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Mean-square Stability in Lagrange Sense for Stochastic Memristive Neu-
ral Networks with Leakage Delay
Liangchen Li, Rui Xu* O , and Jiazhe Lin

Abstract: In this paper, a class of stochastic memristive neural networks with leakage delay, discrete and distribute
transmission delays is investigated. Based on the theory of Filippov’s solution, by using Lyapunov-Krasovskii
functionals, the free-weighting matrix method and stochastic analysis technique, a sufficient criterion in terms of
linear matrix inequalities (LMIs) is given to ascertain the network to be exponentially Lagrange stable in mean
square sense, which can be easily checked via MATLAB. Meanwhile the estimation of globally attractive set is
given. Finally, numerical simulations are carried out to illustrate the feasibility of theoretical results.
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1. INTRODUCTION

The fourth passive circuit element: memristor was pos-
tulated by Chua in 1971 [1]. In 2008, Hewlett-Packard
Laboratory fabricated the first memristor [2]. It possesses
many properties of resistor and shares the same unit of
measurement. The variable resistance of memristor is
called memristance. The memristance depends on how
much charge has passed through the memristor in a par-
ticular direction. It is a function of electric charge q given
as follows:

M(q) =
dφ
dq

,

where φ denotes the magnetic flux. Its current-voltage
characteristic is shown as a pinched hysteretic line in Fig.
1. This characteristic has been demonstrated by experi-
ments from the scientists at the Hewlett-Packard Labora-
tory (see Fig. 3d in [2]). When the voltage applied to the
memristor is turned off, the memristor remembers its most
recent value of memristance until it is turned on next time
[3]. This feature makes memristor an attractive candidate
for the next generation memory technology, especially as
the synapses in artificial neural networks. Memristive neu-
ral networks can be implemented by replacing the resistors
with memristors in VLSI circuits of conventional neural
networks. This class of neural networks is a new model to
emulate the human brain [4]. It can be applied in a lot of
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Fig. 1. Typical current-voltage characteristics of a mem-
ristor.

engineering problems. In [5], authors demonstrated pat-
tern classification using a single-layer perceptron network
implemented with a memrisitive crossbar circuit. In [6],
the formation of associative memory in a simple neural
network consisting of three electronic neurons connected
by two memristor-emulator synapses was demonstrated
by experiments. In these applications, memristive neu-
ral networks have advantages in computing speed, energy
consumption and integration level. Recently, great atten-
tion has been paid to the applications of memristive neu-
ral networks. In [7], Hu and Wang proposed a simplified
mathematical model to characterize the pinched hysteretic
feature of the memristor. A memristive neural networks
model was given in this paper and its uniformly asymp-
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totic stability was analysed. Soon afterwards many schol-
ars were dedicated to studying dynamical properties of
the memristive neural networks, such as stability, passiv-
ity, dissipativity and so on [8–14]. Among these proper-
ties, stability is one of the most important one. It is the
prerequisite for memristive neural networks to be used in
many applications. Up to now, many researches on sta-
bility of memristive neural networks have been published
[12–16]. Most of the researches are about Lyapunov sta-
bility of monostable neural networks with a unique equi-
librium attracting all trajectories. However, monostable
neural networks have been found computationally restric-
tive in many applications. For example, the neural net-
works are required to have multistable equilibria when de-
signed for associative memory or pattern recognition, so
that they can get different results with diverse inputs (or
initial values). In these applications, the neural networks
are no longer globally stable in Lyapunov sense and it’s
meaningful to analyse their stability in Lagrange sense.
Lagrange stability is concerned with the boundedness as
well as the attractivity of systems. It has been proved that
no equilibrium, chaos attractor or periodic state exists out-
side the global attractive set in a Lagrange stable neural
network [18–20]. Moreover, the global stability in Lya-
punov sense can be regarded as a special case of stability
in Lagrange sense when the attractive set is an equilib-
rium. So far, some researches about Lagrange stability of
memristive neural networks can be found in [15, 16] and
references therein.

As well known, delays are inherent features in many
practical networks, which can be caused by different rea-
sons. Discrete transmission delays are often used to de-
scribe the delays caused by the finite switching speed of
the neuron amplifiers. Distributed transmission delays are
introduced to model the finite signal propagation speed
and the presence of parallel pathways with different axon
sizes or lengths. This two kinds of transmission delays
have been considered in [15,16]. However, in [17], Gopal-
samy proposed another kind of delays called leakage de-
lay. Leakage delays are introduced to describe that the
decay process of neurons is not instantaneous and time
is required to isolate the static state. They always have
a great impact on the dynamical behavior of neural net-
works. Thus, mixed delays should be considered in mod-
elling memristive neural networks.

In real neural systems, the synaptic transmission is a
noisy process brought on by random fluctuations from
the release of neurotransmitters and other probabilistic
causes. Therefore, in [3, 21–30], authors have studied
stochastic perturbations on systems. In [21], authors dis-
cussed almost sure exponential stability for a stochastic
delay neural network. In [22], the exponentially stabil-
ity of stochastic memristor-based recurrent neural net-
works with time-varying delays was investigated. In the
model, only time-varying discrete transmission delays

were considered. Some sufficient conditions in terms of
inequalities were derived. Moreover, in [23], the sta-
bility of stochastic recurrent neural networks with un-
bounded time-varying discrete transmission delays was
investigated. By constructing suitable Lyapunov func-
tions and the semi-martingale convergence theorem, both
pth moment exponential stability and almost sure expo-
nential stability were obtained. M-matrix technique was
used to make the results more applicable in this paper.
In [24], both discrete and distributed transmission delays
were considered in the model. A linear matrix inequal-
ity (LMI) approach was developed to establish sufficient
conditions to ensure the global, robust asymptotic stabil-
ity for the addressed system in the mean square. Some
other results on stability of stochastic neural networks can
be found in [25,26]. Also there are many researches about
passivity, dissipativity and synchronization for stochastic
neural networks, e.g., [27–29].

However, to the best of our knowledge, results on La-
grange stability of stochastic memristive neural networks
have not been reported in the literature. Compared with
traditional neural networks, the dynamical properties of
memristive neural networks are more complex and diffi-
cult to analyse. To obtain more general and applicable re-
sults, mixed delays should be considered in the analysis.
Meanwhile, the delays also complicate the dynamical be-
havior of memristive neural networks, especially the leak-
age delays.

