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Event-triggered Finite-time Consensus with Fully Continuous Communi-
cation Free for Second-order Multi-agent Systems
An Zhang, Ding Zhou* O , Pan Yang, and Mi Yang

Abstract: This study deals with finite-time consensus problems of second-order multi-agent systems with intrinsic
nonlinear dynamics and external bounded disturbances. First, instead of the time-triggered control algorithm, the
event-triggered control algorithm is developed by using integral sliding mode control strategy. Then, a triggering
function is explicitly constructed to generate event sequences, and the triggering function is fully continuous com-
munication free. Rigorous proof is given by using Lyapunov stability theory and finite-time stability theory. Several
conditions are derived to guarantee the finite-time consensus and exclude Zeno behavior. Finally, a simulation of
single-link robotic arms is given to verify the effectiveness of the results.
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1. INTRODUCTION

In the past years, consensus of multi-agent systems has
attracted an increasing interest due to its range of applica-
tions in areas, such as formation control [1], chaotic sys-
tems [2, 3], synchronization [4], exploration of hazardous
environments and rescue in disaster sites [5]. Consensus
is to develop a distributed algorithm such that all agents
reach an agreement with local interaction. Much theoret-
ical work with different dynamics and scenarios has been
presented on consensus [6–8].

For consensus control, convergence rate [9] is a key
performance index in practice which has attracted many
researchers to study finite-time consensus [10,11]. Finite-
time consensus of first-order multi-agent systems was ex-
tensively investigated with an uncertain leader [12], time-
varying reference state [13], disturbances and directed
communication graph [14], etc. Later, second-order multi-
agent systems were recognized as an important topic due
to broad real-word applications [15, 16]. Finite-time con-
sensus of second-order multi-agent systems was exten-
sively investigated with disturbances [17], directed graph
[18], intermittent communications [19], and time-varying
delay [20, 21], etc.

An important point to note is that all the aforementioned
literatures related to time-triggered systems focused only
on the desired performance of consensus algorithm. How-
ever, such a time-triggered system may require continu-
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ous communications and frequent updating of controller,
which would result in the waste of network resources
and unnecessary energy consumption [22]. To tackle this
problem, researchers have done a lot of research on event-
triggered consensus problem [23–25].

Recently, some efforts have been made on finite-
time consensus via event-triggered control. For first-order
multi-agent systems, [26] and [27] investigated finite-time
consensus with undirected network topologies via event-
triggered method. Dong and Xian [28] took directed net-
work topologies and nonlinear dynamics into considera-
tion on the basis of [26], while the dynamics of agents
were one-dimensional. Wang, Li and Xing [29] proposed
an event-triggered control algorithm to solve finite-time
average consensus problem and presented the relation-
ship between the initial state and the convergence time.
For general linear first-order multi-agent systems, [30,31]
investigated event-triggered finite-time control algorithm
which can adjust the desired convergence time. By in-
tegral sliding-mode control strategy, Zhou et al. inves-
tigated finite-time consensus of Euler Lagrange systems
with Markovian switching topologies [32]. Moreover, for
second-order multi-agent systems, Lu et al. investigated
finite-time consensus of linear system via event-triggered
rule [33]. Hu, Lu and Hu [34] took directed network
topology into consideration on the basis of [33], while the
weight sum of in-edges was larger than that of out-edges
for each agent. [33, 34] considered finite-time consensus
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of linear multi-agent systems, but the design of trigger-
ing function was time-dependent rather than fully contin-
uous communication free. The control method of [33, 34]
brought a paradox to the purpose of saving communica-
tion resource by introducing the event-triggered strategy.

Motivated by the above discussions, we consider the
finite-time consensus problems of second-order multi-
agent systems with intrinsic nonlinear dynamics and ex-
ternal bounded disturbances. The main contribution of
this paper can be summarized as follows: 1) To solve
the finite-time consensus with intrinsic nonlinear dynam-
ics and external bounded disturbances, an event-triggered
control algorithm based on integral sliding mode is de-
veloped. 2) A novel threshold is defined, and the trig-
gering function is derived based on the novel threshold.
This function does not require continuous communication
in both controller update and error measurement, while
most previous results have some limitations such as time-
dependent triggering function [26,27,29,34], and continu-
ous communication in controller update or error measure-
ment [28, 30–33]. 3) Lower bound for the triggering time
is derived to exclude Zeno behavior.

The remainder of this paper is organized as follows: We
first address, in Section 2, preliminaries and problem for-
mulation. The finite-time consensus problem of second-
order multi-agent systems with nonlinear dynamics and
disturbances is studied in Section 3. Section 4 gives the
simulation example. The conclusions and future work are
provided in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Notations and graph theory

Define sig(p)γ =
[
sig(p1)

γ , · · · ,sig(pn)
γ]T , sig(pi)

γ =
|pi|γ sgn(pi), where sgn(·) is the signum function. In de-
notes the identity matrix. ∥ · ∥ denotes the 2-norm. ⊗
denotes the Kronecker product. Rn denotes n-dimensional
Euclidean space.

