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Two-stage Recursive Least Squares Parameter Estimation Algorithm for
Multivariate Output-error Autoregressive Moving Average Systems
Yunze Guo, Lijuan Wan, Ling Xu, Feng Ding* ■ , Ahmed Alsaedi, and Tasawar Hayat

Abstract: This paper focuses on the parameter estimation problem of multivariate output-error autoregressive mov-
ing average (M-OEARMA) systems. By applying the auxiliary model identification idea and the decomposition
technique, we derive a two-stage recursive least squares algorithm for estimating the M-OEARMA system. Com-
pared with the auxiliary model based recursive least squares algorithm, the proposed algorithm possesses higher
identification accuracy. The simulation results confirm the effectiveness of the proposed algorithm.
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1. INTRODUCTION

Mathematical models are basic for designing controller
and system analysis [1,2]. The parameter estimation meth-
ods of models can be applied to many areas [3–9]. In re-
cent years, with the development of control theory and the
demand of engineering practice, system identification and
model parameter estimation have been extensively applied
in almost all natural and man made systems [10–12].

In contrast to single variable systems, multivariate sys-
tems have more complex structures, uncertain distur-
bances and higher dimensions [13–15]. These charac-
teristics make multivariate system identification difficult
and therefore have drawn a great deal of attention [16,17].
How to improve the identification efficiency of multivari-
ate systems has become an essential research field in mul-
tivariate system identification [18]. As for this, Pan et al.
used the filtering technique and the multi-innovation iden-
tification theory to identify the multivariable system with
moving average noise, and proposed the filtering based
multi-innovation extended stochastic gradient algorithm
to improve the parameter estimation accuracy [19].

Many identification methods have been applied to lin-
ear systems and nonlinear systems [20–22], such as the
Newton methods [23, 24] and the least squares methods
[25]. Compared with the stochastic gradient algorithm
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[26], the recursive least squares (RLS) algorithm has a fast
convergence rate and can reach a satisfactory estimation
accuracy [27]. To take advantage of its high estimation
accuracy, Cho et al. presented a variable data-window-
size recursive least-squares algorithm for dynamic system
identification and the simulations proved that the proposed
algorithm has a fast tracking performance and low mis-
alignment error under a steady state [28].

Although the RLS algorithm is known for its high es-
timation accuracy, there are still many means which can
improve its accuracy, such as the multi-innovation the-
ory [29], the filtering method [30] and the decomposition
technique [31]. The two-stage identification algorithm is
based on the decomposition technique that can transform a
large scale identification problem into small subproblems
which are easier to solve [32, 33].

This paper studies the parameter estimation methods for
multivariate output-error systems using the decomposition
technique and meanwhile presents the condition of param-
eter convergence of the proposed approach [34, 35]. The
main idea is to decompose the identification system into
two subsystems and to identify each parameter vector sep-
arately. The difficulty is that the two subsystems have un-
known associated variables. To deal with this problem,
we establish the auxiliary models to replace the unknown
variables in the identification algorithm with the outputs
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of the auxiliary models [36]. The main contributions of
this paper are as follows:
• A two-stage recursive least squares algorithm is

proposed for the multivariate output-error autoregressive
moving average systems by using the decomposition tech-
nique and the auxiliary model.

• Compared with the auxiliary model based recursive
least squares algorithm, the proposed algorithm can gen-
erate more accurate estimates.

The rest of this paper is organized as follows: Section 2
describes the identification model of multivariate output-
error autoregressive moving average systems. Section 3
gives the auxiliary model based recursive least squares al-
gorithm for the obtained model. Section 4 derives a two-
stage recursive least squares algorithm. An illustrative ex-
ample is shown to verify the effectiveness of the proposed
algorithms in Section 5. Finally, we offer some conclud-
ing remarks in Section 6.

2. THE SYSTEM DESCRIPTION

Some symbols are introduced. “A =: X” or “X := A”
stands for “A is defined as X”; the superscript T stands
for the vector/matrix transpose; the symbol In denotes an
identity matrix of appropriate size (n× n); ϑ̂(t) denotes
the estimate of ϑ at time t; 1n stands for an n-dimensional
column vector whose elements are 1; the norm of a matrix
(or a column vector) X is defined by ∥X∥2 := tr[XX T].

Consider the following multivariate output-error au-
toregressive moving average (M-OEARMA) system:

y(t) =
Φ1(t)θ

A(z)
+

D(z)
C(z)

v(t), (1)

where y(t) := [y1(t),y2(t), · · · ,ym(t)]T ∈ Rm is the out-
put vector of the system, θ ∈ Rn is the system param-
eter vector to be identified, Φ1(t) ∈ Rm×n is the in-
formation matrix consisting of the input signal u(t) :=
[u1(t),u2(t), · · · ,ur(t)] ∈ Rr and the output signal y(t),
v(t) := [v1(t),v2(t), · · · ,vm(t)]T ∈Rm is a white noise vec-
tor, A(z), C(z) and D(z) are the polynomials in the unit
backward shift operator z−1 [z−1y(t) = y(t − 1)], and de-
fined as

A(z) := 1+a1z−1 +a2z−2 + · · ·+ana z−na ∈ R,
C(z) := 1+ c1z−1 + c2z−2 + · · ·+ cnc z

−nc ∈ R,
D(z) := 1+d1z−1 +d2z−2 + · · ·+dnd z−nd ∈ R.

Let n1 := n+na, n2 := nc+nd , n0 := n1+n2. Assume that
the orders na, nc and nd are known and Φ1(t) = 0, v(t) = 0,
y(t) = 0 for t ⩽ 0.

Define the intermediate variables:

x(t) :=
Φ1(t)θ

A(z)
∈ Rm, w(t) :=

D(z)
C(z)

v(t) ∈ Rm.

It follows that

x(t) =[1−A(z)]x(t)+Φ1(t)θ

=−
na

∑
j=1

a jx(t − j)+Φ1(t)θ , (2)

w(t) =[1−C(z)]w(t)+D(z)v(t)

=−
nc

∑
j=1

c jw(t − j)+
nd

∑
j=1

d jv(t − j)+ v(t). (3)

Define the parameter vectors:

a := [a1,a2, · · · ,ana ]
T ∈ Rna ,

θ s := [θ T,aT]T ∈ Rn1 ,

ρ := [c1,c2, · · · ,cnc ,d1,d2, · · · ,dnd ]
T ∈ Rn2 ,

ϑ := [θ T
s,ρT]T ∈ Rn0 .

Define the information matrices:

Φx(t) := [−x(t −1), · · · ,−x(t −na)] ∈ Rm×na ,

Φs(t) := [Φ1(t),Φx(t)] ∈ Rm×n1 ,

Φn(t) := [−w(t −1), · · · ,−w(t −nc),

v(t −1), · · · ,v(t −nd)] ∈ Rm×n2 ,

Φ(t) := [Φs(t),Φn(t)] ∈ Rm×n0 .

Then, equations (2) and (3) can be written as

x(t) = Φ1(t)θ +Φx(t)a, (4)

w(t) = Φn(t)ρ + v(t). (5)

Substituting (4) and (5) into (1) gives

y(t) =x(t)+w(t)

=Φ1(t)θ +Φx(t)a+w(t) (6)

=Φs(t)θ s +Φn(t)ρ + v(t) (7)

=Φ(t)ϑ + v(t). (8)

In this model, the new parameter vector ϑ contains the pa-
rameter vector θ s of the system model and the parameter
vector ρ of the noise model.

The objective of this paper is to use the auxiliary model
identification idea and the decomposition technique to de-
rive new methods for estimating the parameter vector ϑ
from the observation data y(t) and Φ1(t) and to confirm
the theoretical result with a simulation example.

3. THE AUXILIARY MODEL BASED
RECURSIVE LEAST SQUARES ALGORITHM

According to the identification model in (8), define a
least squares criterion function:

J(ϑ) :=
t

∑
j=1

∥y( j)−Φ( j)ϑ∥2. (9)
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Minimizing the criterion function J(ϑ) gives:

ϑ̂(t) = ϑ̂(t −1)+P(t)ΦT(t)

× [y(t)−Φ(t)ϑ̂(t −1)],

P−1(t) = P−1(t −1)+ΦT(t)Φ(t). (10)

Applying the matrix inversion formula

(A+BC)−1 = A−1 −A−1B(I +CA−1B)−1CA−1

to (10) gives

P(t) =[In0 −P(t −1)ΦT(t)

× [Im +Φ(t)P(t −1)ΦT(t)]−1Φ(t)]P(t −1).

