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Fractional-disturbance-observer-based Sliding Mode Control for Frac-
tional Order System with Matched and Mismatched Disturbances
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Abstract: This paper addresses the sliding mode control for a class of fractional order systems with matched and
mismatched disturbances. Firstly, fractional disturbance observer is presented to estimate both the matched and
mismatched disturbances, and the boundedness of the estimation error can be guaranteed. Secondly, sliding mode
surface is constructed based on the output of the observer. The bounded stability of the closed-loop system under
the designed controller is revealed by theoretical analysis. Finally, simulation results show that the proposed control
strategy can effectively suppress the effect of the matched and mismatched disturbances on the system.
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1. INTRODUCTION

In the past decades, fractional order system, which can
depict the properties of various real world process more
suitable compared with integer order system, has become
an important research issue and aroused considerable at-
tention of scholars. For example, fractional order model
can accurately describe the dynamic process of magnetic
levitation system [1], lithium ion batteries [2], single-link
lightweight flexible manipulator [3] and so on. Various re-
searches have shown the interests in stability analysis and
control synthesis for fractional order system [1, 3–6]. In
fact, practical systems are unavoidably affected by uncer-
tainties and disturbances. These disturbances will degrade
the performance of the system, and even destabilizing the
system. For a class of systems, the uncertainties and dis-
turbances satisfy the matched condition, that is, the un-
certainties and disturbances affect the system via the same
passage with the control input. For instance, the dynamic
output feedback control problem is discussed in [7] for
systems with time delays and matched disturbances. In
[8], disturbance attenuation is considered for stochastic
Markovian jump system. But for another class of systems,
such as magnetic leviation (MAGLEV) suspension sys-
tem [1], continuous casting mold oscillatory system [10],
and communication network model [9], the uncertainties
and disturbances dissatisfy the matched condition, which
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are called mismatched disturbances. How to control frac-
tional order system with matched and mismatched distur-
bances has become a challenging and open problem to be
addressed.

Sliding mode control (SMC) has gained increasing at-
tention recently due to its simple structure, strong robust-
ness and has been widely adopted to control numerous
fractional order systems, such as uncertain economic sys-
tem [11] and chaotic system [12, 13]. However, the tra-
ditional sliding mode control can only ensure invariance
to matched disturbance, but can not effectively suppress
the mismatched disturbance, so the well-known property
of invariance does not hold any longer when there ex-
ist mismatched disturbance in the system. Recently, sev-
eral control strategies combination with sliding mode con-
trol were proposed for fractional order system with mis-
matched disturbance. Based on linear matrix inequality
(LMI) technology, integral sliding mode control method
was proposed for a class of fractional order systems in
[14–16]. In [14–16], in order to attenuate the disturbance,
the upper bound of disturbance must be known in ad-
vance, and higher controller gains were used, which could
lead to chattering phenomenon. For the purpose of eas-
ing the chattering problem, [17,18] designed adaptive law
to adjust the disturbance. However, the mismatched dis-
turbance considered in [14–18] must have bounded H2

norms, which is an unreasonable assumption, for exam-
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ple, the mismatched disturbance in MAGLEV suspension
system do not satisfy this assumption [1].

In addition to those methods, as an alternative way, dis-
turbance observer can commendably estimate the distur-
bance and attenuate their effects on system. Recently,
the studies of disturbance observer combination with slid-
ing mode control for fractional order system have re-
ceived much consideration. In [19], sliding mode ob-
server was designed to evaluate the disturbance in non-
linear fractional order system. Nonlinear fractional distur-
bance observer was explored to handle disturbance, and
then adaptive sliding mode control law was proposed for
chaotic system in [20]. Fractional disturbance observer-
based integral-type sliding mode control for fractional or-
der system was presented in [21]. However, these methods
given in [19–21] are not available for system with mis-
matched disturbance. For integer order system with mis-
matched disturbance, a novel disturbance observer-based
sliding mode control method was developed in [22]. And
the control strategy of [22] has been expanded to control
fractional order system with mismatched disturbance by
using Lyapunov stability theory in [1]. However, the mis-
matched disturbance in [1] was supposed to be constant
in the stationary state and an integer order disturbance ob-
server was proposed to evaluate the disturbance in frac-
tional order system, especially. It would be better to de-
sign fractional disturbance observer to compensate frac-
tional order system with mismatched disturbance. And to
our best knowledge, there is no research on designing slid-
ing mode control based on fractional disturbance observer
for fractional order system with matched and mismatched
disturbances.