Motivated by the discussions above, in this paper we
analyse the Lagrange stability of stochastic memristive
neural networks with leakage delay and time-varying dis-
crete transmission delay as well as distribute transmission
delay. The employing of memristors makes the neural net-
works state-dependent switching. These state-dependent
switching neural networks are discontinuous on the right-
hand side. To analyse this kind of stochastic differential
equations, we turn to qualitative analysis of a relevant dif-
ferential inclusion under the framework of Filippov’s so-
lution [11, 31]. Then by constructing suitable Lyapunov-
Krasovskii functionals, using the free-weighting matrix
method and stochastic analysis technique, a sufficient cri-
terion in terms of LMIs is given to ascertain the network
to be exponentially Lagrange stable in mean square sense.
The criterion can be easily checked by Matlab LMI Tool-
box. Meanwhile the estimation of globally attractive set is
also given.

The main contribution of this paper is taking both leak-
age delay and stochastic perturbations into consideration
in analysing the Lagrange stability of memristive neural
networks. We not only obtain the criterion to ascertain the
stability but also show the necessity of taking both of these
two factors into consideration in modelling by numerical
examples. At the same time, our results can extend some
previous work.

The rest of the paper is organized as follows: The model
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description, some necessary definitions and lemmas are
presented in Section 2. In Section 3, sufficient criteria
are obtained respectively to ascertain the original network
and two simplified networks to be exponentially Lagrange
stable in mean square sense. And then, three numerical
examples are given in Section 4 to demonstrate the feasi-
bility of the theoretical results. Finally, we summarize this
paper in Section 5.

Notations: R denotes the set of real numbers, Rn de-
notes the n-dimensional Euclidean space. ∥·∥ is the Eu-
clidean norm in Rn. Rn×m is the set of n×m real matri-
ces. The superscripts AT and A−1 stand for matrix trans-
position and matrix inverse of A, respectively. Throughout
this paper, solutions of all the networks considered are in
the Filippov’s sense [31]. Let C([−η ,0],Rn) be the Ba-
nach space of continuous functions ψ : [−η ,0]→Rn with
the norm ∥η∥c = sups∈[−η ,0] ∥ψ(s)∥. For a given constant
S > 0, CS = {ψ ∈C : ∥ψ∥c < S}. λmin(·) is the minimum
eigenvalue of a certain matrix. E{·} stands for the math-
ematical expectation operator with respect to the given
probability measure P. D+V (t) stands for the upper right
Dini derivative of V (t).

2. MODEL DESCRIPTION AND
PRELIMINARIES

Based on the studies about stochastic perturbations on
neural networks [3,21,22,24,26,27] and the models given
in [6,7,32], we consider the following stochastic memris-
tive neural networks model:

dxi(t) =

[
−dixi(t −δ )+

n

∑
j=1

ai j(xi) f j(x j(t))

+
n

∑
j=1

bi j(xi) f j(x j(t − τ(t))) (1)

+
n

∑
j=1

ci j(xi)
∫ t

t−ρ(t)
f j(x j(s))ds+ui(t)

]
dt

+σi (t,xi(t),xi(t − τ(t)),ui(t))dωi(t),

i =1,2, · · · ,n,

where x(t) = (x1(t),x2(t), · · · ,xn(t))
T ∈ Rn is the

state vector of the network at time t; f (x(t)) =
( f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T denotes the neuron
activation at time t. U(t) = (u1(t),u2(t), · · · ,un(t))T ∈
Rn is a continuous external input, satisfying |ui(t)| ≤
u∗i ,(u

∗
i = maxt≥0 |ui(t)|). Denote U = (u∗1,u

∗
2, · · · ,u∗

n)
T .

σ =(σ1,σ2, · · · ,σn)
T stands for the corresponding density

of stochastic effects. ω(t) = (ω1(t),ω2(t), · · · ,ωn(t))
T is

an n-dimensional Brownian motion defined on a com-
plete probability space (Ω,F ,{Ft}t≥0,P) with a filtra-
tion {Ft}t≥0 satisfying the usual conditions. δ denotes
the leakage delay; τ(t) and ρ(t) are the discrete and dis-
tributed transmission delays, respectively. δ , τ(t) and ρ(t)

satisfy δ > 0,0≤ τ(t)≤ τ,0≤ ρ(t)≤ ρ, in which τ,ρ are
positive constants. D = diag(d1,d2, · · · , dn)> 0 describes
the rate that each neuron reset its potential to the resting
state when disconnected from the networks and external
inputs. Denote dmax = max1≤i≤n{di}. A = (ai j(xi(t)))n×n,
B = (bi j(xi(t)))n×n and C = (ci j(xi(t)))n×n are the con-
nection weight matrices. According to the feature of
the memristor and the current-voltage characteristic,
ai j(xi(t)),bi j(xi(t)),ci j(xi(t)) satisfy

ai j(xi(t)) =
{

a∗i j, |xi(t)| ≤ χi,

a∗∗i j , |xi(t)|> χi,

bi j(xi(t)) =
{

b∗i j, |xi(t)| ≤ χi,

b∗∗i j , |xi(t)|> χi,

ci j(xi(t)) =
{

c∗i j, |xi(t)| ≤ χi,

c∗∗i j , |xi(t)|> χi,

in which χi > 0, a∗
i j, a∗∗i j , b∗

i j, b∗∗i j , c∗i j, c∗∗i j , (i, j = 1, 2, · · · ,
n) are constants. Obviously, for each i and j, ai j(xi(t)),
bi j(xi(t)) and ci j(xi(t)) have two possible values. A cer-
tain state of xi will determine the values of 3n parameters,
thus the combination number of the possible form of A,B
and C is 2n. Order these 2n cases in the following way:

(A1,B1,C1) ,(A2,B2,C2) , · · · ,(A2n ,B2n ,C2n) .

Then, at any fixed time t ≥ 0, the form of A,B and C must
be one of the 2n cases. For each case, we define the char-
acteristic function as

Ψi(t) =

{
1, A = Ai, B = Bi, C =Ci,

0, otherwise,
(2)

i = 1,2, · · · ,2n.

We can easily conclude that
2n

∑
i=1

Ψi(t) = 1 and

A =
2n

∑
i=1

Ψi(t)Ai,B =
2n

∑
i=1

Ψi(t)Bi,C =
2n

∑
i=1

Ψi(t)Ci. (3)

Then, network (1) can be rewritten as the following vector
form:

dx(t) =

[
−Dx(t −δ )+(

2n

∑
i=1

Ψi(t)Ai) f (x(t))

+(
2n

∑
i=1

Ψi(t)Bi) f (x(t − τ(t)))

+(
2n

∑
i=1

Ψi(t)Ci)
∫ t

t−ρ(t)
f (x(s))ds+U(t)

]
dt

+σ (t,x(t),x(t − τ(t)),U(t))dω(t),

=
2n

∑
i=1

Ψi(t)
[
−Dx(t −δ )+Ai f (x(t))

+Bi f (x(t − τ(t)))
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+Ci

∫ t

t−ρ(t)
f (x(s))ds+U(t)

]
dt

+σ (t,x(t),x(t − τ(t)),U(t))dω(t). (4)

The initial condition of network (1) is given as

x(t) = ψ(t), t ∈ [−η ,0] ,η = max{δ ,τ,ρ}.