Then, we can obtain the following recursive least squares
algorithm:

ϑ̂(t) = ϑ̂(t −1)+L(t)[y(t)−Φ(t)ϑ̂(t −1)], (11)

L(t) = P(t −1)ΦT(t)

× [Im +Φ(t)P(t −1)ΦT(t)]−1, (12)

P(t) = [In0 −L(t)Φ(t)]P(t −1). (13)

In the recursive algorithm, the initial value of the parame-
ter estimation vector is generally taken to be zero or a very
small real vector, for example, ϑ̂(0) = 1n0/p0, p0 = 106.

Here, some problems arise. The information matrix
Φ(t) in (11)-(13) contains the unknown terms x(t − i),
w(t − i) and v(t − i). Therefore the estimate ϑ̂(t) in (11)
is impossible to compute. An effective method to solve
this problem is to employ the auxiliary model identifica-
tion idea. That is to establish an auxiliary model by using
the measurable information in the identification algorithm
and to replace the unknown variables in the system with
the outputs of the auxiliary model. Establish an appropri-
ate auxiliary model and use their outputs xa(t− i), ŵ(t− i)
and v̂(t − i) to define the estimates Φ̂x(t), Φ̂s(t), Φ̂n(t),
Φ̂(t) of Φx(t), Φs(t), Φn(t), Φ(t) as

Φ̂x(t) := [−xa(t −1), · · · ,−xa(t −na)] ∈ Rm×na , (14)

Φ̂s(t) := [Φ1(t),Φ̂x(t)] ∈ Rm×n1 , (15)

Φ̂n(t) := [−ŵ(t −1), · · · ,−ŵ(t −nc),

v̂(t −1), · · · , v̂(t −nd)] ∈ Rm×n2 , (16)

Φ̂(t) := [Φ1(t),Φ̂x(t),Φ̂n(t)] ∈ Rm×n0 . (17)

According to (4), use the estimates Φ̂x(t), θ̂(t) and â(t) to
define the outputs xa(t) of the auxiliary model as

xa(t) := Φ1(t)θ̂(t)+ Φ̂x(t)â(t).

Similarly, from (6), the estimate ŵ(t) can be computed
through

ŵ(t) :=y(t)−Φ1(t)θ̂(t)− Φ̂x(t)â(t)

=y(t)− xa(t). (18)

According to (8), the residual v̂(t) can be computed by

v̂(t) := y(t)− Φ̂(t)ϑ̂(t). (19)

Replacing Φ(t) in (11)-(13) with its estimate Φ̂(t) and
combining (14)-(19), we can obtain the following auxil-
iary model based recursive least squares (AM-RLS) algo-
rithm:

ϑ̂(t) = ϑ̂(t −1)+L(t)[y(t)− Φ̂(t)ϑ̂(t −1)], (20)

L(t) = P(t −1)Φ̂T
(t)

× [Im + Φ̂(t)P(t −1)Φ̂T
(t)]−1, (21)

P(t) = [In0 −L(t)Φ̂(t)]P(t −1),

Φ̂(t) = [Φ1(t),Φ̂x(t),Φ̂n(t)], (22)

Φ̂x(t) = [−xa(t −1), · · · ,−xa(t −na)], (23)

Φ̂n(t) = [−ŵ(t −1), · · · ,−ŵ(t −nc),

v̂(t −1), · · · , v̂(t −nd)], (24)

xa(t) = Φ1(t)θ̂(t)+ Φ̂x(t)â(t), (25)

ŵ(t) = y(t)− xa(t), (26)

v̂(t) = y(t)− Φ̂(t)ϑ̂(t), (27)

ϑ̂(t) = [θ̂ T
(t), âT(t), ρ̂T(t)]T. (28)

The procedure for computing the parameter estimation
vector ϑ̂(t) in the AM-RLS algorithm in (20)-(28) is as
follows:

1) Set the data length L (L ≫ n). Let t = 1, P(0) = p0In0 ,
ϑ̂(0) = 1n0/p0, xa(t − i) = 1m/p0, ŵ(t − i) = 1m/p0,
v̂(t− i) = 1m/p0, i= 1,2, · · · ,max[na,nc,nd ], p0 = 106.

2) Collect the observation data y(t) and Φ1(t), and con-
struct the information matrices Φ̂x(t), Φ̂n(t) and Φ̂(t)
using (22)-(24).

3) Compute the gain matrix L(t) and the covariance ma-
trix P(t) according to (21)-(22).

4) Update the parameter estimation vector ϑ̂(t) using
(20).

5) Compute xa(t), ŵ(t) and v̂(t) using (25)-(27).
6) If t = L, obtain the parameter estimate ϑ(L); other-

wise, increase t by 1 and go to Step 2.

In order to study the convergence analysis of the pro-
posed algorithm, assume that the noise vector v(t) satisfies

(A1) E[v(t)] = 0,

(A2) E[∥v(t)∥2]⩽ σ 2 < ∞.

Theorem 1: For the identification model in (8) and the
AM-RLS algorithm in (20)-(28), assume that there exist
positive constants α and β and large t such that the fol-
lowing persistent condition holds:

(A3) αIn0 ⩽
1
t

t

∑
j=1

Φ̂T
( j)Φ̂( j)⩽ β In0 .
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Then, the parameter estimation error ∥ϑ̂(t)− ϑ∥ con-
verges to zero as t goes to infinity.

Proof: Referring to the method in [37], we have

∥ϑ̂(t)−ϑ∥2 =O
(
(lnλmax[P−1(t)])1+c

λmin[P−1(t)]

)
,

a.s., for c > 0. (29)

Based on (10), we can deduce

P−1(t) =P−1(t −1)+ Φ̂T
(t)Φ̂(t)

=P−1(t−2)+Φ̂T
(t−1)Φ̂(t−1)+Φ̂T

(t)Φ̂(t)

=
t

∑
j=1

Φ̂T
( j)Φ̂( j)+P−1(0)

=
t

∑
j=1

Φ̂T
( j)Φ̂( j)+

In0

p0
.

Using (A3), we have

λmax[P−1(t)]⩽ n0β t,

λmin[P−1(t)]⩾ n0αt.

Then, equation (29) can be expressed as

∥ϑ̂(t)−ϑ∥2 =O
(
(lnλmax[P−1(t)])1+c

λmin[P−1(t)]

)
=O

(
[ln(n0β t)]1+c

αt

)
=O

(
[lnt]1+c

t

)
→ 0, a.s., for c > 0.

This proves Theorem 1. □

4. THE TWO-STAGE RECURSIVE LEAST
SQUARES ALGORITHM

The basic idea of the two-stage recursive least squares
identification method is to decompose the identification
system in (7) into two subsystems and to identify the pa-
rameter vector of each subsystem separately. Define two
intermediate output variables:

y1(t) := y(t)−Φn(t)ρ ∈ Rm, (30)

y2(t) := y(t)−Φs(t)θ s ∈ Rm. (31)

This system can be decomposed into the following two
fictitious subsystems:

y1(t) = Φs(t)θ s + v(t),

y2(t) = Φn(t)ρ + v(t).

Define the cost functions:

J1(θ s) :=
t

∑
j=1

∥y1( j)−Φs( j)θ s∥2,

J2(ρ) :=
t

∑
j=1

∥y2( j)−Φn( j)ρ∥2.

Let θ̂ s(t) and ρ̂(t) be the estimates of θ s and ρ at time t.
Letting the partial derivatives of J1(θ s) with respect to θ s

and J2(ρ) with respect to ρ be zero gives

∂J1(θ s)

∂θ s
=−2

t

∑
j=1

ΦT
s( j)[y1( j)−Φs( j)θ s] = 0,

∂J2(ρ)
∂ρ

=−2
t

∑
j=1

ΦT
n( j)[y2( j)−Φn( j)ρ] = 0.

Then, we can obtain the following least squares algorithm:

θ̂ s(t) = θ̂ s(t −1)+L1(t)

× [y1(t)−Φs(t)θ̂ s(t −1)], (32)

L1(t) = P1(t −1)ΦT
s(t)[Im +Φs(t)P1(t)ΦT

s(t)]
−1,

P1(t) = [In1 −L1(t)Φs(t)]P1(t −1),

ρ̂(t) = ρ̂(t −1)+L2(t)

× [y2(t)−Φn(t)ρ̂(t −1)], (33)

L2(t) = P2(t −1)ΦT
n(t)[Im +Φn(t)P2(t)ΦT

n(t)]
−1,

P2(t) = [In2 −L2(t)Φn(t)]P2(t −1).