In this paper, a new fractional sliding mode control
combination with fractional disturbance observer is pre-
sented to attenuate matched and mismatched disturbances
in fractional order system. The main highlights of this pa-
per are listed as follows:

1) fractional disturbance observer is designed to com-
pensate both matched and mismatched disturbances;

2) the novel sliding mode control method presented in
[22] is extended for nonlinear fractional order system in
presence of matched and mismatched disturbances;

3) a more extensive type of mismatched disturbance is
considered.

The paper is organized as follows: Section 2 gives the
system to be considered and some preliminaries. Frac-
tional disturbance observer and sliding mode control for
the system are proposed in Section 3. Section 4 gives the
numerical simulation results. And, conclusion is given in
Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this paper, we adopt the following Caputo derivative:

Definition 1: The Caputo fractional derivative of order
α of a continuous function h(t) is defined as follows:

Dα h(t) =



1
Γ(m−α)

∫ t

0

h(m)(τ)
(t − τ)α−m+1 dτ,

m−1 < α < m
dm

dtm h(t), α = m

(1)

where Γ is the Gamma function, which is defined as
Γ(z) =

∫ ∞
0 e−uuz−1du.

Consider a kind of fractional order systems in presence
of matched and mismatched disturbances, described by{

Dα x1 = x2 +d1(t),

Dα x2 = a(x)+b(x)u+d2(t),
(2)

where α ∈ (0,1) is the fractional order of the system,
x(t) = [x1,x2]

T is the system pseudostate, d1(t) and d2(t)
are the mismatched and matched disturbances, u is the
control input, a(x) and b(x) ̸= 0 represent smooth known
functions.

Assumption 1: The matched and mismatched distur-
bances and their fractional order derivatives are assumed
to be bounded, that is, |di(t)| ≤ τi and |Dα di(t)| ≤ ρi,
i = 1,2, where τi and ρi are unknown positive constants.

Remark 1: In this paper, the fractional derivatives of
disturbances are only required to be bounded and the up-
per bounds do not need to be known in advance, which is
different from the assumption on disturbance in [1].

In system (2), d2(t) affect the system via the same pas-
sage with the control input, which is called matched dis-
turbance, yet d1(t) is called as mismatched disturbance.
The aim of this paper is to design a sliding mode controller
based on fractional disturbance observer to stabilize sys-
tem (2) with matched and mismatched disturbances.

Lemma 1 [23]: Let x(t) ∈ Rn be a differentiable and
continuous function. Then, for ∀t ≥ t0 and ∀α ∈ (0,1)

1
2

Dα(xT (t)x(t))≤ xT (t)Dα x(t). (3)

Lemma 2 [23]: For the fractional order system

Dα x(t) = f (x(t)), (4)

where α ∈ (0,1), x = 0 is the equilibrium point and x(t) ∈
Rn, if the following condition is satisfied

x(t) f (x(t))≤ 0, (5)

then the origin of the system (4) is stable. And if

x(t) f (x(t))< 0, ∀x ̸= 0, (6)

then the origin of the system (4) is asymptotically stable.
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Lemma 3 [24, 25]: Consider the following system de-
scribed in the state-space form

Dα x = Ax+Bu. (7)

Let us suppose that u(t) is bounded, that is, ∥u(t)∥ ≤
M for M > 0, and that all eigenvalues of A satisfy
|arg(eig(A))|> απ

2 , then the state of the system with arbi-
trary initial condition x0 is bounded input-bounded output
stable.

Property 1 [26]: The Caputo fractional derivative sat-
isfies the following linear characteristic:

Dα(a1 f (t)+a2g(t)) = a1Dα f (t)+a2Dα g(t), (8)

where f (t),g(t) are functions and a1,a2 are constants.