Throughout this paper, we always assume that
Assumption 1: For i = 1,2, · · · ,n, fi(0) = 0 and there

exist constants F−
i ,F+

i such that

F−
i ≤ fi(x1)− fi(x2)

x1 − x2
≤ F+

i ,

for all x1 ̸= x2. Denote

F1 = diag
(
F−

1 F+
1 ,F−

2 F+
2 , · · · ,F−

n F+
n

)
,

F2 = diag
(

F−
1 +F+

1

2
,

F−
2 +F+

2

2
, · · · , F−

n +F+
n

2

)
.

Remark 1: The constants F−
i ,F+

i (i = 1,2, · · · ,n) are
allowed to be positive, negative or zero. Hence, this as-
sumption is weaker than the assumptions in [15, 20].

Assumption 2: There exist positive constant matrices
R1,R2 and R3 of appropriate dimensions such that

tr
(
σ T (t,x,y,u)σ (t,x,y,u)

)
≤ xTR1x+ yTR2y+uT R3u

holds for all (t,x,y,u) ∈ R+×Rn ×Rn ×Rn.
For any initial condition ψ ∈ C([−η ,0],Rn), the solu-

tion of network (1) that starts from the initial condition ψ
will be denoted by x(t,ψ). If there is no need to emphasize
the initial condition, any solution of network (1) will also
simply be denoted by x(t). Let C2,1(Rn ×R+,R+) denote
the family of all nonnegative functions V (x, t) on Rn×R+

which are twice differentiable in x and differentiable in t.
For each such V (x, t), we define an operator L associated
with (1) as

LV (x, t) =Vt(x, t)+Vx(x, t)
[
−Dx(t −δ )+A f (x(t))

+B f (x(t−τ(t)))+C
∫ t

t−ρ(t)
f (x(s))ds+U(t)

]
+

1
2

tr[σ TVxx(x, t)σ ],

where Vt(x, t) = ∂V (x,t)
∂ t ,Vx(x, t) =

(
∂V (x,t)

∂x1
, · · · , ∂V (x,t)

∂xn

)
,

Vxx(x, t) =
(

∂ 2V (x,t)
∂xi∂x j

)
n×n

.

Definition 1: Network (1) is said to be uniformly
bounded in mean square sense, if for any S > 0, there ex-
ists a constant κ = κ(S) > 0 such that E∥x(t,ψ)∥2 < κ
for all ψ ∈CS and t ≥ 0.

Definition 2: If there exist a radially unbounded and
positive definite function V (x(t)), a functional κ ∈ C,

positive constants C−,C+, ℓ,α , such that for any solution
x(t) = x(t,ψ) of network (1), t ≥ 0 implies

C− ∥x(t)∥2 ≤V (x(t), t)≤C+ ∥x(t)∥2 ,

and

EV (x(t), t)− ℓ≤ κ(ψ)exp(−αt),

then network (1) is said to be globally exponentially at-
tractive in the mean square sense, and the compact set
Ω := {x ∈ Rn,V (x, t) < ℓ} is called a globally exponen-
tially attractive set of network (1) in mean square sense.

Definition 3: Network (1) is called exponentially La-
grange stable in mean square sense, if it is both uniformly
bounded in mean square sense and globally exponentially
attractive in mean square sense.

To prove our results, the following lemmas are neces-
sary.

Lemma 1 [33]: Let a,b ∈ Rn and Q be a positive defi-
nite matrix, then 2aT b ≤ aT Q−1a+bT Qb.

Lemma 2 [34]: Let h be a positive constant, and Q ∈
Rn×n be a positive definite constant matrix, then(∫ t

t−h
x(s)ds

)T

Q
∫ t

t−h
x(s)ds ≤ h

∫ t

t−h
xT (s)Qx(s)ds,

for t ≥ 0 and any vector function x(s) ∈ Rn.

Lemma 3 [28]: The LMI Y =

(
y11 y12

yT
12 y22

)
< 0 with

yT
11 = y11,yT

22 = y22 is equivalent the following condition:

y22 < 0, y11 − y12y−1
22 yT

12 < 0.

Lemma 4 [35]: Let V (x(t)) : Rn → R+ be a posi-
tive definite and radially unbounded function, and suppose
there exist two positive constants ϖ ,π such that

D+EV (x(t))≤−ϖEV (x(t))+π, t ≥ t0,

then,

EV (x(t))− π
ϖ

≤
(

EV (x(t0))−
π
ϖ

)
e−ϖ(t−t0).

3. MAIN RESULTS

Theorem 1: Under Assumptions 1 and 2, if there ex-
ist positive definite matrices P1, P2, P3, P4, P5, Q1, Q2,
Q3, Q4, Q5, Q6, Q7, Q8, positive definite diagonal matri-
ces S1, S2, matrices K1, K2, K3, K4 and positive constants
λ1,λ2,λ3,λ4 such that the following LMIs hold:

P1 < λ1I, Q2 < λ2I, Q4 < λ3I, P4 < λ4I, (5)

Πi =

[
Ξi Θ
ΘT ϒ

]
< 0, i = 1,2, · · · ,2n, (6)
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where

Θ =



P1 0 0 0 K3 K3 0 0
0 0 0 0 0 0 K4 K4

0 0 0 K2 0 0 0 0
0 P1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 K1 0 0 0 0 0


,

ϒ = diag
(
−Q5,−Q6,−Q7,−Q8,−

Q1

δ
,−Q2,

− Q3

τ
,−Q4

)
,

Ξi =



Σ11 K4 K3 P1D−P1 P1Ai +F2S1

∗ Σ22 0 0 0
∗ ∗ Σ33 0 K2Ai

∗ ∗ ∗ P1 − e−δ

δ P2 −P1Ai

∗ ∗ ∗ ∗ ρP3 −S1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
P1Bi P1Ci P4