Substituting (30) into (32) and (31) into (33) gives

θ̂ s(t) = θ̂ s(t −1)+L1(t)

×[y(t)−Φn(t)ρ −Φs(t)θ̂ s(t −1)], (34)

ρ̂(t) = ρ̂(t −1)+L2(t)

×[y(t)−Φs(t)θ s −Φn(t)ρ̂(t −1)]. (35)

Here, we notice that the right-hand sides of (34) and (35)
contain the unknown parameter vectors ρ and θ s respec-
tively. The solution is to replace the unknown ρ in (34)
and θ s in (35) with their corresponding estimates ρ̂(t) and
θ̂ s(t) at t −1. Then, we have

θ̂ s(t) = θ̂ s(t −1)+L1(t)

× [y(t)−Φn(t)ρ̂(t −1)−Φs(t)θ̂ s(t −1)]

= θ̂ s(t −1)+L1(t)[y(t)−Φ(t)ϑ̂(t −1)],

ρ̂(t) = ρ̂(t −1)+L2(t)

× [y(t)−Φs(t)θ̂ s(t −1)−Φn(t)ρ̂(t −1)]

= ρ̂(t −1)+L2(t)[y(t)−Φ(t)ϑ̂(t −1)].

Here, we can obtain the two-stage least squares (TS-RLS)
algorithm:

θ̂ s(t) = θ̂ s(t −1)+L1(t)[y(t)− Φ̂(t)ϑ̂(t −1)], (36)

L1(t) = P1(t −1)Φ̂T

s(t)

× [Im + Φ̂s(t)P1(t −1)Φ̂T

s(t)]
−1, (37)

P1(t) = [In1 −L1(t)Φ̂s(t)]P1(t −1), (38)
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ρ̂(t) = ρ̂(t −1)+L2(t)[y(t)− Φ̂(t)ϑ̂(t −1)], (39)

L2(t) = P2(t −1)Φ̂T

n(t)

× [Im + Φ̂n(t)P2(t −1)Φ̂T

n(t)]
−1, (40)

P2(t) = [In2 −L2(t)Φ̂n(t)]P2(t −1), (41)

Φ̂s(t) = [Φ1(t),Φ̂x(t)], (42)

Φ̂x(t) = [−xa(t −1), · · · ,−xa(t −na)], (43)

Φ̂n(t) = [−ŵ(t −1), · · · ,−ŵ(t −nc),

v̂(t −1), · · · , v̂(t −nd)], (44)

Φ̂(t) = [Φ1(t),Φ̂x(t),Φ̂n(t)], (45)

xa(t) = Φ1(t)θ̂(t)+ Φ̂x(t)â(t), (46)

ŵ(t) = y(t)− xa(t), (47)

v̂(t) = y(t)− Φ̂(t)ϑ̂(t). (48)

The steps of implementing the TS-RLS algorithm in
(36)-(48) to estimate θ s and ρ are listed in the following:
1) Set the data length L (L ≫ n). Let t = 1,

P1(0) = p0In1 , P2(0) = p0In2 , θ̂ s(0) = 1n1/p0,
ρ̂(0) = 1n2/p0, ŵ(t − i) = 1m/p0, v̂(t − i) = 1m/p0,
i = 1,2, · · · ,max[na,nc,nd ], p0 = 106.

2) Collect the input/output data y(t) and Φ1(t), and con-
struct the information matrices Φ̂x(t), Φ̂n(t), Φ̂s(t) and
Φ̂(t) using (42)-(45).

3) Compute the gain matrices L1(t) and L2(t) by (37)
and (40), and update the covariance matrices P1(t) and
P2(t) through (38) and (41).

4) Update the parameter estimates θ̂ s(t) and ρ̂(t) using
(36) and (39), respectively.

5) Compute the outputs xa(t), ŵ(t) and v̂(t) of the auxil-
iary models by (46)-(48).

6) If t = L, obtain the parameter estimation vectors θ̂ s(t)
and ρ̂(t); otherwise, increase t by 1 and go to Step 2.

Theorem 2: For the identification model in (7) and the
TS-RLS algorithm in (36)-(48), assume that there exist
positive constants α and β and large t such that the fol-
lowing persistent condition holds:

(A4) αIn1 ⩽
1
t

t

∑
j=1

Φ̂T

s( j)Φ̂s( j)⩽ β In1 ,

(A5) αIn2 ⩽
1
t

t

∑
j=1

Φ̂T

n( j)Φ̂n( j)⩽ β In2 .

Then the parameter estimation errors ∥θ̂ s(t)− θ s∥ and
∥ρ̂(t)−ρ∥ converge to zero as t goes to infinity.

The proof can be done in a similar way in [38, 39] and
is omitted here.

In system identification, one usually uses the flop to as-
sess the amount of computational efficiency of an algo-
rithm. The computational efficiency of the proposed algo-
rithms at every recursive calculation is shown in Tables 1-
2. Their total numbers are as follows:

N1 := 3n0m2 +m(4n2
0 +5n0 +2q),

N2 := 3n0m2 +m(4q2 +4r2 +5n0 +2q).

It is clear that Ne := N2 −N1 = 8qrm > 0, which means
the TS-RLS has higher computational efficiency.

Remark 1: It is worth pointing out that least squares
algorithms are suitable for linear regressive models. The
multivariate output-error autoregressive moving average
(M-OEARMA) system in this paper is a linear-parameter
system instead of a nonlinear-parameter system. There-
fore, the least squares can be applied to present new two-
stage methods.

Remark 2: There are many other two-stage estimation
methods, such as the two-stage least squares iterative al-
gorithm and the two-stage stochastic gradient algorithm.
Compared with the two-stage least squares iterative algo-
rithm, the proposed method requires less computational
load. Compared with the two-stage stochastic gradient al-
gorithm, the proposed method possesses higher identifica-
tion accuracy.

Many methods have been proposed to deal with the
linear multivariable systems, such as the filtering based
stochastic gradient algorithm [40] and the filtering based
recursive least squares algorithm [39]. Unlike the filter-
ing method, which is used to change the structure of the
disturbance noise model, the decomposition technique is
used to decompose the identification model into the sys-
tem model and the noise model and identify each parame-
ter vector separately.

5. EXAMPLE

Consider the following M-OEARMA system:

y(t) =
Φ1(t)θ

A(z)
+

D(z)
C(z)

v(t),

Φ1(t)=
[

y2(t−1) u1(t−1)
y1(t−2) u2(t−2)sin(t/π)

u2(t−1)cos(t/π)
u1(t−1)

]
,

A(z) = 1+0.69z−1 +0.20z−2,

C(z) = 1+0.38z−1 +0.83z−2,

D(z) = 1−0.58z−1 +0.38z−2,

θ = [θ1,θ2,θ3]
T = [−0.12,0.38,−0.48]T,

ϑ = [−0.12,0.38,−0.48,0.69,0.20,0.38,

0.83,−0.58,0.38]T.

In simulation, the inputs u1(t) and u2(t) are taken as two
independent persistent excitation signal sequences with
zero mean and unit variance. v1(t) and v2(t) are taken as
two white noise sequences with zero mean and variances
σ 2

1 for v1(t) and σ 2
2 for v2(t). The sequence input obtained

by using the Matlab function ‘idinput’ is pseudorandom.
Take σ 2

1 = σ 2
2 = σ 2 = 0.102 and σ 2

1 = σ 2
2 = σ 2 = 0.302,

respectively. Based on the above model, we generate the
system output signals y(t)= [y1(t),y2(t)]T. By using u1(t),
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Table 1. The computational efficiency of the AM-RLS algorithm (n0 := q+ r).
Expressions Multiplications Additions

ϑ̂(t) = ϑ̂(t −1)+L(t)e(t) ∈ Rn0 mn0 mn0

e(t) := y(t)− Φ̂(t)ϑ̂(t −1) ∈ Rm mn0 mn0

Q(t) := P(t −1)Φ̂T
(t) ∈ Rn0×m mn2

0 m(n2
0 −n0)

L(t) = Q(t)/[Im + Φ̂(t)Q(t)] ∈ Rn0×m 2m2n0 m2n0

P(t) = P(t −1)−L(t)QT(t) ∈ Rn0×n0 mn2
0 mn2

0

xa(t) = Φs(t)θ̂ s(t) ∈ Rm mq m(q−1)
ŵ(t) = y(t)− xa(t) ∈ Rm 0 m

v̂(t) = y(t)− Φ̂(t)ϑ̂(t) ∈ Rm mn0 mn0

Sum 2m2n0 +m(2n2
0 +3n0 +q) m2n0 +m(2n2

0 +2n0 +q)
Total flops N1 := 3n0m2 +m(4n2

0 +5n0 +2q)

Table 2. The computational efficiency of the TS-RLS algorithm (n0 := q+ r).
Expressions Multiplications Additions

θ̂ s(t) = θ̂ s(t −1)+L1(t)e(t) ∈ Rq mq mq
e(t) := y(t)− Φ̂(t)ϑ̂(t −1) ∈ Rm mn0 mn0