The topology of n agents is modeled as an undirected
graph G = {V,ζ ,A}, where ζ ⊆ {(i, j) , i, j ∈V} is the
edge set, V = {1,2, · · · ,n} is a finite set of nodes, and A =
[ai j]n×n is the associated adjacency matrix, where aii = 0,
and ai j = 1 is the weight if ( j, i) ∈ ζ or ai j = 0, otherwise.
The neighbor set of i is defined as Ni = { j ∈V : ai j = 1}.
Denote the matrix D = diag{d11,d22, · · · ,dnn} with dii =

∑n
j=1, j ̸=i ai j. Then, the Laplacian matrix L can be ex-

pressed by L = D−A and L is symmetric.

2.2. Problem formulation
Consider a multi-agent system composed of n agents.

The interaction topology among the n agents can be mod-
eled as an undirected graph G with each agent being a
vertex. The control objective is to develop a distributed
algorithm such that all agents reach an agreement in finite

time via local interaction. The dynamics of ith agent is
specified by{

ṙi (t) = vi (t),

v̇i (t) = ui (t)+di (t)+ f (ri,vi, t),
(1)

where ri ∈ Rm, vi ∈ Rm denote the position and velocity,
respectively, ui ∈ Rm is the control input, di (t) is the exter-
nal bounded disturbance, f (ri,vi, t) is a continuous vector-
valued function, which models the intrinsic nonlinear dy-
namics of agent i, and i = 1,2, · · · ,n.

The following definition, assumption and lemmas are
given to derive the results.

Assumption 1: There exist positive constants ρ1,
ρ2 such that ∥ f (ri,vi, t)∥ < ρ1 and ∥di (t)∥ < ρ2, i =
1,2, · · · ,n.

Definition 1: The finite-time consensus is achieved
for second-order systems if for any initial conditions,
there exists a finite time T such that lim

t→T
∥ri(t)− r j(t)∥ =

0, lim
t→T

∥vi(t)− v j(t)∥ = 0 and ∥ri(t)− r j(t)∥ = 0,

∥vi(t)− v j(t)∥= 0 if t ≥ T , where i, j = 1,2, · · · ,n.

Lemma 1 [35]: Consider the system ẋ = f (x), x ∈U ⊆
Rn and U is an open neighborhood including the origin.
Suppose that V (x) : U → R is a positive definite continu-
ously differentiable function, which satisfies the condition

V̇ (x)+ cV (x)α ≤ 0,x ∈U\{0} ,

where c > 0 and 0 < α < 1. Then the origin is a finite-
time stable equilibrium. In addition, the finite settling time
satisfies T ≤ (V (x0))

1−α
/

c(1−α).

Lemma 2 [36]: Consider the system ẋ = f (x), x ∈U ⊆
Rn and U is an open neighborhood including the origin.
Suppose that V (x) : U → R is a positive definite continu-
ously differentiable function, which satisfies the condition

V̇ (x)+ c1V (x)α + c2V (x)≤ 0,x ∈U\{0} ,

where c1,c2 > 0 and 0 < α < 1. Then the origin is a finite-
time stable equilibrium. In addition, the finite settling time
satisfies T ≤ 1

c2(1−α) ln
[

c2(V (0))1−α+c1
c1

]
.

Lemma 3 [37]: If the undirected graph of multi-agent
system (1) is connected, the Laplacian matrix L is sym-
metric. λ1 ≤ λ2 ≤ ·· · ≤ λn are defined as the eigenvalues
of L, then λ1 = 0 and λ2 > 0. Define algebraic connec-
tivity as a, if 1T r = 0,r ̸= 0, then a = λ2 = min rT Lr

rT r and
rT L2r ≥ arT Lr.

Lemma 4 [38]: Let S be a symmetric matrix. The fol-
lowing linear matrix inequality

S =

[
S11 S12

S21 S22

]
> 0,

holds if and only if S11 > 0, S22−S21S−1
11 S12 > 0 or S22 > 0,

S11 −S21S−1
22 S12 > 0, where ST

11 = S11, ST
22 = S22.
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Lemma 5 [39]: If α ∈ (0,1], the following inequality
holds(

n

∑
i=1

|ri|
)α

≤
n

∑
i=1

|ri|α ≤ n1−α

(
n

∑
i=1

|ri|
)α

,

where ri ∈ R.

3. MAIN RESULTS

In this section, finite-time consensus problems with in-
trinsic nonlinear dynamics and external bounded distur-
bances are investigated via event-triggered control strat-
egy. In this method, each agent broadcasts its state and
updates its control input by its triggering function. The
control algorithm is developed on the basis of the broad-
cast state and the proposed triggering function is fully con-
tinuous communication free.