F2S2 0 0
K2Bi K2Ci −K1D−K2

−P1Bi −P1Ci 0
0 0 K1Ai

−S2 0 K1Bi

∗ − e−ρ

ρ P3 K1Ci

∗ ∗ Σ88


,

in which

Σ11 = P1 +P4 +(1+ eδ δ )P5 −P1D−DT PT
1

−K3 −KT
3 −F1S1 +δDT P2D

+
(

λ1 + eδ δλ2 + eτ τλ3 +λ4

)
R1,

Σ22 =−K4 −KT
4 −F1S2

+
(

λ1 + eδ δλ2 + eτ τλ3 +λ4

)
R2,

Σ33 =−P5 −K2D−DT KT
2 ,

Σ88 =−K1 −K1
T + eδ δQ1 + eτ τQ3,

then network (1) is exponentially Lagrange stable in mean
square sense, and

Ω =

{
x(t) ∈ Rn,∥x(t)∥ ≤

√
W

λmin(P1)
eδdmax

}

∩

{
x(t) ∈ Rn,∥x(t)∥ ≤

√
W

λmin(P4)

}
,

is a globally exponentially attractive set of net-
work (1) in mean square sense, in which W =
UT

[
Q5 +Q6 +Q7 +Q8 +

(
λ1 + eδ δλ2 + eτ τλ3 +λ4

)
R3

]
U .

Proof: Let

y(t) =−Dx(t −δ )+A f (x(t))+B f (x(t − τ(t)))

+C
∫ t

t−ρ(t)
f (x(s))ds+U(t),

α(t) = σ (t,x(t),x(t − τ(t)),U(t)) ,

then network (1) can be rewritten as

dx(t) = y(t)dt +α(t)dω(t). (7)

Define the following Lyapunov-Krasovskii functional:

V (x(t), t) =V1(x(t), t)+V2(x(t), t)+V3(x(t), t)

+V4(x(t), t)+V5(x(t), t), (8)

where

V1(x(t), t) =
(

x(t)−D
∫ t

t−δ
x(s)ds

)T

P1

(
x(t)

−D
∫ t

t−δ
x(s)ds

)
,

V2(x(t), t) =
∫ 0

−δ

∫ t

t+θ
es−t

{
x(s)TDTP2Dx(s)

+ eδ x(s)TP5x(s)+ eδ yT (s)Q1y(s)

+ eδ tr
[
αT (s)Q2α(s)

]}
dsdθ ,

V3(x(t), t) =
∫ 0

−ρ

∫ t

t+θ
es−t f T (x(s))P3 f (x(s))dsdθ ,

V4(x(t), t) =
∫ 0

−τ

∫ t

t+θ
es−t{eτ yT (s)Q3y(s)

+ eτ tr
[
αT (s)Q4α(s)

]}
dsdθ ,

V5(x(t), t) = xT (t)P4x(t)+
∫ t

t−δ
xT (s)P5x(s)ds.

Applying the Itô differential formula to Vi(x(t), t) yields

LV1(x(t), t) = 2
(

x(t)−D
∫ t

t−δ
x(s)ds

)T

P1

[
−Dx(t)

+A f (x(t))+B f (x(t − τ(t)))

+C
∫ t

t−ρ(t)
f (x(s))ds+U(t)

]
+ tr

[
αT(t)P1α(t)

]
,

LV2(x(t), t) =−V2((x(t), t)+δxT (t)DT P2Dx(t)

+ eδ δx(t)TP5x(t)

+ eδ δyT (t)Q1y(t)+ eδ δ tr
[
αT (t)Q2α(t)

]
−

∫ t

t−δ
es−txT (s)DT P2Dx(s)ds

−
∫ t

t−δ
es−t+δ xT (s)P5x(s)ds
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−
∫ t

t−δ
es−t+δ yT (s)Q1y(s)ds

−
∫ t

t−δ
es−t+δ tr

[
αT (s)Q2α(s)

]
ds,

LV3(x(t), t) =−V3(x(t), t)+ρ f T (x(t))P3 f (x(t))

−
∫ t

t−ρ
es−t f T (x(s))P3 f (x(s))ds,

LV4(x(t), t) =−V4(t)+ eτ τyT (t)Q3y(t)

+ eτ τtr
[
αT (t)Q4α(t)

]
−

∫ t

t−τ
es−t+τ yT (s)Q3y(s)ds,

−
∫ t

t−τ
es−t+τ tr

[
αT (s)Q4α(s)

]
ds,

LV5(x(t), t) = tr(αT(t)P4α(t))+2xT (t)P4y(t)

+ xT (t)P5x(t)− xT (t −δ )P5x(t −δ ).
(9)

From Assumption 2 and inequalities in (5), we have

tr
[
αT(t)P1α (t)

]
≤ λ1

[
xT(t)R1x(t)+ xT(t − τ(t))R2x(t − τ(t))

+UT (t)R3U(t)
]
,

tr
[
αT (s)Q2α(s)

]
≤ λ2

[
xT(t)R1x(t)+ xT(t − τ(t))R2x(t − τ(t))

+UT (t)R3U(t)
]
,

tr
[
αT (s)Q4α(s)

]
≤ λ3

[
xT(t)R1x(t)+ xT(t − τ(t))R2x(t − τ(t))

+UT (t)R3U(t)
]
,

tr
[
αT (t)P4α (t)

]
≤ λ4

[
xT(t)R1x(t)+ xT(t − τ(t))R2x(t − τ(t))

+UT (t)R3U(t)
]
. (10)

From the definition of y(t), we have

0 =
(
2yT (t)K1 +2xT (t −δ )K2

)[
− y(t)

−Dx(t −δ )+A f (x(t))+B f (x(t − τ(t)))

+C
∫ t

t−ρ(t)
f (x(s))ds+U(t)

]
. (11)

Integrating both sides of (7) from t −δ to t, we obtain

x(t)− x(t −δ )−
∫ t

t−δ
y(s)ds−

∫ t

t−δ
α(s)dω(s) = 0.

By Lemmas 1 and 2, we get

0 =−2xT (t)K3

(
x(t)− x(t −δ )−

∫ t

t−δ
y(s)ds

−
∫ t

t−δ
α(s)dω(s)

)

≤xT (t)
(
−2K3 +δK3Q−1

1 KT
3 +K3Q−1

2 KT
3

)
x(t)

+2xT (t)K3x(t −δ )+
∫ t

t−δ
yT (s)Q1y(s)ds

+

(∫ t

t−δ
α(s)dω(s)

)T

Q2

(∫ t

t−δ
α(s)dω(s)

)
.