Q1(t) := P1(t −1)Φ̂T

s (t) ∈ Rq×m mq2 m(q2 −q)
L1(t) = Q1(t)/[Im + Φ̂s(t)Q1(t)] ∈ Rq×m 2qm2 qm2

P1(t) = P1(t −1)−L1(t)QT
1(t) ∈ Rq×q mq2 mq2

ρ̂(t) = ρ̂(t −1)+L2(t)e(t) ∈ Rr mr mr
Q2(t) := P2(t −1)Φ̂T

n(t) ∈ Rr×m mr2 m(r2 − r)
L2(t) = Q2(t)/[Im + Φ̂n(t)Q2(t)] ∈ Rr×m 2rm2 rm2

P2(t) = P2(t −1)−L2(t)QT
2(t) ∈ Rr×r mr2 mr2

xa(t) = Φs(t)θ̂ s(t) ∈ Rm mq m(q−1)
ŵ(t) = y(t)− xa(t) ∈ Rm 0 m

v̂(t) = y(t)− Φ̂(t)ϑ̂(t) ∈ Rm mn0 mn0

Sum 2n0m2 +m(2q2 +2r2 +3n0 +q) n0m2 +m(2q2 +2r2 +2n0 +q)
Total flops N2 := 3n0m2 +m(4q2 +4r2 +5n0 +2q)
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Fig. 1. The AM-RLS and TS-RLS estimation errors δ ver-
sus t with σ 2 = 0.102.

u2(t), y1(t) and y2(t) and applying the proposed algo-
rithms to estimate the parameters of this system, the sim-
ulation results are shown in Tables 3-6 and Figs. 1-5. The
results of Monte-Carlo simulations are shown in Tables 7-
8.

Remark 3: One commonly uses the estimation error
δ to evaluate the parameter estimation accuracy. In other
words, the smaller the estimation errors, the more accu-
rate the parameter estimates. Due to the interference from

        t
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Fig. 2. The AM-RLS and TS-RLS estimation errors δ ver-
sus t with σ 2 = 0.302.

colored noise, the estimation error has fluctuation. But
generally the parameter estimation error become smaller
with the data length t increasing.

From Tables 3-8 and Figs. 1-2, we can draw the follow-
ing conclusions.
• The parameter estimation errors of the AM-RLS al-

gorithm and the TS-RLS algorithm become smaller with
the data length t increasing - see Tables 3-8.
• The TS-RLS algorithm leads to smaller parameter es-
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Table 3. The AM-RLS estimates and their errors with σ 2 = 0.102.
t θ1 θ2 θ3 a1 a2 c1 c2 d1 cd2 δ (%)

100 -0.13598 0.39612 -0.48205 0.68172 0.20595 0.43921 0.89637 -0.38154 0.27177 16.39194
200 -0.12448 0.38623 -0.48528 0.67908 0.20674 0.41995 0.86164 -0.47586 0.34782 8.14669
500 -0.12328 0.38321 -0.48146 0.68649 0.20338 0.39829 0.83080 -0.51051 0.28486 8.01656

1000 -0.12444 0.38346 -0.48058 0.68977 0.20128 0.39955 0.83029 -0.55568 0.31672 4.75200
2000 -0.12386 0.37849 -0.47819 0.69279 0.20160 0.40050 0.83761 -0.55486 0.34612 3.21136
3000 -0.12157 0.38001 -0.47845 0.69101 0.20062 0.39439 0.83030 -0.55310 0.36476 2.29523

True values -0.12000 0.38000 -0.48000 0.69000 0.20000 0.38000 0.83000 -0.58000 0.38000

Table 4. The TS-RLS estimates and their errors with σ 2 = 0.102.
t θ1 θ2 θ3 a1 a2 c1 c2 d1 d2 δ (%)

100 -0.13221 0.38513 -0.47322 0.68595 0.17344 0.32776 0.76216 -0.57237 0.33689 6.89661
200 -0.12438 0.38040 -0.48055 0.68052 0.18591 0.30521 0.76565 -0.61609 0.40120 7.24370
500 -0.12442 0.38168 -0.47922 0.68862 0.19558 0.32400 0.80223 -0.58849 0.34867 4.67388

1000 -0.12572 0.38304 -0.47929 0.69087 0.19665 0.35070 0.82496 -0.60386 0.36384 2.80778
2000 -0.12473 0.37819 -0.47756 0.69323 0.19882 0.37466 0.84338 -0.57913 0.38073 1.06270
3000 -0.12231 0.37975 -0.47806 0.69127 0.19867 0.37734 0.83777 -0.56934 0.39006 1.15659

True values -0.12000 0.38000 -0.48000 0.69000 0.20000 0.38000 0.83000 -0.58000 0.38000

Table 5. The AM-RLS estimates and their errors with σ 2 = 0.302.
t θ1 θ2 θ3 a1 a2 c1 c2 d1 d2 δ (%)

100 -0.13468 0.41441 -0.48772 0.67974 0.22184 0.46856 0.92479 -0.39256 0.30949 16.30097
200 -0.12274 0.39420 -0.49719 0.66980 0.22598 0.45302 0.87561 -0.45127 0.35305 10.88550
500 -0.12691 0.38743 -0.48520 0.68273 0.21246 0.41800 0.83272 -0.48805 0.27103 9.98308

1000 -0.12749 0.38904 -0.48208 0.68912 0.20222 0.41265 0.82752 -0.54037 0.30295 6.27103
2000 -0.12541 0.37489 -0.47463 0.69733 0.20209 0.40675 0.83309 -0.54745 0.33522 4.20923
3000 -0.12048 0.37963 -0.47540 0.69201 0.19943 0.39827 0.82606 -0.54801 0.35642 2.96778

True values -0.12000 0.38000 -0.48000 0.69000 0.20000 0.38000 0.83000 -0.58000 0.38000

Table 6. The TS-RLS estimates and their errors with σ 2 = 0.302.
t θ1 θ2 θ3 a1 a2 c1 c2 d1 d2 δ (%)

100 -0.15389 0.41004 -0.49079 0.73757 0.37113 0.47108 0.89002 -0.45436 0.22061 19.89815
200 -0.14361 0.39730 -0.50159 0.70544 0.33245 0.44711 0.85270 -0.49697 0.32589 12.54814
500 -0.13848 0.38961 -0.48935 0.69750 0.27238 0.41228 0.81748 -0.53503 0.28490 9.19497

1000 -0.13321 0.39035 -0.48412 0.69705 0.23919 0.40330 0.81663 -0.57335 0.32451 5.10824
2000 -0.12860 0.37542 -0.47594 0.70165 0.22363 0.39727 0.82614 -0.56842 0.35276 3.00464
3000 -0.12278 0.37982 -0.47631 0.69524 0.21550 0.38913 0.82143 -0.56569 0.37307 1.76754

True values -0.12000 0.38000 -0.48000 0.69000 0.20000 0.38000 0.83000 -0.58000 0.38000

Table 7. The AM-RLS parameter estimates and errors based on 20 Monte-Carlo runs (σ 2 = 0.102).
t 100 200 500 1000 2000 3000 True values

θ1 -0.13255±0.01157 -0.12177±0.00963 -0.12255±0.00657 -0.12095±0.00448 -0.1206±0.00254 -0.12042±0.00199 -0.12000
θ2 0.39308±0.01076 0.38766±0.00657 0.38439±0.00245 0.38279±0.00153 0.38093±0.00142 0.38069±0.00134 0.38000
θ3 -0.4802±0.00754 -0.48045±0.00515 -0.47993±0.00423 -0.48052±0.00158 -0.48152±0.00176 -0.48149±0.00138 -0.48000
a1 0.69361±0.0147 0.68368±0.00851 0.68709±0.00614 0.68754±0.0032 0.68799±0.00328 0.68901±0.00358 -0.69000
a2 0.22176±0.02362 0.21169±0.01113 0.20661±0.00983 0.20337±0.00533 0.20194±0.00358 0.20126±0.00283 0.20000
c1 0.48276±0.09851 0.40188±0.08033 0.35477±0.03602 0.34368±0.01618 0.34259±0.01689 0.34949±0.01628 0.38000
c2 0.67111±0.07796 0.70181±0.06171 0.75194±0.04056 0.79009±0.02173 0.81431±0.01464 0.82397±0.01067 0.83000
d1 -0.49252±0.1249 -0.53595±0.09961 -0.60018±0.03376 -0.60378±0.01592 -0.60852±0.01827 -0.60323±0.01107 -0.58000
d2 0.11254±0.18201 0.26719±0.12736 0.33594±0.06823 0.37311±0.03638 0.39095±0.02355 0.39444±0.02083 0.38000