Define pi =
n
∑
j=1

ai j (ri (t)− r j (t)) and qi =
n
∑
j=1

ai j(vi (t)−

v j (t)). Let p =
[
pT

1 , pT
2 , · · · , pT

n

]T , q =
[
qT

1 ,q
T
2 , · · · ,qT

n

]T ,
r =

[
rT

1 ,r
T
2 , · · · ,rT

n

]T and v =
[
vT

1 ,v
T
2 , · · · ,vT

n

]T , it follows
that p = (L⊗ Im)r and q = (L⊗ Im)v.

For convenience, we introduce a triggering time se-
quence

{
t i
0 = 0, t i

1, · · · , t i
ki
, · · ·
}

for agent i. An auxiliary
variable Φi is designed for agent i.

Φi (t) =−

(
β

n

∑
j=1

ai j

(
ri
(
t i
ki

)
− r j

(
t j
k j

))
+ γ

n

∑
j=1

ai j

(
vi
(
t i
ki

)
− v j

(
t j
k j

)))

− sig

(
β

n

∑
j=1

ai j

(
ri
(
t i
ki

)
− r j

(
t j
k j

))
+γ

n

∑
j=1

ai j

(
vi
(
t i
ki

)
− v j

(
t j
k j

)))α

, (2)

where β > 0, γ > 0, α ∈ (0,1), t ∈
[
t i
ki
, t i

ki+1

)
, t i

ki

is the latest event-triggered time of agent i, k j
∆
=

argmins

{
t − t j

s

∣∣∣t ≥ t j
s ,s ∈ N

}
, i.e., t j

k j
is the latest event-

triggered time of agent j.
During the time interval

[
t i
ki
, t i

ki+1

)
, the combinational

states for agent i are pi
(
t i
ki

)
=

n
∑
j=1

ai j

(
ri
(
t i
ki

)
− r j

(
t j
k j

))
and qi

(
t i
ki

)
=

n
∑
j=1

ai j

(
vi
(
t i
ki

)
− v j

(
t j
k j

))
. Define mea-

surement errors as eir (t) = ri
(
t i
ki

)
− ri (t), eiv (t) =

vi
(
t i
ki

)
− vi (t), t ∈

[
t i
ki
, t i

ki+1

)
. The combinational mea-

surement errors are defined as er
i =

n
∑
j=1

ai j (eir − e jr),

ev
i =

n
∑
j=1

ai j (eiv − e jv). Then, auxiliary variable Φi can

be rewritten as

Φi (t) =− (β pi (t)+βer
i (t)+ γqi (t)+ γev

i (t))

− sig(β pi (t)+βer
i (t)+ γqi (t)+ γev

i (t))
α .
(3)

Considering the intrinsic nonlinear dynamics and ex-
ternal disturbances in the multi-agent system, an integral
sliding mode surface is specified as

Si (t) = vi (t)− vi (0)−
∫ t

0
Φi (t)dτ, (4)

where Si (t) = [si1 (t) ,si2 (t) , · · · ,sim (t)]
T .

The event-triggered finite-time consensus algorithm
based on integral sliding mode is defined as

ui (t) = Φi (t)− (C1 +C2)sgn
(
Si
(
t i
ki

))
, (5)

where C1 and C2 are positive constants.
The triggering function for agent i is defined as

hi (t) =∥L∥∥βeir (t)+ γeiv (t)∥
−ξ

∥∥β pi
(
t i
ki

)
+ γqi

(
t i
ki

)∥∥ , (6)

where ξ > 0 and ∥L∥ denotes the 2-norm of Laplacian
matrix L. Then, the triggering condition is defined as
t i
ki+1 = inf

{
t > t i

ki
,hi (t)> 0

}
.

The block schematic of communication and control
processes is given in Fig. 1, where agent j represents the
neighbors of agent i and each agent generates triggering
events at its own event time only.

Remark 1: The triggering function does not require
continuous communication with neighbors to check if the

Sensor i

Integrater

consensus 
algorithm Actuator i

Triggering condition 
for agent i

Network

Triggering condition 
for agent j

Sensor j

Integrater

consensus 
algorithm Actuator j

Fig. 1. Communication and control processes of the pro-
posed event-triggered consensus algorithm (5) and
triggering function (6).
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triggering condition is satisfied. Using the triggering func-
tion, the controller of agent i measures its state continu-
ously. If the triggering function does not satisfy the trig-
gering condition, there is no need to communicate. When
the measurement error ∥L∥∥βeir (t)+ γeiv (t)∥ of agent i
is greater than the threshold ξ

∥∥β pi
(
t i
ki

)
+ γqi

(
t i
ki

)∥∥, the
controller of agent i updates its control input and broad-
casts its current state. When agent i receives the states
of its neighbors, its controller also updates its control in-
put. The parameter ξ can be used to adjust the update
frequency.

Theorem 1: Suppose that Assumption 1 is satisfied
and the undirected graph of multi-agent system (1) is con-
nected. With the event-triggered control algorithm (5)
and the triggering function (6), the finite-time consen-
sus problem can be solved if C1 > ρ1, C2 > ρ2, aγ2 > β

and ξ <min
{

aγ2−β
3aγ2−β ,1

/√
(mn)1−α

}
, irrespective of the

nonlinear dynamics and disturbances.