3. MAIN RESULTS

3.1. Fractional disturbance observer design
Fractional disturbance observer will be designed to

evaluate the matched and mismatched disturbances in sys-
tem (2), which can be rewritten as

Dα x = f (x)+g(x)u+d(t), (9)

where f (x) = [x2,a(x)]T , g(x) = [0,b(x)]T and disturbance
d(t) = [d1(t),d2(t)]T .

The fractional disturbance observer, introduced by [20],
can be described as following{

Dα p =−l p− l[lx+ f (x)+g(x)u],

d̂(t) = p+ lx,
(10)

where d̂(t) =
[
d̂1(t), d̂2(t)

]T
is the estimation vector of

d(t), p represents the auxiliary variable of the fractional
disturbance observer and l = diag(l1, l2) is the gain matrix
of disturbance observer to be established.

Consider (9) and (10), one can obtain that

Dα p =− l [p+ lx+ f (x)+g(x)u]

=− l
[
d̂(t)+Dα x−d(t)

]
,

from which one has

Dα d̂i(t) =−li
[
d̂i(t)−di(t)

]
, i = 1,2. (11)

So the Caputo derivative of the disturbance estimation
errors edi(t) = di(t)− d̂i(t) can be deduced as

Dα edi(t) =−liedi(t)+Dα di(t), i = 1,2. (12)

According to Lemma 3 and (12), one can find that the
estimation errors edi(t), i = 1, 2 are both bounded.

3.2. Sliding mode controller design and stability anal-
ysis

In this paper, we consider the following sliding mode sur-
face for system (2)

σ = cx1 + x2 + d̂1, (13)

where c is a positive constant to be designed, and d̂1 is
the estimated value of mismatched disturbance given by
disturbance observer (10).

The sliding mode control law in this paper is designed
as following:

u =−b−1(x)
(
a(x)+ d̂2 + c(x2 + d̂1)+ξ1σ

+ξ2sgn(σ)
)
. (14)

Theorem 1: Considering the system (2) in presence
of matched and mismatched disturbances, under the con-
troller (14), the closed loop system is bounded stable in
case of the observer gains li, i = 1,2 are selected as pos-
itive constants and the switching gain is chosen so that
ξ2 > sup |(c+ l1)ed1 + ed2| .

Proof: By taking the fractional derivative of σ defined
as (13), gives

Dα σ = Dα (cx1 + x2 + d̂1
)

= c(x2 +d1)+a(x)+b(x)u+d2 +Dα d̂1. (15)

Substituting the controller (14) and (11) into (15), yields

Dα σ =−ξ1σ −ξ2sgn(σ)+d2 − d̂2

+(c+ l1)
(
d1 − d̂1

)
=−ξ1σ −ξ2sgn(σ)+(c+ l1)ed1 + ed2. (16)

Consider a Lyapunov function candidate as

V =
1
2

σ 2. (17)

On the basis of Lemma 1, (16) and (17), the fractional
derivative of V can be obtained as

DαV ≤ σDα σ
= σ (−ξ1σ −ξ2sgn(σ)+(c+ l1)ed1 + ed2)

≤−ξ1σ 2 −|σ |(ξ2 − (c+ l1)ed1 − ed2) . (18)

So, by choosing the switching gain as ξ2 > sup |(c +
l1)ed1 + ed2|, from (18), one can obtain

DαV ≤−ξ1σ 2 ≤ 0. (19)

Consequently, according to Lemma 2, the system states
will convergence to the sliding mode surface σ = 0. When
σ = 0, from (2) and (13), one can get

Dα x1 =−cx1 + ed1. (20)
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Combining (20) with (12), the closed-loop system can be
expressed as{

Dα x1 =−cx1 + ed1,

Dα ed =−led +Dα d,
(21)

which can also be rewritten as[
Dα x1

Dα ed

]
=

[
−c G
0 −l

][
x1

ed

]
+

[
0
I

]
h

= A
[

x1

ed

]
+Bh, (22)

where ed =

[
ed1

ed2

]
, A =

[
−c G
0 −l

]
, G = [1 0], B =

[
0
I

]
,

h = Dα d and I denotes the identity matrix.
Due to the observer gain li, i = 1,2 and the design pa-

rameter in sliding mode surface c are chosen as posi-
tive constants, so all the eigenvalues of matrix A are lo-
cated in the left half plain, that is, |arg(eig(A))| > απ

2 for
0<α < 1 is always holds. On account of Assumption 1, h
is bounded. According to Lemma 3, it can be derived that
the closed-loop system is bounded input-bounded output
stable.