δ (%) 26.50264±9.8533 16.32498±5.49335 8.35766±2.96942 4.95135±2.25232 3.84058±1.73951 3.31727±1.48867
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Table 8. The TS-RLS parameter estimates and errors based on 20 Monte-Carlo runs (σ 2 = 0.102).
t 100 200 500 1000 2000 3000 True values

θ1 -0.12627±0.00894 -0.11828±0.00757 -0.12176±0.00585 -0.1204±0.00365 -0.12032±0.00194 -0.12037±0.00166 -0.12000
θ2 0.38106±0.01225 0.38113±0.00712 00.38152±0.00383 0.38138±0.0017 0.38027±0.0017 0.38026±0.00141 0.38000
θ3 -0.48517±0.00788 -0.48288±0.00512 -0.48125±0.00339 -0.48093±0.00084 -0.48163±0.00138 -0.48153±0.00104 -0.48000
a1 0.69093±0.01865 0.68236±0.01002 0.68637±0.00667 0.68725±0.00274 0.68765±0.00266 0.68864±0.00289 -0.69000
a2 0.19651±0.02773 0.19591±0.01208 0.19813±0.00699 0.1979±0.00313 0.19818±0.00179 0.19809±0.00146 0.20000
c1 0.41457±0.06928 0.40709±0.05503 0.39458±0.02887 0.3846±0.01633 0.37433±0.01079 0.37411±0.00963 0.38000
c2 0.84468±0.09824 0.82792±0.06215 0.81838±0.01838 0.82218±0.01873 0.8249±0.01272 0.82768±0.00933 0.83000
d1 -0.53495±0.12166 -0.52304±0.07687 -0.55377±0.0324 -0.56185±0.01896 -0.57595±0.01319 -0.57858±0.00797 -0.58000
d2 0.34887±0.13309 0.37173±0.09374 0.3613±0.04234 0.36502±0.02236 0.36882±0.01406 0.37275±0.01155 0.38000

δ (%) 14.37789±4.09728 10.15813±2.81647 4.59738±1.5813 2.85029±0.95983 1.76306±0.79823 1.33988±0.54453
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Fig. 3. The TS-RLS estimates θ1, θ2, θ3 versus t with
σ 2 = 0.102.
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Fig. 4. The TS-RLS estimates a1, a2, c1, c2 versus t with
σ 2 = 0.102.

timation errors than the AM-RLS algorithm - see Figs. 1-
2.

6. CONCLUSIONS

The main contribution of this paper is to derive the
AM-RLS algorithm and the TS-RLS algorithm for the M-
OEARMA systems. The simulation indicates that the pro-
posed TS-RLS algorithm can generate higher accurate pa-
rameter estimates compared with the AM-RLS algorithm
in MatLab. The proposed methods in this paper can be ex-
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Fig. 5. The TS-RLS estimates d1, d2 versus t with σ 2 =
0.102.

tended to study the identification problems of other mul-
tivariate systems with different structures and disturbance
noise. The identification method presented in this paper
can be extended to study the parameter estimation algo-
rithms of different systems [41–51] and can be applied to
other fields [52–58].

REFERENCES

[1] Y. Gu, J. Liu, X. Li, Y. Chou, and Y. Ji, “State space model
identification of multirate processes with time-delay using
the expectation maximization,” Journal of the Franklin In-
stitute, vol. 356, no. 3, pp. 1623-1639, February 2019.

[2] Y. Gu, Y. Chou, J. Liu, and Y. Ji, “Moving horizon estima-
tion for multirate systems with time-varying time-delays,”
Journal of the Franklin Institute, vol. 356, no. 4, pp. 2325-
2345, March 2019.

[3] Y. Cao, P. Li, and Y. Zhang, “Parallel processing algorithm
for railway signal fault diagnosis data based on cloud com-
puting,” Future Generation Computer Systems, vol. 88, pp.
279-283, November 2018.

[4] Y. Z. Zhang, Y. Cao, Y. H. Wen, L. Liang, and F. Zou,
“Optimization of information interaction protocols in co-
operative vehicle-infrastructure systems,” Chinese Journal
of Electronics, vol. 27, no. 2, pp. 439-444, March 2018.

[5] Y. Cao, L. C. Ma, S. Xiao, X. Zhang, and W. Xu, “Standard
analysis for transfer delay in CTCS-3,” Chinese Journal

http://dx.doi.org/10.1016/j.jfranklin.2018.08.030
http://dx.doi.org/10.1016/j.jfranklin.2018.08.030
http://dx.doi.org/10.1016/j.jfranklin.2018.08.030
http://dx.doi.org/10.1016/j.jfranklin.2018.08.030
http://dx.doi.org/10.1016/j.jfranklin.2018.12.006
http://dx.doi.org/10.1016/j.jfranklin.2018.12.006
http://dx.doi.org/10.1016/j.jfranklin.2018.12.006
http://dx.doi.org/10.1016/j.jfranklin.2018.12.006
http://dx.doi.org/10.1016/j.future.2018.05.038
http://dx.doi.org/10.1016/j.future.2018.05.038
http://dx.doi.org/10.1016/j.future.2018.05.038
http://dx.doi.org/10.1016/j.future.2018.05.038
http://dx.doi.org/10.1049/cje.2017.10.009
http://dx.doi.org/10.1049/cje.2017.10.009
http://dx.doi.org/10.1049/cje.2017.10.009
http://dx.doi.org/10.1049/cje.2017.10.009
http://dx.doi.org/10.1049/cje.2017.08.024
http://dx.doi.org/10.1049/cje.2017.08.024


Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive ...1555

of Electronics, vol. 26, no. 5, pp. 1057-1063, September
2017.

[6] Y. Cao, Y. Wen, X. Meng, and W. Xu, “Performance eval-
uation with improved receiver design for asynchronous co-
ordinated multipoint transmissions,” Chinese Journal of
Electronics. vol. 25, no. 2, pp. 372-378, March 2016.

[7] F. Liu, “Rough maximal functions supported by subva-
rieties on Triebel-Lizorkin spaces,” Revista De La Real
Academia De Ciencias Exactas Fisicas Y Naturales Serie
A-Matematicas, vol. 112, no. 2, pp. 593-614, April 2018.

[8] F. Liu, Z. Fu, and S. Jhang, “Boundedness and continu-
ity of Marcinkiewicz integrals associated to homogeneous
mappings on Triebel-Lizorkin spaces,” Frontiers of Mathe-
matics in China, vol. 14, no. 1, pp. 95-122, January 2019.

[9] X. S. Zhan, L. L. Cheng, J. Wu, Q. S. Yang, and T. Han,
“Optimal modified performance of MIMO networked con-
trol systems with multi-parameter constraints,” ISA Trans-
actions, vol. 84, no. 1, pp. 111-117, January 2019.

[10] M. Gan, C. L. P. Chen, G. Y. Chen, and L. Chen, “On some
separated algorithms for separable nonlinear squares prob-
lems,” IEEE Transactions on Cybernetics, vol. 48, no. 10,
pp. 2866-2874, October 2018.

[11] M. Gan, H. X. Li, and H. Peng, “A variable projection ap-
proach for efficient estimation of RBF-ARX model,” IEEE
Transactions on Cybernetics, vol. 45, no. 3, pp. 462-471,
March 2015.

[12] A. Brouri, F. Giri, F. Ikhouane, F. Z. Chaoui, and O.
Amdouri, “Identification of Hammerstein-Wiener systems
with backlask input nonlinearity bordered by straight
lines,” Proc. of 19th IFAC World Congress, vol. 47, no. 3,
pp. 475-480, August 2014.

[13] C. P. Yu, L. H. Xie, and Y. C. Soh, “Blind channel and
source estimation in networked systems,” IEEE Transac-
tions on Signal Processing, vol. 62, no. 17, pp. 4611-4626,
September 2014.

[14] R. N. Mahia, M. Singh, and D. M. Fulwani, “Identifica-
tion of optimal set of driver nodes in complex networked
systems using region of attraction,” International Journal
of Control Automation and Systems, vol. 16, no. 1, pp. 97-
107, February 2018.

[15] L. Xu, “The parameter estimation algorithms based on the
dynamical response measurement data,” Advances in Me-
chanical Engineering, vol. 9, no. 11, pp. 1-12, November
2017. doi: 10.1177/1687814017730003

[16] Y. J. Wang, F. Ding, and M. H. Wu, “Recursive parame-
ter estimation algorithm for multivariate output-error sys-
tems,” Journal of the Franklin Institute, vol. 355, no. 12,
pp. 5163-5181, August 2018.

[17] G. Y. Chen, M. Gan, C. L. P. Chen, and H. X. Li, “A regu-
larized variable projection algorithm for separable nonlin-
ear least-squares problems,” IEEE Transactions on Auto-
matic Control, vol. 64, no. 2, pp. 526-537, February 2019.