Proof: The proof is divided into two steps: (1) each
sliding mode surface Si (t) with the control algorithm is
finite-time stable; (2) Once the sliding-mode surface is
reached, i.e., Si (t) = Ṡi (t) = 0m, then we will show that
system (1) is finite-time stable.

Step 1: The stability analysis of sliding mode controller
is given. Consider the Lyapunov function candidate as

V1 (t) =
1
2

ST S, (7)

where S =
[
ST

1 ,S
T
2 , · · · ,ST

n

]T .
Taking the time derivative of V1 (t), we have

V̇1 (t) =
n

∑
i=1

ST
i Ṡi =

n

∑
i=1

ST
i (v̇i (t)−Φi (t))

=
n

∑
i=1

ST
i (ui (t)+di (t)+ f (ri,vi, t)−Φi (t))

=
n

∑
i=1

ST
i (di (t)+ f (ri,vi, t)

− (C1 +C2)sgn
(
Si
(
t i
ki

)))
≤(ρ1 +ρ2)

n

∑
i=1

∥Si∥

− (C1 +C2)
n

∑
i=1

m

∑
j=1

si j (t)sgn
(
si j
(
t i
ki

))
. (8)

It follows from Theorem3.1 [40] that until the system
trajectory reaches the sliding manifold, sgn

(
si j
(
t i
ki

))
=

sgn(si j (t)). From Lemma 5, we get

V̇1 (t)≤ (ρ1 +ρ2)
n

∑
i=1

∥Si∥− (C1 +C2)
n

∑
i=1

m

∑
j=1

|si j (t)|

≤ −(C1 +C2 −ρ1 −ρ2)
n

∑
i=1

∥Si∥

≤ −(C1 +C2 −ρ1 −ρ2)∥S∥

=−
√

2(C1 +C2 −ρ1 −ρ2)V 1/2
1 . (9)

With the conditions C1 > ρ1 and C2 > ρ2, we have
C1 +C2 −ρ1 −ρ2 > 0. It follows from Lemma 1 that each
sliding mode Si (t) with the control algorithm is finite-time
stable. The finite time upper bound can be computed as
T1 ≤

√
2V1 (0)

/
(C1 +C2 −ρ1 −ρ2).

Step 2: When the system trajectory reaches the sliding
manifold, i.e., Si (t) = Ṡi (t) = 0m, it follows from (4) that
Ṡi (t) = v̇i (t)−Φi (t) = 0.

Let r̃i = ri − r̄ = ri − 1
n ∑n

j=1 r j and ṽi = vi − v̄ =

vi − 1
n ∑n

j=1 v j. Define r̃ =
[
r̃T

1 , r̃
T
2 , · · · , r̃T

n

]T , ṽ =[
ṽT

1 , ṽ
T
2 , · · · , ṽT

n

]T , then we have r̃ = r − 1
n (1n×n ⊗ Im)r,

ṽ = v− 1
n (1n×n ⊗ Im)v. According to the property of the

Laplacian matrix L, we have p = (L⊗ Im)r = (L⊗ Im) r̃,
q = (L⊗ Im)v = (L⊗ Im) ṽ.

Consider the Lyapunov function candidate as

V2 (t) =
1
2

(
r̃
ṽ

)T ((2βγL2 βL
βL γL

)
⊗ Im

)(
r̃
ṽ

)
. (10)

With the condition a > β
γ2 , it follows from Lemma 3,

Lemma 4 that V2 (t)≥ 0 and V2 (t) = 0 if and only if r̃ (t) =
0mn, ṽ(t) = 0mn. Then, V2 (t) is a valid Lyapunov function.
Taking the time derivative of V2 (t), we have

V̇2 (t) =2βγ r̃T (L2 ⊗ Im
)

ṽ+β ṽT (L⊗ Im) ṽ

+
(
β r̃T + γ ṽT )(L⊗ Im)

(
v̇− 1

n
(1n×n ⊗ Im) v̇

)
=2βγ r̃T (L2 ⊗ Im

)
ṽ+β ṽT (L⊗ Im) ṽ

+
(
β r̃T + γ ṽT )(L⊗ Im)Φ(t)

≤−β 2 pT p−
(

γ2 − β
a

)
qT q

−
[
β 2 pT er +βγqT er +βγ pT ev + γ2qT ev]

−
(
β pT + γqT )sig(β p+βer + γq+ γev)α ,

(11)

where Φ(t) =
[
ΦT

1 (t) ,ΦT
2 (t) , · · · ,ΦT

n (t)
]T , er =[

eT
1r,e

T
2r, · · · ,eT

nr

]T , ev =
[
eT

1v,e
T
2v, · · · ,eT

nv

]T , er =
(L⊗ Im)er, ev = (L⊗ Im)ev.