(12)

Integrating both sides of (7) from t − τ(t) to t, we have

x(t)− x(t − τ(t))−
∫ t

t−τ(t)
y(s)ds−

∫ t

t−τ(t)
α(s)dω(s)

= 0.

By Lemmas 1 and 2 and noting that 0 ≤ τ(t)≤ τ , we get

0 =2xT (t − τ(t))K4

(
x(t)− x(t − τ(t))

−
∫ t

t−τ(t)
y(s)ds−

∫ t

t−τ(t)
α(s)dω(s)

)
≤xT (t − τ(t))

(
−2K4 + τK4Q−1

3 KT
4

+K4Q−1
4 KT

4

)
x(t − τ(t))+

∫ t

t−τ
yT (s)Q3y(s)ds

+

(∫ t

t−τ
α(s)dω(s)

)T

Q4

(∫ t

t−τ
α(s)dω(s)

)
+2xT (t − τ(t))K4x(t). (13)

Obviously,

−
∫ t

t−δ
es−t+δ xT (s)P5x(s)ds ≤−

∫ t

t−δ
xT (s)P5x(s)ds,

−
∫ t

t−δ
es−t+δ yT (s)Q1y(s)ds ≤−

∫ t

t−δ
yT (s)Q1y(s)ds,

−
∫ t

t−τ
es−t+τ yT (s)Q3y(s)ds ≤−

∫ t

t−τ
yT (s)Q3y(s)ds.

(14)

By using Lemma 2 and noting that 0 ≤ ρ(t)≤ ρ , we have

−
∫ t

t−ρ
es−t f T (x(s))P3 f (x(s))ds

≤−e−ρ

ρ

∫ t

t−ρ(t)
f T (x(s))dsP3

∫ t

t−ρ(t)
f (x(s))ds,

−
∫ t

t−δ
es−txT (s)DT P2Dx(s)ds

≤−e−δ

δ

∫ t

t−δ
xT (s)dsDT P2D

∫ t

t−δ
x(s)ds. (15)

By Lemma 1 we have

2xT(t)P1U(t)−2
∫ t

t−δ
xT(s)dsDTP1U(t)

+
(
2yT (t)K1 +2xT (t −δ )K2

)
U(t)

≤−ξ T (t)Θ̃ϒ̃−1Θ̃T ξ (t)
+UT (t)(Q5 +Q6 +Q7 +Q8)U(t), (16)
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where

ξ (t) =
[

xT (t),xT (t − τ(t)),xT (t −δ ),
∫ t

t−δ
xT (s)dsDT ,

f T (x(t)), f T (x(t − τ(t))),∫ t

t−ρ(t)
f T (x(s))ds,yT (t)

]T

,

ϒ̃ = diag(−Q5,−Q6,−Q7,−Q8) ,

Θ̃ =



P1 0 0 0
0 0 0 0
0 0 0 K2

0 P1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 K1 0


.

For positive diagonal matrices S1,S2, it follows from As-
sumption 1 and the proof of Theorem 1 in [36] that

0 ≤
[

x(t)
f (x(t))

]T [ −F1S1 F2S1

F2S1 −S1

][
x(t)

f (x(t))

]
,

0 ≤
[

x(t − τ(t))
f (x(t − τ(t)))

]T [ −F1S2 F2S2

F2S2 −S2

]
×
[

x(t − τ(t))
f (x(t − τ(t)))

]
. (17)

From the proof of Theorem 1 in [37], we can get that

E

{(∫ t

t−τ
α(s)dω(s)

)T

Q2

(∫ t

t−τ
α(s)dω(s)

)}

= E
{∫ t

t−δ
tr
[
αT (s)Q2α(s)

]
ds
}
,

E

{(∫ t

t−τ
α(s)dω(s)

)T

Q4

(∫ t

t−τ
α(s)dω(s)

)}

= E
{∫ t

t−τ
tr
[
αT (s)Q4α(s)

]
ds
}
. (18)

From the definition of Dini-derivative and the gener-
alized Itô formula (see [38]), we have D+EV (x(t), t) =
ELV (x(t), t), then it follows from (8) to (18) that

D+EV (x(t), t)

≤−EV (x(t), t)+ξ T (t)Ξξ (t)−ξ T (t)Θϒ−1ΘT ξ (t)
+UT (t)(Q5 +Q6 +Q7 +Q8)U(t)

+
(

λ1 + eδ δλ2 + eτ τλ3 +λ4

)
UT (t)R3U(t), (19)

in which

Ξ =



Σ11 K4 K3 P1D−P1 P1A+F2S1

∗ Σ22 0 0 0
∗ ∗ Σ33 0 K2A
∗ ∗ ∗ P1 − e−δ

δ P2 −P1A
∗ ∗ ∗ ∗ ρP3 −S1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

P1B P1C P4

F2S2 0 0
K2B K2C −K1D−K2

−P1B −P1C 0
0 0 K1A

−S2 0 K1B
∗ − e−ρ

ρ P3 K1C
∗ ∗ Σ88


.

We can derive from (3) and (6) that

2n

∑
i=1

Ψi(t)Πi < 0.

According to Lemma 3, we have

Ξ−Θϒ−1ΘT < 0. (20)

Substituting (20) into (19) yields

D+EV (x(t), t)≤−EV (x(t), t)+W.

Then, by Lemma 4, we know that

EV (x(t), t)−W ≤ (EV (x(0),0)−W )e−t ,

which implies network (1) is globally exponentially attrac-
tive in the mean square sense. Also, we can get from

λmin(P4)E∥x(t)∥2 ≤ EV (x(t), t)≤ EV (x(0),0)+W,

that

E∥x(t)∥2 ≤ EV (x(0),0)+W
λmin(P4)

,

thus network (1) is uniformly bounded in mean square
sense. Then (1) is exponentially Lagrange stable in mean
square sense.
Solving the inequality

λmin(P1)

∥∥∥∥x(t)−D
∫ t

t−δ
x(s)ds

∥∥∥∥2

≤V1(x(t), t)≤W

with Gronwall inequality, we obtain

∥x(t)∥ ≤

√
W

λmin(P1)
eδdmax .
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Solving the inequality

λmin(P4)∥x(t)∥2 ≤V5(x(t), t)≤W,

we have

∥x(t)∥ ≤

√
W

λmin(P4)
.

So that

Ω =

{
x(t) ∈ Rn,∥x(t)∥ ≤

√
W

λmin(P1)
eδdmax

}

∩

{
x(t) ∈ Rn,∥x(t)∥ ≤

√
W

λmin(P4)

}
is a globally exponentially attractive set of network (1) in
mean square sense. This completes the proof.