[18] Z. P. Zhou and X. F. Liu, “State and fault estimation of
sandwich systems with hysteresis,” International Journal
of Robust and Nonlinear Control, vol. 28, no. 13, pp. 3974-
3986, September 2018.

[19] J. Pan, X. Jiang, X.K. Wan, and W. Ding, “A filtering based
multi-innovation extended stochastic gradient algorithm
for multivariable control systems,” International Journal of
Control Automation and Systems, vol. 15, no. 3, pp. 1189-
1197, June 2017.

[20] A. Brouri, L. Kadi, and S. Slassi, “Frequency identifica-
tion of Hammerstein-Wiener systems with backlash input
nonlinearity,” International Journal of Control Automation
and Systems, vol. 15, no. 5, pp. 2222-2232, October 2017.

[21] A. Brouri, O. Amdouri, F. Z. Chaoui, and F. Giri,
“Frequency identification of Hammerstein-Wiener systems
with piecewise affine input nonlinearity,” Proc. of 19th
IFAC World Congress, vol. 47, no. 3, pp. 10030-10035,
August 2014.

[22] J. Na, J. Yang, X. Wu, and Y. Guo, “Robust adaptive pa-
rameter estimation of sinusoidal signals,” Automatica, vol.
53, pp. 376-384, March 2015.

[23] L. Xu, “Application of the Newton iteration algorithm to
the parameter estimation for dynamical systems,” Journal
of Computational and Applied Mathematics, vol. 288, pp.
33-43, November 2015.

[24] L. Xu and F. Ding, “Parameter estimation for control sys-
tems based on impulse responses,” International Journal of
Control Automation and Systems, vol. 15, no. 6, pp. 2471-
2479, December 2017.

[25] J. L. Ding, “Recursive and iterative least squares parameter
estimation algorithms for multiple-input-output-error sys-
tems with autoregressive noise,” Circuits Systems, and Sig-
nal Processing, vol. 37, no. 5, pp. 1884-1906, May 2018.

[26] X. Zhang, L. Xu, F. Ding, and T. Hayat, “Combined state
and parameter estimation for a bilinear state space system
with moving average noise,” Journal of the Franklin Insti-
tute, vol. 355, no. 6, pp. 3079-3103, April 2018.

[27] J. Chen, B. Jiang, and J. Li, “Missing output identification
model based recursive least squares algorithm for a dis-
tributed parameter system,” International Journal of Con-
trol Automation and Systems, vol. 16, no. 1, pp. 150-157,
February 2018.

[28] H. Cho and S. C. Yu, “Variable data-window-size recursive
least-squares algorithm for dynamic system identification,”
Electronics Letters, vol. 51, no. 4, pp. 341-343, February
2015.

[29] Y. J. Wang and F. Ding, “A filtering based multi-innovation
gradient estimation algorithm and performance analysis
for nonlinear dynamical systems,” IMA Journal of Applied
Mathematics, vol. 82, no. 6, pp. 1171-1191, November
2017.

[30] X. Zhang, F. Ding, L. Xu, and E. F. Yang, “State filtering-
based least squares parameter estimation for bilinear sys-
tems using the hierarchical identification principle,” IET
Control Theory and Applications, vol. 12, no. 12, pp. 1704-
1713, August 2018.

[31] Z. W. Ge, F. Ding, L. Xu, A. Alsaedi, and T. Hayat,
“Gradient-based iterative identification method for multi-
variate equation-error autoregressive moving average sys-
tems using the decomposition technique,” Journal of the
Franklin Institute, vol. 356, no. 3, pp. 1658-1676, Febru-
ary 2019.

http://dx.doi.org/10.1049/cje.2017.08.024
http://dx.doi.org/10.1049/cje.2017.08.024
http://dx.doi.org/10.1049/cje.2017.08.024
http://dx.doi.org/10.1049/cje.2016.03.026
http://dx.doi.org/10.1049/cje.2016.03.026
http://dx.doi.org/10.1049/cje.2016.03.026
http://dx.doi.org/10.1049/cje.2016.03.026
http://dx.doi.org/10.1007/s13398-017-0400-0
http://dx.doi.org/10.1007/s13398-017-0400-0
http://dx.doi.org/10.1007/s13398-017-0400-0
http://dx.doi.org/10.1007/s13398-017-0400-0
http://dx.doi.org/0.1007/s11464-019-0742-3
http://dx.doi.org/0.1007/s11464-019-0742-3
http://dx.doi.org/0.1007/s11464-019-0742-3
http://dx.doi.org/0.1007/s11464-019-0742-3
http://dx.doi.org/10.1016/j.isatra.2018.09.018
http://dx.doi.org/10.1016/j.isatra.2018.09.018
http://dx.doi.org/10.1016/j.isatra.2018.09.018
http://dx.doi.org/10.1016/j.isatra.2018.09.018
http://dx.doi.org/10.1109/TCYB.2017.2751558
http://dx.doi.org/10.1109/TCYB.2017.2751558
http://dx.doi.org/10.1109/TCYB.2017.2751558
http://dx.doi.org/10.1109/TCYB.2017.2751558
http://dx.doi.org/10.1109/TCYB.2014.2328438
http://dx.doi.org/10.1109/TCYB.2014.2328438
http://dx.doi.org/10.1109/TCYB.2014.2328438
http://dx.doi.org/10.1109/TCYB.2014.2328438
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00678
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00678
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00678
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00678
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00678
http://dx.doi.org/10.1109/TSP.2014.2338837
http://dx.doi.org/10.1109/TSP.2014.2338837
http://dx.doi.org/10.1109/TSP.2014.2338837
http://dx.doi.org/10.1109/TSP.2014.2338837
http://dx.doi.org/10.1007/s12555-016-0731-1
http://dx.doi.org/10.1007/s12555-016-0731-1
http://dx.doi.org/10.1007/s12555-016-0731-1
http://dx.doi.org/10.1007/s12555-016-0731-1
http://dx.doi.org/10.1007/s12555-016-0731-1
http://dx.doi.org/10.1177/1687814017730003
http://dx.doi.org/10.1177/1687814017730003
http://dx.doi.org/10.1177/1687814017730003
http://dx.doi.org/10.1177/1687814017730003
http://dx.doi.org/10.1016/j.jfranklin.2018.04.013
http://dx.doi.org/10.1016/j.jfranklin.2018.04.013
http://dx.doi.org/10.1016/j.jfranklin.2018.04.013
http://dx.doi.org/10.1016/j.jfranklin.2018.04.013
http://dx.doi.org/10.1109/TAC.2018.2838045
http://dx.doi.org/10.1109/TAC.2018.2838045
http://dx.doi.org/10.1109/TAC.2018.2838045
http://dx.doi.org/10.1109/TAC.2018.2838045
http://dx.doi.org/10.1002/rnc.4116
http://dx.doi.org/10.1002/rnc.4116
http://dx.doi.org/10.1002/rnc.4116
http://dx.doi.org/10.1002/rnc.4116
http://dx.doi.org/10.1007/s12555-016-0081-z
http://dx.doi.org/10.1007/s12555-016-0081-z
http://dx.doi.org/10.1007/s12555-016-0081-z
http://dx.doi.org/10.1007/s12555-016-0081-z
http://dx.doi.org/10.1007/s12555-016-0081-z
http://dx.doi.org/10.1007/s12555-016-0312-3
http://dx.doi.org/10.1007/s12555-016-0312-3
http://dx.doi.org/10.1007/s12555-016-0312-3
http://dx.doi.org/10.1007/s12555-016-0312-3
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00303
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00303
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00303
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00303
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00303
http://dx.doi.org/10.1016/j.automatica.2015.01.019
http://dx.doi.org/10.1016/j.automatica.2015.01.019
http://dx.doi.org/10.1016/j.automatica.2015.01.019
http://dx.doi.org/10.1016/j.cam.2015.03.057
http://dx.doi.org/10.1016/j.cam.2015.03.057
http://dx.doi.org/10.1016/j.cam.2015.03.057
http://dx.doi.org/10.1016/j.cam.2015.03.057
http://dx.doi.org/10.1007/s12555-016-0224-2
http://dx.doi.org/10.1007/s12555-016-0224-2
http://dx.doi.org/10.1007/s12555-016-0224-2
http://dx.doi.org/10.1007/s12555-016-0224-2
http://dx.doi.org/10.1007/s00034-017-0636-0
http://dx.doi.org/10.1007/s00034-017-0636-0
http://dx.doi.org/10.1007/s00034-017-0636-0
http://dx.doi.org/10.1007/s00034-017-0636-0
http://dx.doi.org/10.1016/j.jfranklin.2018.01.011
http://dx.doi.org/10.1016/j.jfranklin.2018.01.011
http://dx.doi.org/10.1016/j.jfranklin.2018.01.011
http://dx.doi.org/10.1016/j.jfranklin.2018.01.011
http://dx.doi.org/10.1007/s12555-016-0606-5
http://dx.doi.org/10.1007/s12555-016-0606-5
http://dx.doi.org/10.1007/s12555-016-0606-5
http://dx.doi.org/10.1007/s12555-016-0606-5
http://dx.doi.org/10.1007/s12555-016-0606-5
http://dx.doi.org/10.1049/el.2014.3251
http://dx.doi.org/10.1049/el.2014.3251
http://dx.doi.org/10.1049/el.2014.3251
http://dx.doi.org/10.1049/el.2014.3251
http://dx.doi.org/10.1093/imamat/hxx029
http://dx.doi.org/10.1093/imamat/hxx029
http://dx.doi.org/10.1093/imamat/hxx029
http://dx.doi.org/10.1093/imamat/hxx029
http://dx.doi.org/10.1093/imamat/hxx029
http://dx.doi.org/10.1049/iet-cta.2018.0156
http://dx.doi.org/10.1049/iet-cta.2018.0156
http://dx.doi.org/10.1049/iet-cta.2018.0156
http://dx.doi.org/10.1049/iet-cta.2018.0156
http://dx.doi.org/10.1049/iet-cta.2018.0156
http://dx.doi.org/10.1016/j.jfranklin.2018.12.002
http://dx.doi.org/10.1016/j.jfranklin.2018.12.002
http://dx.doi.org/10.1016/j.jfranklin.2018.12.002
http://dx.doi.org/10.1016/j.jfranklin.2018.12.002
http://dx.doi.org/10.1016/j.jfranklin.2018.12.002
http://dx.doi.org/10.1016/j.jfranklin.2018.12.002