Define Ei (t) = β pi (t) + γqi (t) + βer
i (t) + γev

i (t) =

β pi
(
t i
ki

)
+γqi

(
t i
ki

)
, E =

[
ET

1 ,E
T
2 , · · · ,ET

n

]T . From the trig-
gering function (6), we have

∥βer (t)+ γev (t)∥ ≤ ∥L∥∥βer (t)+ γev (t)∥

=

√
∥L∥2

n

∑
i=1

∥βeir (t)+ γeiv (t)∥2

≤

√
ξ 2

n

∑
i=1

∥∥β pi
(
t i
ki

)
+ γqi

(
t i
ki

)∥∥2
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= ξ ∥E (t)∥ , (12)

∥E (t)∥ ≤ ∥β p(t)+ γq(t)∥+∥βer (t)+ γev (t)∥
≤ ∥β p(t)+ γq(t)∥+ξ ∥E (t)∥ . (13)

Then, we have ∥E∥ ≤ 1
1−ξ ∥β p(t)+ γq(t)∥. It follows

that

−
[
β 2 pT er +βγqT er +βγ pT ev + γ2qT ev]

≤ ∥β p+ γq∥∥βer + γev∥
≤ ∥β p+ γq∥ξ ∥E (t)∥

≤ ξ
1−ξ

∥β p+ γq∥2

≤ 2
ξ

1−ξ
(
β 2 pT p+ γ2qT q

)
. (14)

Further, we have

−
(
β pT + γqT )sig(β p+βer + γq+ γev)α

= (βer + γev)T sig(E (t))α − (E (t))T sig(E (t))α

≤ ∥(βer + γev)∥∥Eα (t)∥−
n

∑
i=1

m

∑
j=1

|Ei j (t)|α+1

≤ ξ (mn)
1−α

2 ∥E (t)∥α+1 −
n

∑
i=1

∥Ei (t)∥α+1

≤−
(

1−ξ (mn)
1−α

2

) n

∑
i=1

∥Ei (t)∥α+1. (15)

By applying (11), we can obtain that

V̇2 (t)≤−β 2
(

1−2
ξ

1−ξ

)
pT p

−
(

γ2 − β
a
−2

ξ γ2

1−ξ

)
qT q

−
(

1−ξ (mn)
1−α

2

) n

∑
i=1

∥Ei (t)∥α+1. (16)

If aγ2 > β and ξ < min
{

aγ2−β
3aγ2−β ,1

/√
(mn)1−α

}
, we

have V̇2 (t)< 0. Hence, consensus can be reached asymp-
totically.

Next, we will prove that the
(
0T

mn,0
T
mn

)T is a finite-time-
stable equilibrium. Define θ1 = min{β 2 − 2ξ β 2

1−ξ ,γ
2 − β

a −
2ξ γ2

1−ξ ,1−ξ (mn)
1−α

2 }, we have(
1−ξ (mn)

1−α
2

) n
∑

i=1
∥Ei (t)∥α+1

V (t)
1+α

2

≥
θ1

n
∑

i=1
∥Ei (t)∥α+1

µ
1+α

2
1 ∥r̃T r̃+ ṽT ṽ∥

1+α
2

≥
a1+α θ1

n
∑

i=1
∥Ei (t)∥α+1

µ
1+α

2
1 ∥pT p+qT q∥

1+α
2

= θ2, (17)

β 2
(

1−2
ξ

1−ξ

)
pT p+

(
γ2 − β

a
−2

ξ γ2

1−ξ

)
qT q

≥ θ1
(

pT p+qT q
)
≥ θ1a2 (r̃T r̃+ ṽT ṽ

)
≥ θ1a2

µ1
V (t) ,

(18)

where µ1 is the maximum eigenvalue of the matrix(
βγL2 βL

/
2

βL
/

2 γL
/

2

)
.

Before consensus is achieved, we have r̃ (t) ̸= 0nm,
ṽ(t) ̸= 0nm. It follows that ET (t)E (t) > 0. If E (t) =
0nm, t ∈

[
t i
ki
, t i

ki+1

)
, it follows that ˙̃vi (t) = 0m and q̇i (t) =

0m, i = 1,2, · · · ,n. We further get ėiv (t) = 0m and
ėv

i (t) = 0m. Meanwhile, Ėi (t) = β ṗi
(
t i
ki

)
+ γ q̇i

(
t i
ki

)
=

β (qi (t)+ ev
i (t)) + γ (q̇i (t)+ ėv

i (t)) = 0m, then, we have
qi
(
t i
ki

)
= qi (t) + ev

i (t) = 0m. We further get β pi
(
t i
ki

)
=

−γqi
(
t i
ki

)
= 0m. Define εi (t) =

(
β pT

i

(
t i
ki

)
,γqT

i

(
t i
ki

))T , we

have Ei (t) =
(

1 1
)
⊗ Im

(
β pi

(
t i
ki

)
γqi
(
t i
ki

) )=
(

1 1
)
⊗

Imεi (t). Before consensus is achieved, it follows from
Lemma 6 [34] that

ET (t)E (t) =
n

∑
i=1

ET
i (t)Ei (t)

≥ ϑ
n

∑
i=1

(
β 2 pT

i

(
t i
ki

)
pi
(
t i
ki

)
+ γ2qT

i

(
t i
ki

)
qi
(
t i
ki

))
, (19)

where ϑ = min ε(t)
∥ε(t)∥

(
ε(t)
∥ε(t)∥

)T
(

1 1
1 1

)
⊗ Imn

(
ε(t)
∥ε(t)∥

)
>

0, ε (t) =
[
εT

1 (t) ,εT
2 (t) , ,εT

n (t)
]T .

