t) = KbNx2(t)−R(rt)x3(t)+Q(u(t)), (34)

where x1(t) is an angle of the inverted pendulum, x2(t) is
an angular velocity, x3(t) is an input current, u(t) is the
control input voltage, g is the gravity acceleration of grav-
ity, m and l are the mass and length of the inverted pendu-
lum, Kb is the back emf constant, Km is the motor torque
constant, and N is the gear ratio. Here, R(rt) is the resis-
tance in the DC motor, which is defined as

R(rt) =

{
Ra if rt = 1,

Rb if rt = 2.

Let La = 1, g = 9.8 m/s2, l = 1 m, m = 1 kg, N = 10,
Km = 0.1 Nm/A, Kb = 0.1 Vs/rad, Ra = 1 Ω, and Rb = 0.5
Ω.

Using the above parameters, the system (34) is the fol-
lowing linearized model.

ẋ(t) = A(rt)x(t)+B(rt)Q(u(t))+D(rt)ω(t), (35)

y(t) =C(rt)x(t), (36)

where

x(t) =
[
x1(t) x2(t) x3(t)

]T
,

A1 =

 0 1 0
9.8 0 1
0 1 −1

 , A2 =

 0 1 0
9.8 0 1
0 1 −0.5

 ,
B1 = B2 =

0
0
1

 ,
C1 =

[
0.1 0 0

]
, C2 =

[
0.2 0 0

]
,

D1 =
[
0 0 1

]
, D2 =

[
0 0 0.4

]
, εu = 0.1,

Π =

[
−0.6127 0.6127

π21 π22

]
, ω(t) = e−0.6t sin100t2,

where π21 and π22 are unknown transition rates. By The-
orem 1, the proposed controller gains are obtained as fol-
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Fig. 2. Trajectory of the quantized input for Example 1.
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Fig. 4. Trajectory of the quantized input for Example 2.

lows.

K1 =
[
18.564 −0.7979 −0.9476

]
,

K2 =
[
−1.5811×104 −1.4393×103 −38.554

]
.

Also, the H∞ performance γ is 3.5037×10−13.
Fig. 3 shows the state trajectories and the mode evo-

lution obtained by the above controller gains and Fig. 4
shows the quantized control input, where x(0) = [1 −1
0]T and r0 = 2. These figures show that the proposed
controller effectively stabilizes the MJS with incomplete
knowledge of the transition rates under input quantization
and the external disturbance.

5. CONCLUSION

In this research, an H∞ state-feedback controller for
MJSs with incomplete knowledge of transition probabil-

ities and input quantization was proposed. To do so, the
stabilization conditions are developed into the second-
order matrix polynomials of the unknown transition rate
using an appropriate weighting method obtained by all
possible slack variables for the transition rates. Also, the
proposed controller guarantees an H∞ performance and
eliminates the matched disturbances and the effect of input
quantization. Two examples illustrated the effectiveness
of the proposed controller. The future work is to study
the design of the output-feedback controller for the pro-
posed system with system uncertainties, which will guar-
antee the desired performance.
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