1556 Yunze Guo, Lijuan Wan, Ling Xu, Feng Ding, Ahmed Alsaedi, and Tasawar Hayat

[32] L. Xu, W. L. Xiong, A. Alsaedi, and T. Hayat, “Hierarchi-
cal parameter estimation for the frequency response based
on the dynamical window data,” International Journal of
Control Automation and Systems, vol. 16, no. 4, pp. 1756-
1764, August 2018.

[33] L. Xu and F. Ding, “Iterative parameter estimation for sig-
nal models based on measured data,” Circuits Systems and
Signal Processing, vol. 37, no. 7, pp. 3046-3069, July
2018.

[34] Y. P. Pan, X. Li, and H. Y. Yu, “Least-squares learning
control with guaranteed parameter convergence,” Proc. of
22nd International Conference on Automation and Com-
puting (ICAC), Colchester, UK, 2016.

[35] Y. P. Pan and H. Y. Yu, “Composite learning from adaptive
dynamic surface control,” IEEE Transactions on Automatic
Control, vol. 61, no. 9, pp. 2603-2609, September 2016.

[36] Q. Y. Liu and F. Ding, “Auxiliary model-based recursive
generalized least squares algorithm for multivariate output-
error autoregressive systems using the data filtering,” Cir-
cuits Systems and Signal Processing, vol. 38, no. 2, pp.
590-610, February 2019.

[37] T. L. Lai and C. Z. Wei, “least squares estimates in stochas-
tic regression models with applications to identification
and control of dynamic systems,” The Annals of Statistics,
vol. 10, no. 1, pp. 154-166, January 1982.

[38] F. Ding, “Coupled-least-squares identification for multi-
variable systems,” IET Control Theory and Applications,
vol. 7, no. 1, pp. 68-79, January 2013.

[39] Y. J. Wang and F. Ding, “Novel data filtering based param-
eter identification for multiple-input multiple-output sys-
tems using the auxiliary model,” Automatica, vol. 71, pp.
308-313, September 2016.

[40] Y. J. Wang and F. Ding, “The auxiliary model based hier-
archical gradient algorithms and convergence analysis us-
ing the filtering technique,”Signal Processing, vol. 128, pp.
212-221, November 2016.

[41] Y. J. Wang, F. Ding, and L. Xu, “Some new results of de-
signing an IIR filter with colored noise for signal process-
ing,” Digital Signal Processing, vol. 72, pp. 44-58, January
2018.

[42] Y. Ji and F. Ding, “Multiperiodicity and exponential attrac-
tivity of neural networks with mixed delays,” Circuits Sys-
tems and Signal Processing, vol. 36, no. 6, pp. 2558-2573,
June 2017.

[43] F. Ding, Y. J. Wang, J. Y. Dai, Q. S Li, and Q. J. Chen, “A
recursive least squares parameter estimation algorithm for
output nonlinear autoregressive systems using the input-
output data filtering,” Journal of the Franklin Institute, vol.
354, no. 15, pp. 6938-6955, October 2017.

[44] H. B. Chen, Y. S. Xiao, and F. Ding, “Hierarchical gradient
parameter estimation algorithm for Hammerstein nonlinear
systems using the key term separation principle,” Applied
Mathematics and Computation, vol. 247, pp. 1202-1210,
November 2014.

[45] Y. W. Mao and F. Ding, “A novel parameter separation
based identification algorithm for Hammerstein systems,”
Applied Mathematics Letters, vol. 60, pp. 21-27, October
2016.

[46] Y. Ji and X. M. Liu, “Unified synchronization criteria for
hybrid switching-impulsive dynamical networks,” Circuits
Systems Signal Processing, vol. 34, no. 5, pp. 1499-1517,
May 2015.

[47] L. Xu, “A proportional differential control method for a
time-delay system using the Taylor expansion approxima-
tion,” Applied Mathematics and Computation, vol. 236, pp.
391-399, June 2015.

[48] L. Xu, L. Chen, and W. L. Xiong, “Parameter estimation
and controller design for dynamic systems from the step
responses based on the Newton iteration,” Nonlinear Dy-
namics, vol. 79, no. 3, pp. 2155-2163, February 2015.

[49] L. Xu, “The damping iterative parameter identification
method for dynamical systems based on the sine signal
measurement,” Signal Processing, vol. 120, pp. 660-667,
March 2016.

[50] L. Xu and F. Ding, “The parameter estimation algo-
rithms for dynamical response signals based on the multi-
innovation theory and the hierarchical principle,” IET Sig-
nal Processing, vol. 11, no. 2, pp. 228-237, April 2017.

[51] L. Xu, F. Ding, and Q. M. Zhu, “Hierarchical Newton and
least squares iterative estimation algorithm for dynamic
systems by transfer functions based on the impulse re-
sponses,” International Journal of Systems Science, vol.
50, no. 1, pp. 141-151, January 2019.

[52] F. Liu, “Boundedness and continuity of maximal opera-
tors associated to polynomial compound curves on Triebel-
Lizorkin spaces,” Mathematical Inequalities & Applica-
tions, vol. 22, no. 1, pp. 25-44, January 2019.

[53] L. Feng, Q. X. Li, and Y. F. Li, “Imaging with 3-D aperture
synthesis radiometers,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 4, p. 2395-2406, April
2019.

[54] W. X. Shi, N. Liu, Y. M. Zhou, and X. A. Cao, “Effects
of postannealing on the characteristics and reliability of
polyfluorene organic light-emitting diodes,” IEEE Trans-
actions on Electron Devices, vol. 66, no. 2, pp. 1057-1062,
February 2019.

[55] N. Zhao, R. Liu, Y. Chen, M. Wu, Y. Jiang, W. Xiong, and
C. Liu, “Contract design for relay incentive mechanism un-
der dual asymmetric information in cooperative networks,”
Wireless Networks, vol. 24, no. 8, pp. 3029-3044, Novem-
ber 2018.

[56] J. Pan, W. Li, and H. P. Zhang, “Control algorithms of mag-
netic suspension systems based on the improved double
exponential reaching law of sliding mode control,” Inter-
national Journal of Control Automation and Systems, vol.
16, no. 6, pp. 2878-2887, December 2018.