We have proved that the state
(

pT qT
)T can asymp-

totically converge to
(
0T

mn,0
T
mn

)T . Then, we can get∥∥pi
(
t i
ki

)∥∥≥∥pi (t)∥ and
∥∥qi
(
t i
ki

)∥∥≥∥qi (t)∥, for each time
interval

[
t i
ki
, t i

ki+1

)
. It is obvious that

θ2 ≥
θ1

(
a2ϑ µ2

2

n
∑

i=1

(
pT

i pi +qT
i qi
)) 1+α

2

µ
1+α

2
1 ∥pT p+qT q∥

1+α
2

=
θ1
(
a2ϑ µ2

2

) 1+α
2

µ
1+α

2
1

= θ3, (20)

where µ2 = min{β ,γ}.
Hence, we have V̇2 (t) + θ3V2(t)

1+α
2 + θ1a2

µ1
V2 (t) ≤ 0.

Using Lemma 2,
(
0T

mn,0
T
mn

)T is a finite-time stable
equilibrium, and the settling time is given by T2 ≤

2µ1
θ1a2(1−α) ln

[
θ1a2

µ1θ3
V2(0)

1−α
2 +1

]
.

According to Step 1 and Step 2, finite-time consensus

can be reached with the settling time T ≤
√

2V1(0)
C1+C2−ρ1−ρ2

+

2µ1
θ1a2(1−α) ln

[
θ1a2

µ1θ3
V2(0)

1−α
2 +1

]
. Then, we have lim

t→T
r̃ =

0mn, lim
t→T

ṽ= 0mn and r̃ = 0mn, ṽ= 0mn when t ≥ T . It is easy
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to obtain that r1 = r2 = · · ·= rn = r̄, v1 = v2 = · · ·= vn = v̄.
We can conclude that the proposed event-triggered con-
trol algorithm can solve finite-time consensus problem of
second-order multi-agent system with intrinsic nonlinear
dynamics and external bounded disturbances. This is the
end of proof. □

Remark 2: From the triggering function (6), ξ is used
to adjust the allowable error. When the parameter ξ is
large, the update frequency is low. However, increasing
parameter ξ will increase the convergence time. In practi-
cal applications, ξ needs be adjusted according to conver-
gence time and updated frequency.

Remark 3: From the proposed consensus algorithm
(5), β , γ are used to adjust the effect of combinational
position and velocity states between the ith agent and its
neighbors. According to Theorem 1, if β , γ satisfy the
condition aγ2 > β , then multi-agent system (1) is finite-
time stable with the proposed control algorithm. Ob-
viously, the parameter β makes the parameter γ have
a flexible adjustment range. In the case that the pa-
rameter β remains unchanged, increasing γ will reduce
the convergence rate, so γ can be set over the interval(√

β
/

a,
√

β
/

a+1
]
. Increasing the parameter β will re-

sult in a fast convergence rate, but due to the input sat-
uration constraint, the parameter β should not be cho-
sen very large. In simulations and applications, the pa-
rameter β is usually selected in the interval [0.5,4]. In
addition, when the number of agents is large, according

to ξ < 1
/√

(mn)1−α , α needs to take a larger value to

avoid the value of ξ being too small. Meanwhile, de-
creasing α will result in fast convergence rate. But, when
α ∈ (0,0.5), the effect on convergence rate is not obvious.
In simulations and applications, the parameter α is usually
selected in the interval [0.5,0.9].

Generally, it is a challenge to avoid Zeno behavior. The
following Theorem proves that the time interval t i

ki+1 − t i
ki

has a lower bound so that the Zeno triggering does not
exist.

Theorem 2: Consider multi-agent system (1) with the
event-triggered control algorithm (5) and triggering func-
tion (6). Suppose that Assumption 1 holds for all agents.
Then, for any time t > 0, each agent i will exclude Zeno
behavior before consensus is achieved.

Proof: At t = t i
ki

, the controller of agent i updates its
control input, hence the measurement error is set to zero,
i.e.,

∥∥eir
(
t i
ki

)∥∥ = 0 and
∥∥eiv

(
t i
ki

)∥∥ = 0. During the time
interval

[
t i
ki
, t i

ki+1

)
, we have

d
dt

∥βeir (t)+ γeiv (t)∥ ≤
∥∥∥∥ d

dt
(βeir (t)+ γeiv (t))

∥∥∥∥
= ∥βvi (t)+ γ v̇i (t)∥

=
∥∥βvi + γ

(
Φi +di + f − (C1 +C2)sgn

(
Si
(
t i
ki

)))∥∥
≤ ∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2 +C1 +C2) . (21)

Before the system trajectory reaches the sliding manifold,
we have

d
dt

∥βeir (t)+ γeiv (t)∥

≤ ∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2 +C1 +C2) , (22)

∥βeir (t)+ γeiv (t)∥

=
∫ t

t i
ki

d
dt

∥βeir (t)+ γeiv (t)∥ds

≤
∫ t

t i
ki

(∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2 +C1 +C2))ds

= (∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2 +C1 +C2))
(
t − t i

ki

)
.