Remark 2: The switching gain in Theorem 1 is se-
lected as ξ2 > sup |(c + l1)ed1 + ed2| in order to ensure
the bounded stability of the closed loop system. In virtue
of the matched and mismatched disturbances can be pre-
cise evaluated by the fractional disturbance observer, the
switching gain can be chosen as a very small value, which
is beneficial to reduce chattering and such excellent char-
acteristic will be displayed in simulation section.

4. SIMULATION EXAMPLE

In order to evaluate the availability of the presented con-
trol method for fractional order systems in presence of
matched and mismatched disturbances, a numerical exam-
ple given in [27] is investigated

Dα x1 = 2x2 +
1
6

√
x2

1 + x2
2,

Dα x2 = x1 +u+
1
6

sin(x1)cos(u).
(23)

Assume system (23) is also influenced by external dis-
turbances, so we can rewrite (23) as system (2) with
matched and mismatched disturbances. Where the non-
linear term and partial linear term in the first equation
of (23) are regarded as mismatched disturbance d1(t) =
x2 +

1
6

√
x2

1 + x2
2 +0.05sin(2t)+3(1− e−2t), and the non-

linear term in the second equation of (23) is regarded as
the matched disturbance d2(t) = 0.5sin(2t)+1.5−e−2t +
1
6 sin(x1)cos(u). For system (23), the initial states are cho-
sen as x10 =−1.5, x20 = 1.

In order to display the availability of the presented con-
trol strategy, denoted by SMC-FDO, the simulation results
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Fig. 1. Response curves of state x1.
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Fig. 2. Response curves of state x2.

of SMC-FDO are compared with the results of the normal
sliding mode control method, denoted by SMC. The con-
trol parameters of SMC-FDO are selected as c= 3, ξ1 = 2,
ξ2 = 0.5, l1 = 5 and l2 = 10. The same parameters c and
ξ1 are chosen for SMC, but in order to ensure the stabil-
ity of SMC, ξ2 should be selected with a larger value like
ξ2 = 10. Figs. 1-8 show the simulation results.

From Figs. 1 and 2, one can see that even though there
exists mismatched disturbance, state x1 can still reach the
equilibrium point under the proposed controller, that is
the presented SMC-FDO has strong robustness. However,
the robustness of SMC does not exist any more. Fig. 4
shows that the chattering phenomenon is evident in SMC,
due to a larger switching gain is chosen in SMC. But in
SMC-FDO, only a relatively small switching gain is used,
so the chattering phenomenon is obviously suppressed, as
shown in Fig. 3. It can be seen from Figs. 5 and 7 that
the fractional disturbance observer designed in this paper
can effectively estimate the matched and mismatched dis-
turbances, and the estimation error are bounded, as shown
in Figs. 6 and 8.
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Fig. 3. Response curve of control input.
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Fig. 5. Response curves of mismatched disturbance d1.

5. CONCLUSION

In order to suppress the influence of matched and mis-
matched disturbances on fractional order system, a novel
sliding mode control method was established in this pa-
per. Firstly, fractional disturbance observer was proposed
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Fig. 6. Response curves of mismatched disturbance esti-
mation error.
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Fig. 7. Response curves of matched disturbance d2.
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Fig. 8. Response curves of matched disturbance estima-
tion error.

to evaluate the matched and mismatched disturbances.
The disturbance estimation were used to construct slid-
ing mode surface and sliding mode control law. Under the
designed controller, system states can effectively suppress
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the influence of the mismatched disturbance. Simulation
results demonstrate that the presented control strategy has
better robustness to mismatched disturbance.
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