Remark 2: There are some researches about switched
stochastic systems in [39–41]. Switches of the systems
in these papers are time-dependent, while the switches
in memristive neural networks are state-dependent. The
ways to deal with the switches are different. However,
in this paper, we essentially analysed the stability of each
subsystem. So when analysing the subsystems of switched
stochastic systems, our method can be used for reference.

Remark 3: The perturbations we considered in this
paper are Gaussian noises. There are some other kinds
of noises in practical applications, such as non-Gaussian
Lévy noise and Poisson white noise. Some researches
about non-Gaussian noises in systems can be found in
[42–45]. However, the stability of neural networks with
non-Gaussian noises is still an open problem and needs
further study.

Remark 4: Obviously, Theorem 1 also works for tra-
ditional neural networks with perturbations and mixed de-
lays. Moreover, the model in this paper is more general
than the models in [16, 21, 22, 27, 28], so our result can
extend these work.

If there is no leakage delay, network (1) reduces to the
following neural network

dx(t) =
[
−Dx(t)+A f (x(t))+B f (x(t − τ(t)))

+C
∫ t

t−ρ(t)
f (x(s))ds+U(t)

]
dt

+α (t)dω(t). (21)

When there is no stochastic effects, network (1) turns to

dx(t)
dt

=−Dx(t −δ )+A f (x(t))

+B f (x(t − τ(t)))+C
∫ t

t−ρ(t)
f (x(s))ds

+U(t). (22)

From the proof of Theorem 1, we can obtain the following
corollaries for network (21) and (22).

Corollary 1: For network (21), under assumptions
(A1) and (A2), if there exist positive definite matrices
P1,P2,Q1,Q2,Q3,Q4, positive definite diagonal matrices
S1,S2, matrices K1,K2 and positive constants λ1,λ2 such
that the following LMIs hold:

P1 < λ1I,Q2 < λ2I,

Πi =

[
Ξi Θ
ΘT ϒ

]
< 0, i = 1,2, · · · ,2n, (23)

where

Θ =


P1 0 0 0
0 0 K2 K2

0 0 0 0
0 0 0 0
0 0 0 0
0 K1 0 0

 ,

ϒ = diag
(
−Q3,−Q4,−

Q1

τ
,−Q2

)
,

Ξi =



Σ11 K2 P1Ai +F2S1 P1Bi P1Ci −K1D
∗ Σ22 0 F2S2 0 0
∗ ∗ ρP2 −S1 0 0 K1Ai

∗ ∗ ∗ −S2 0 K1Bi

∗ ∗ ∗ ∗ − e−ρ

ρ P2 K1Ci

∗ ∗ ∗ ∗ ∗ Σ66

 ,

in which

Σ11 = P1 −P1D−DT PT
1 −F1S1 +(λ1 + eτ τλ2)R1,

Σ22 =−K2 −KT
2 −F1S2 +(λ1 + eτ τλ2)R2,

Σ66 =−K1 −K1
T + eτ τQ1.

then network (21) is exponentially Lagrange stable in
mean square sense, and

Ω =

{
x(t) ∈ Rn,∥x(t)∥ ≤

√
W

λmin(P1)

}

is a globally exponentially attractive set of net-
work (1) in mean square sense, in which W =
UT [Q3 +Q4 +(λ1 + eτ τλ2)R3]U .

Corollary 2: For network (22), under Assump-
tion 1, if there exist positive definite matrices
P1,P2,P3,P4,P5,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8, positive
definite diagonal matrices S1,S2, matrices K1,K2,K3,K4

such that the following LMIs hold:

Πi =

[
Ξi Θ
ΘT ϒ

]
< 0, i = 1,2, · · · ,2n (24)
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where

Θ =



P1 0 0 0 K3 K3 0 0
0 0 0 0 0 0 K4 K4

0 0 0 K2 0 0 0 0
0 P1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 K1 0 0 0 0 0


,

ϒ = diag
(
−Q5,−Q6,−Q7,−Q8,−

Q1

δ
,−Q2,

− Q3

τ
,−Q4

)
,

Ξi =



Σ11 K4 K3 P1D−P1 P1Ai +F2S1

∗ Σ22 0 0 0
∗ ∗ Σ33 0 K2Ai

∗ ∗ ∗ P1 − e−δ

δ P2 −P1Ai

∗ ∗ ∗ ∗ ρP3 −S1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
P1Bi P1Ci P4

F2S2 0 0
K2Bi K2Ci −K1D−K2

−P1Bi −P1Ci 0
0 0 K1Ai

−S2 0 K1Bi

∗ − e−ρ

ρ P3 K1Ci

∗ ∗ Σ88


,

in which

Σ11 = P1 +P4 +(1+ eδ δ )P5 −P1D−DT PT
1 −K3

−KT
3 −F1S1 +δDT P2D,

Σ22 =−K4 −KT
4 −F1S2,

Σ33 =−P5 −K2D−DT KT
2 ,

Σ88 =−K1 −K1
T + eδ δQ1 + eτ τQ3.

Then network (22) is exponentially Lagrange stable in
mean square sense, and

Ω =

{
x(t) ∈ Rn,∥x(t)∥ ≤

√
W

λmin(P1)
eδdmax

}

∩

{
x(t) ∈ Rn,∥x(t)∥ ≤

√
W

λmin(P4)

}
,

is a globally exponentially attractive set of net-
work (22) in mean square sense, in which W =
UT (Q5 +Q6 +Q7 +Q8)U .

4. NUMERICAL SIMULATIONS

In this section, three examples are provided to demon-
strate the feasibility of the theoretical results.

Example 1 is provided to demonstrate the feasibility of
Theorem 1. By simulating the state trajectories of the neu-
ral network with and without inputs, we show that the con-
ditions can ensure the Lagrange stability of network (1).
Then, we adjust the value of leakage delay to show its
effect on destabilizing the system. Moreover, by compar-
ing the state trajectories of the network in Example 1 with
and without stochastic perturbations, we demonstrate the
effect of stochastic perturbations on destabilizing the sys-
tem. The comparisons also indicate the necessity of taking
both leakage delay and stochastic perturbations into con-
sideration in analysing the Lagrange stability of memris-
tive neural.

Examples 2 and 3 are provided to demonstrate the fea-
sibility of the Corollary 1 and 2 respectively. Example 3
also show that our results can also be applied to traditional
neural networks.

To simulate the stochastic differential equations, in Ex-
amples 1 and 2, we used the algorithm approved in [46].