(23)

When the system trajectory reaches the sliding manifold,
we have

d
dt

∥βeir (t)+ γeiv (t)∥

≤ ∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2) , (24)

∥βeir (t)+ γeiv (t)∥

=
∫ t

t i
ki

d
dt

∥βeir (t)+ γeiv (t)∥ds

≤
∫ t

t i
ki

(∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2))ds

= (∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2))
(
t − t i

ki

)
. (25)

When the event is triggered, we have

∥βeir (t)+ γeiv (t)∥>
ξ
∥L∥

∥∥β pi
(
t i
ki

)
+ γqi

(
t i
ki

)∥∥ .
(26)

Before consensus is achieved, it follows from Theorem 1
that

∥∥β pi
(
t i
ki

)
+ γqi

(
t i
ki

)∥∥ > 0. Before the system trajec-
tory reaches the sliding manifold, we have(

t i
ki+1 − t i

ki

)
>

ξ
∥∥β pi

(
t i
ki

)
+ γqi

(
t i
ki

)∥∥
∥L∥(∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2 +C1 +C2))

> 0.

(27)

When the system trajectory reaches the sliding manifold,
we have(

t i
ki+1 − t i

ki

)
>

ξ
∥∥β pi

(
t i
ki

)
+ γqi

(
t i
ki

)∥∥
∥L∥(∥βvi∥+ γ (∥Φi∥+ρ1 +ρ2))

> 0.

(28)

We can conclude that t i
ki+1 − t i

ki
> 0 before consensus is

achieved. In turns, t i
ki+2 − t i

ki+1 > 0. We can conclude that
Zeno behavior is excluded for agent i. This is the end of
proof. □
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Fig. 2. Single-link robot arm.

To consider communication distance or other
reasons, we introduce switching topologies G =
{Gc |c = 1,2, · · · ,v}, v ∈ N+. σ (t) : [0,+∞)→ k denotes
switching signal. Gσ(t) is the switching topology at time
t. Without loss of generality, if the topology changes, the
topology switches at the triggering time. In the following,
we present Theorem 3 on switching topologies.

Theorem 3: Consider switching topologies G = {Gc |
c = 1,2, · · · ,v} and each topology Gc is connected. With
the event-triggered control algorithm (5) and the trig-
gering function (6), the finite-time consensus problem
can be solved if C1 > ρ1, C2 > ρ2, aγ2 > β and ξ <

min
{

aγ2−β
3aγ2−β ,1

/√
(mn)1−α

}
, irrespective of the nonlin-

ear dynamics and disturbances.
Where a = min

1≤c≤v

{
λ2
(
Lσ(t)

)}
.

Proof: The proof is similar to Theorem 1 and is hence
omitted here. This is the end of proof. □

4. SIMULATION RESULTS

To verify the validity of finite-time event-triggered con-
sensus algorithm, we consider cooperative control prob-
lem of single-link robotic arms [41]. Each single-link
robotic arm consists of a rigid link coupled through a gear
train to a DC motor, as shown in Fig. 2. The multi-agent
system consists of five single-link robotic arms, and each
agent is modeled as the Lagrangian dynamics with exter-
nal disturbance.

Jiq̈i +Biq̇i +Migli sin(qi) = τi +di, (29)

where the states qi and q̇i are angle and angular velocity of
the ith link, Ji is the total rotational inertia of the link and
the motor, Bi is the damping coefficient, Mi denotes the
total mass of the link, g is the gravitational acceleration,
li is the distance from the joint axis to the link center of
mass for ith agent, and di is the external disturbance with
upper bound.

To achieve finite-time consensus, the control input for
each agent is designed as

τi = Jiui. (30)

With the control input (30), the dynamics can be rewritten
as

q̈i = ui + J−1
i di − J−1

i (Biq̇i +Migli sin(qi)) . (31)

1

4

2

3

5

Fig. 3. Topology of the interaction graph.

Let ri = qi and vi = q̇i, the dynamics of single-link robot
arms become (1). The single-link robot arms are linked as
shown in Fig. 3.

Next, the event-triggered controller (5) and trig-
gering function (6) are used to control the single-
link robot arms. For the simulation, the parame-
ters are chosen as J = [6.86,7.57,8.31,9.66,10.81]T ,
B = [5.08,5.08,5.08,5.08,5.08]T , g = 9.8, l =
[1.02,1.15,1.27,1.36,1.45]T , di = 0.5sin(t). The
initial conditions are chosen as q̇i (0) = 0, q(0) =[
5π
/

11,π
/

6,2π
/

7,π
/

12,π
/

3
]T . Based on Theorem

1 and Remark 3, we design the controller ui with α = 0.5,
β = 2.9, γ = 3, C1 = 0.8, C2 = 10, ξ = 0.24. The simula-
tion duration is set to 10s, and the simulation step size is
0.01s.

With the proposed event-triggered control algorithm,
the trajectories of the robotic arms angle and angular ve-
locity are shown in Fig. 4 and Fig. 5, from which one can
see that the angle and angular velocity of the five robot
arms converge rapidly from their respective initial states
to the same angle and angular velocity. As a result, con-
sensus of single-link robotic arms system with disturbance
can be achieved in finite time using the proposed control
algorithm.

The state measurement errors and event triggering in-
stants for all robotic arms are shown in Fig. 6 and Fig. 7,
where each vertical line represents a triggering event. It
indicates that the generation of triggering event is asyn-
chronous and the time interval t i

ki+1−t i
ki

has a lower bound.
According to Fig. 6 and Fig. 7, we can see that the
measurement errors of all robotic arms are 0 at the ini-
tial moment. Taking the first robotic arm as an exam-
ple, its controller continuously measures its own state to
calculate the measurement error ∥L∥∥βe1r (t)+ γe1v (t)∥.
When the measurement error is greater than the thresh-
old ξ

∥∥β p1
(
t1
k1

)
+ γq1

(
t1
k1

)∥∥, its controller generates an
event while the controller updates and broadcasts current
state, then the measurement errors are set to 0. There-
fore, for a robotic arm, communication and controller up-
date are performed when it generates triggering events
and its neighbor agents generate triggering events. Com-
pared with continuous communication, the proposed algo-
rithm avoids continuous communication in controller up-
date and event triggering, saving a lot of communication
resources.

In order to better show the performance of the pro-
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Fig. 4. The trajectories of angle (qi).

0 1 2 3 4 5 6 7 8 9 10

t(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

robot 1

robot 2

robot 3

robot 4

robot 5

Fig. 5. The trajectories of angular velocity (q̇i).
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Fig. 6. The state measurement errors of robots.

posed event-triggered finite-time algorithm (5), the fol-
lowing continuous communication finite-time consensus
algorithm is constructed.

ui (t) = Φi (t)− (C1 +C2)sgn(Si (t)) , (32)

where Φi (t)=−
(

β
n
∑
j=1

ai j (ri − r j)+ γ
n
∑
j=1

ai j (vi − v j)

)
−

0

0.5

1

ro
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o
t 
1
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Fig. 7. Event triggering instants for all robotic arms.
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Fig. 8. The controller update using control algorithm (32).

sig
(

β
n
∑
j=1

ai j (ri − r j)+ γ
n
∑
j=1

ai j (vi − v j)

)α

, Si(t) = vi(t)

−vi(0)−
∫ t

0 Φi (t)dτ , β > 0, γ > 0, α ∈ (0,1), C1 > 0,
C1 > 0. The proof of stability is similar to Theorem 1, and
is omitted here.

The parameters are the same as the event-triggered con-
troller. The controller update of each robotic arm using
control algorithm (32) is given in Fig. 8, and the controller
update using event-triggered control protocol (5) is given
in Fig. 9. Fig. 8 shows that, using control algorithm (32),
each robotic arms controller updates continuously. Fig. 9
shows that the controller only updates when its own trig-
gering condition is satisfied and its neighbors broadcast
states. Compared with the continuous control algorithm,
the proposed event-triggered control algorithm can reduce
the update frequency of the controller.

The simulation results verify that the proposed event-
triggered algorithm solves finite-time consensus prob-
lem with continuous communication free, and the event-
triggered algorithm avoids frequent updates of the con-
troller.
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Fig. 9. The controller update using event-triggered control
protocol (5).

5. CONCLUSION

This paper investigated finite-time consensus problems
of second-order multi-agent systems with intrinsic nonlin-
ear dynamics and external bounded disturbances. We pro-
posed a novel event-triggered algorithm by utilizing inte-
gral sliding mode control strategy. With the constructed
triggering function, the proposed algorithm solved the
finite-time consensus problem with continuous communi-
cation free in controller update and event triggering. By
applying Lyapunov stability theory and finite-time stabil-
ity theory, we proved that the finite-time consensus was
achieved under several conditions. Moreover, we proved
that Zeno behavior was excluded. Finally, the simulation
of single-link robotic arms proved that the proposed event-
triggered algorithm can solve the finite-time consensus
problem and save communication resources greatly.

Recently, as noted in [3, 5, 42], stochastic distur-
bances and time-delay have attracted an increasing in-
terest. Stochastic disturbances and time-delay are fre-
quently encountered in multi-agent systems and often
have significant influences on the system performances.
Based on [3, 5, 42], future work will focus on finite-time
event-triggered consensus of stochastic multi-agent sys-
tems with time-delay.
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