Example 1: Consider two-dimensional stochastic
memristive neural network (1) with following parame-
ters:

d1 = 1.8, d2 = 1.7,

a11(x1) =

{
−0.5, |x1| ≤ 1,

0.2, |x1|> 1,
a12(x1) =

{
0.4, |x1| ≤ 1,

0.2, |x1|> 1,

a21(x2)=

{
0.3, |x2|≤1,

−0.7, |x2|>1,
a22(x2)=

{
−0.5, |x2|≤1,

−0.4, |x2|>1,

b11(x1) =

{
0.2, |x1| ≤ 1,

0.3, |x1|> 1,
b12(x1) =

{
0.3, |x1| ≤ 1,

0.2, |x1|> 1,

b21(x2)=

{
−0.2, |x2|≤1,

0.3, |x2|>1,
b22(x2)=

{
0.2, |x2|≤1,

−0.4, |x2|>1,

c11(x1) =

{
0.4, |x1| ≤ 1,

0.5, |x1|> 1,
c12(x1) =

{
0.8, |x1| ≤ 1,

0.2, |x1|> 1,

c21(x2)=

{
−0.4, |x2|≤1,

0.8, |x2|>1,
c22(x2)=

{
−0.9, |x2|≤1,

0.3, |x2|>1.

Select the activation functions and density functions as
fi(x) = tanhx,σi(t,xi(t),xi(t − τ(t)),ui(t)) = 0.1xi(t) +
0.1xi(t − τ(t))+ 0.1ui(t), i = 1,2, correspondingly, F1 =
0,F2 = diag(0.5,0.5),R1 = R2 = R3 = 0.01. The delays
and external input are chosen as δ = 0.05,τ(t) = 0.15+
0.15sin(t),ρ(t) = 0.5 |cos(t)| ,u1(t) = sin(t),u2(t) =
cos(t), so that τ = 0.3,ρ = 0.5,U = (1,1)T . Solving the
LMIs (5)-(6) in Theorem 1 by LMI tools in MATLAB, we
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Fig. 2. The state trajectories of Example 1 with external
inputs U(t) = (sin(t),cos(t))T .

can get a feasible solution:

P1 =

[
191.43 15.15
15.15 160.49

]
,P2 =

[
68.62 8.95
8.95 53.89

]
,

P3 =

[
214.51 52.57
52.57 224.97

]
,P4 =

[
4.96 −3.34
−3.33 8.53

]
,

P5 =

[
105.49 1.20
1.20 97.78

]
,Q1 =

[
35.05 3.11
3.11 30.22

]
,

Q2 =

[
762.64 97.41
97.41 616.17

]
,Q3 =

[
48.00 3.62
3.62 37.96

]
,

Q4 =

[
617.83 57.25
57.25 512.51

]
,Q5=103×

[
2.06 0.45
0.45 1.15

]
,

Q6 =

[
532.73 23.20
23.20 483.54

]
,Q7 =

[
582.05 56.07
56.07 500.45

]
,

Q8 =

[
434.45 −1.20
−1.20 430.26

]
,S1 =

[
366.26 0

0 310.31

]
,

S2 =

[
95.42 0

0 106.00

]
,K1 =

[
20.70 1.64
1.64 18.20

]
,

K2 =

[
−5.34 1.05
1.05 0

]
,K3 =

[
63.71 5.33
5.33 62.74

]
,

K4 =

[
52.78 0

0 50.63

]
,

λ1 = 224.08, λ2 = 1.01×103, λ3 = 695.40,

λ4 = 45.50.

By Theorem 1, we know that the network in Example 1 is
exponentially Lagrange stable in mean square sense, and
Ω =

{
x ∈ R2,∥x∥ ≤ 7.49

}
is a globally exponentially at-

tractive set. We set the initial values of the network as
x(t) = (x0

1,x0
2)T ,−η ≤ t ≤ 0. The simulation results with

20 random (x0
1,x0

2)T are as Fig. 2.
Based on the parameters in Example 1, when there are

no external inputs, the equilibrium (0,0) is a globally ex-
ponentially attractive set by Theorem 1. Also we can say

Fig. 3. The state trajectories of the network in Example 1
without external inputs.

Fig. 4. The state trajectories of the network in Example 1
without external inputs when δ = 0.05, 0.25, 0.45,
0.65, 0.85, respectively.

that the equilibrium (0,0) is globally exponentially stable
in mean square sense. Simulation results of the network
in Example 1 without external inputs are as Fig. 3.

When we increase the value of δ from 0.05 to 0.85, the
network becomes unstable, so the leakage delays do show
a tendency to destabilize the system. Set x0 = (1.4,1.4)T

and δ = 0.05,0.25,0.45,0.65,0.85, respectively. The sim-
ulation results of the network in Example 1 are shown in
Fig. 4.

Moreover, we find that the stochastic perturbations can
amplify the destabilizing effects of the leakage delays. Set
x0 = (0.6,0.6)T ,U(t) = (0,0)T and δ = 0.82, the simu-
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Fig. 5. The state trajectories of the network in Example 1
without external inputs when δ = 0.82.

Fig. 6. The state trajectories of the network in Example 1
without external inputs when δ = 0.82 and there
are no stochastic perturbations.

lation results of the network in Example 1 are shown in
Fig. 5. When there are no stochastic perturbations the sim-
ulation results of the network in Example 1 are shown in
Fig. 6. We can see from the results that the state trajecto-
ries tend to 0 when there are no stochastic perturbations.
When the stochastic perturbations exist, the network be-
comes unstable.

Example 2: Consider two-dimensional stochastic
memristive neural network (21) with following param-
eters:

d1 = 2.2,d2 = 2.5,

a11(x1) =

{
0.9, |x1| ≤ 1,

1, |x1|> 1,
a12(x1) =

{
0.8, |x1| ≤ 1,

0.5, |x1|> 1,

a21(x2) =

{
0.3, |x2| ≤ 1,

−0.3, |x2|> 1,
a22(x2) =

{
0.4, |x2| ≤ 1,

0.6, |x2|> 1,

b11(x1)=

{
0.2, |x1|≤1,

−0.2, |x1|>1,
b12(x1)=

{
0.1, |x1|≤1,

−0.1, |x1|>1,

b21(x2) =

{
0.4, |x2| ≤ 1,

0.2, |x2|> 1,
b22(x2) =

{
0.7, |x2| ≤ 1,

0.8, |x2|> 1,

c11(x1)=

{
−1, |x1|≤1,

−0.8, |x1|>1,
c12(x1)=

{
0.7, |x1|≤1,

−0.7, |x1|>1,

c21(x2)=

{
−0.4, |x2|≤1,

0.4, |x2|>1,
c22(x2)=

{
−0.6, |x2|≤1,

0.6, |x2|>1.

Select the activation functions and density functions
as fi(x) = tanhx − x,σi(t,xi(t),xi(t − τ(t)),ui(t)) =
0.1xi(t) + 0.1xi(t − τ(t)) + 0.1ui(t), i = 1,2, correspond-
ingly, F1 = 0,F2 = diag(−0.5,−0.5),R1 = R2 = R3 =
0.01. The delays and external input are chosen as
τ(t) = et

5et+5 ,ρ(t) = et

et+1 ,u1(t) = u2(t) = 0, so that
τ = 0.2,ρ = 1,U = (0,0)T . Solving the LMIs (23) in
Corollary 1 by LMI tools in MATLAB, we can get a
feasible solution:

P1 =

[
53.92 4.85
4.85 101.90

]
,P2 =

[
114.55 27.48
27.48 197.12

]
,

Q1 =

[
11.58 2.48
2.48 18.71

]
,Q2 =

[
172.27 1.82

1.82 177.83

]
,

Q3 =

[
298.31 −72.01
−72.01 324.73

]
,Q4 =

[
143.60 2.30
2.30 146.39

]
,

S1 =

[
174.29 0

0 354.04

]
,S2 =

[
33.02 0

0 118.29

]
,

K1 =

[
4.06 1.38
1.38 7.02

]
,K2 =

[
18.44 9.30
9.30 39.61

]
,

λ1 = 138.00, λ2 = 271.38.

By Corollary 1, the original point is globally exponen-
tially stable in mean square sense. Simulation results of
the network in Example 2 with 20 random initial values
are shown in Fig. 7.

Fig. 7. The state trajectories of the network in Example 2
with 20 random initial values .
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Example 3: Consider two-dimensional neural network
(22) with following parameters:

d1 = 1.9, d2 = 2.2,

a11 =−0.7, a12 =−0.1, a21 = 0.2, a22 =−0.9,

b11 = 0.7, b12 = 0.9, b21 =−0.2, b22 =−0.5,

c11 = 0.4, c12 = 0.6, c21 =−0.9, c22 =−1.

Select the activation functions and density func-
tions as fi(x) = tanhx, correspondingly, F1 = 0,F2 =
diag(0.5,0.5). The delays and external input are chosen
as δ = 0.1,τ(t) = 0.2,ρ(t) = 0.4,u1(t) = sin(2t),u2(t) =
0.5cos(t), so that τ = 0.3,ρ = 0.5,U = (1,0.5)T . Solving
the LMIs in Corollary 2 by LMI tools in MATLAB, we
can get a feasible solution:

P1 =

[
1.04 0.48
0.48 2.31

]
,P2 =

[
0.53 0.26
0.26 1.40

]
,

P3 =

[
1.96 0.96
0.96 3.36

]
,P4 =

[
0.11 0.06
0.06 0.42

]
,

P5 =

[
0.87 0.66
0.66 2.80

]
,Q1 =

[
0.33 0.06
0.06 0.47

]
,

Q2 =

[
4.87 0.03
0.03 3.72

]
,Q3 =

[
0.41 0.20
0.20 0.75

]
,

Q4 =

[
6.09 0.81
0.81 5.08

]
,Q5 =

[
7.16 0.12
0.12 5.37

]
,

Q6 =

[
3.56 0.17
0.17 3.92

]
,Q7 =

[
3.82 0.36
0.36 3.82

]
,

Q8 =

[
3.20 0.01
0.01 3.20

]
,S1 =

[
1.84 0

0 4.44

]
,

S2 =

[
1.06 0

0 3.51

]
,K1 =

[
0.17 0.12
0.12 0.34

]
,

K2 =

[
0.02 0.02
0.02 −0.07

]
,K3 =

[
0.54 0.22
0.22 0.94

]
,

K4 =

[
0.57 0.32
0.32 1.17

]
.

By Corollary 2, we know that the network in Example 3 is
exponentially Lagrange stable in mean square sense, and
Ω =

{
x ∈ R2,∥x∥ ≤ 6.30

}
is a globally exponentially at-

tractive set. Simulation results of the network in Example
3 with 20 random initial values are shown in Fig. 8.

5. SUMMARY

In this paper, the Lagrange stability of stochastic mem-
ristive neural networks with leakage delay and mixed
transmission delays was investigated. We turned to qual-
itative analysis of a relevant differential inclusion under
the framework of Filippov’s solution to solve the dis-
continuity caused by using memristors in the neural net-
works. Then, by using Lyapunov-Krasovskii functionals,

Fig. 8. The state trajectories of the network in Example 3
with 20 random initial values.

the free-weighting matrix method and stochastic analysis
technique, sufficient criteria in terms of linear matrix in-
equalities (LMIs) were given to ascertain the original net-
work, the network without leakage delay and the network
without stochastic perturbations to be exponentially La-
grange stable in mean square sense, respectively.

The main contribution of this paper is taking both leak-
age delay and stochastic perturbations into consideration
in analysing the Lagrange stability of memristive neural
networks. Usually, both of these two factors have quite
negative influence to the stability of neural networks and
generally exist in practical networks. The given criterion
for checking the mean-square stability in Lagrange sense
of network (1) is dependent on leakage delay and trans-
mission delays, which implicates that the information on
the sizes of these delays is sufficiently utilized. Mean-
while, the estimation of globally attractive set is associ-
ated with the density functions of stochastic perturbations.
This indicates that stochastic perturbations may enlarge
the range of globally attractive set, which is reasonable.
Also, the assumptions in our paper are quite weak. In as-
sumption (A1), the constants F−

i ,F+
i (i = 1,2, · · · ,n) are

allowed to be positive, negative or zero. Hence, this as-
sumption is weaker than the assumptions in [15, 20]. And
the assumptions on time-varying discrete delay and dis-
tribute delay are only bounded.

The numerical simulations in Section 4 illustrated that
our theoretical results are feasible. Moreover, the simu-
lation results in Fig. 4 showed the tendency of leakage
delay to destabilize the network. Furthermore, comparing
the results in Figs. 5 and 6, we see that when the leak-
age delay was 0.82, the state trajectories of the network
in Example 1 tended to stable if there were no stochastic
perturbations. But when there were stochastic perturba-
tions in the network, the network became unstable. The
stochastic perturbations amplified the destabilizing effect
of the leakage delay, which indicates it’s necessary to take
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both of these two factors into consideration in modelling.
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