[57] Y. Wang, Y. Si, B. Huang, and S. X. Ding, “Survey on the
theoretical research and engineering applications of mul-
tivariate statistics process monitoring algorithms: 2008-
2017,” The Canadian Journal of Chemical Engineering,
vol. 96, no. 10, pp. 2073-2085, October 2018.

http://dx.doi.org/10.1007/s12555-017-0482-7
http://dx.doi.org/10.1007/s12555-017-0482-7
http://dx.doi.org/10.1007/s12555-017-0482-7
http://dx.doi.org/10.1007/s12555-017-0482-7
http://dx.doi.org/10.1007/s12555-017-0482-7
http://dx.doi.org/10.1007/s00034-017-0705-4
http://dx.doi.org/10.1007/s00034-017-0705-4
http://dx.doi.org/10.1007/s00034-017-0705-4
http://dx.doi.org/10.1007/s00034-017-0705-4
http://dx.doi.org/10.1109/IConAC.2016.7604907
http://dx.doi.org/10.1109/IConAC.2016.7604907
http://dx.doi.org/10.1109/IConAC.2016.7604907
http://dx.doi.org/10.1109/IConAC.2016.7604907
http://dx.doi.org/10.1109/TAC.2015.2495232
http://dx.doi.org/10.1109/TAC.2015.2495232
http://dx.doi.org/10.1109/TAC.2015.2495232
http://dx.doi.org/10.1007/s00034-018-0871-z
http://dx.doi.org/10.1007/s00034-018-0871-z
http://dx.doi.org/10.1007/s00034-018-0871-z
http://dx.doi.org/10.1007/s00034-018-0871-z
http://dx.doi.org/10.1007/s00034-018-0871-z
http://dx.doi.org/10.1049/iet-cta.2012.0171
http://dx.doi.org/10.1049/iet-cta.2012.0171
http://dx.doi.org/10.1049/iet-cta.2012.0171
http://dx.doi.org/10.1016/j.automatica.2016.05.024
http://dx.doi.org/10.1016/j.automatica.2016.05.024
http://dx.doi.org/10.1016/j.automatica.2016.05.024
http://dx.doi.org/10.1016/j.automatica.2016.05.024
http://dx.doi.org/10.1016/j.sigpro.2016.03.027
http://dx.doi.org/10.1016/j.sigpro.2016.03.027
http://dx.doi.org/10.1016/j.sigpro.2016.03.027
http://dx.doi.org/10.1016/j.sigpro.2016.03.027
http://dx.doi.org/10.1016/j.dsp.2017.09.006
http://dx.doi.org/10.1016/j.dsp.2017.09.006
http://dx.doi.org/10.1016/j.dsp.2017.09.006
http://dx.doi.org/10.1016/j.dsp.2017.09.006
http://dx.doi.org/10.1007/s00034-016-0420-6
http://dx.doi.org/10.1007/s00034-016-0420-6
http://dx.doi.org/10.1007/s00034-016-0420-6
http://dx.doi.org/10.1007/s00034-016-0420-6
http://dx.doi.org/10.1016/j.jfranklin.2017.08.009
http://dx.doi.org/10.1016/j.jfranklin.2017.08.009
http://dx.doi.org/10.1016/j.jfranklin.2017.08.009
http://dx.doi.org/10.1016/j.jfranklin.2017.08.009
http://dx.doi.org/10.1016/j.jfranklin.2017.08.009
http://dx.doi.org/10.1016/j.amc.2014.09.070
http://dx.doi.org/10.1016/j.amc.2014.09.070
http://dx.doi.org/10.1016/j.amc.2014.09.070
http://dx.doi.org/10.1016/j.amc.2014.09.070
http://dx.doi.org/10.1016/j.amc.2014.09.070
http://dx.doi.org/10.1016/j.aml.2016.03.016
http://dx.doi.org/10.1016/j.aml.2016.03.016
http://dx.doi.org/10.1016/j.aml.2016.03.016
http://dx.doi.org/10.1016/j.aml.2016.03.016
http://dx.doi.org/10.1007/s00034-014-9916-0
http://dx.doi.org/10.1007/s00034-014-9916-0
http://dx.doi.org/10.1007/s00034-014-9916-0
http://dx.doi.org/10.1007/s00034-014-9916-0
http://dx.doi.org/10.1016/j.amc.2014.02.087
http://dx.doi.org/10.1016/j.amc.2014.02.087
http://dx.doi.org/10.1016/j.amc.2014.02.087
http://dx.doi.org/10.1016/j.amc.2014.02.087
http://dx.doi.org/10.1007/s11071-014-1801-7
http://dx.doi.org/10.1007/s11071-014-1801-7
http://dx.doi.org/10.1007/s11071-014-1801-7
http://dx.doi.org/10.1007/s11071-014-1801-7
http://dx.doi.org/10.1016/j.sigpro.2015.10.009
http://dx.doi.org/10.1016/j.sigpro.2015.10.009
http://dx.doi.org/10.1016/j.sigpro.2015.10.009
http://dx.doi.org/10.1016/j.sigpro.2015.10.009
http://dx.doi.org/10.1049/iet-spr.2016.0220
http://dx.doi.org/10.1049/iet-spr.2016.0220
http://dx.doi.org/10.1049/iet-spr.2016.0220
http://dx.doi.org/10.1049/iet-spr.2016.0220
http://dx.doi.org/10.1080/00207721.2018.1544303
http://dx.doi.org/10.1080/00207721.2018.1544303
http://dx.doi.org/10.1080/00207721.2018.1544303
http://dx.doi.org/10.1080/00207721.2018.1544303
http://dx.doi.org/10.1080/00207721.2018.1544303
http://dx.doi.org/10.7153/mia-2019-22-02
http://dx.doi.org/10.7153/mia-2019-22-02
http://dx.doi.org/10.7153/mia-2019-22-02
http://dx.doi.org/10.7153/mia-2019-22-02
http://dx.doi.org/10.1109/TGRS.2018.2872922
http://dx.doi.org/10.1109/TGRS.2018.2872922
http://dx.doi.org/10.1109/TGRS.2018.2872922
http://dx.doi.org/10.1109/TGRS.2018.2872922
http://dx.doi.org/10.1109/TED.2018.2888858
http://dx.doi.org/10.1109/TED.2018.2888858
http://dx.doi.org/10.1109/TED.2018.2888858
http://dx.doi.org/10.1109/TED.2018.2888858
http://dx.doi.org/10.1109/TED.2018.2888858
http://dx.doi.org/10.1007/s11276-017-1518-x
http://dx.doi.org/10.1007/s11276-017-1518-x
http://dx.doi.org/10.1007/s11276-017-1518-x
http://dx.doi.org/10.1007/s11276-017-1518-x
http://dx.doi.org/10.1007/s11276-017-1518-x
http://dx.doi.org/10.1007/s12555-017-0616-y
http://dx.doi.org/10.1007/s12555-017-0616-y
http://dx.doi.org/10.1007/s12555-017-0616-y
http://dx.doi.org/10.1007/s12555-017-0616-y
http://dx.doi.org/10.1007/s12555-017-0616-y
http://dx.doi.org/10.1002/cjce.23249
http://dx.doi.org/10.1002/cjce.23249
http://dx.doi.org/10.1002/cjce.23249
http://dx.doi.org/10.1002/cjce.23249
http://dx.doi.org/10.1002/cjce.23249


Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive ...1557

[58] X. Y. Li, H. X. Li, and B. Y. Wu, “Piecewise reproducing
kernel method for linear impulsive delay differential equa-
tions with piecewise constant arguments,” Applied Mathe-
matics and Computation, vol. 349, pp. 304-313, May 2019.

Yunze Guo was born in Luoyang (Henan
Province, China) in 1996. He received his
B.Sc. degree from the North China Uni-
versity of Water Resources and Electric
Power (Zhengzhou, China) in 2017. He is
currently a master student in the School of
Internet of Things Engineering, Jiangnan
University, (Wuxi, China). His interests
include system modeling, system identifi-

cation and parameter estimation.

Lijuan Wan received her B.Sc. and M.Sc.
degrees from Wuhan University, in 2006
and 2008, respectively. She has been a
lecturer in the School of Mathematics and
Physics at the Qingdao University of Sci-
ence and Technology (Qingdao, China)
since 2008. She is currently a Ph.D. stu-
dent in the College of Automation and
Electronic Engineering, Qingdao Univer-

sity of Science and Technology. Her research interests include
system modeling and system identification.

Ling Xu was born in Tianjin, China.
She received her Master and Ph.D. de-
grees from the Jiangnan University (Wuxi,
China), in 2005 and 2015, respectively.
She has been an Associate Professor since
2015. She is a Colleges and Universi-
ties,Blue Project, Young Teacher (Jiangsu,
China). Her research interests include pro-
cess control, parameter estimation and sig-

nal modeling.

Feng Ding received his B.Sc. degree
from the Hubei University of Technology
(Wuhan, China) in 1984, and his M.Sc.
and Ph.D. degrees both from the Tsinghua
University, in 1991 and 1994, respectively.
He has been a professor in the School
of Internet of Things Engineering at the
Jiangnan University (Wuxi, China) since
2004. His current research interests in-

clude model identification and adaptive control. He authored
four books on System Identification.

Ahmed Alsaedi obtained his Ph.D. degree
from Swansea University (UK) in 2002.
He has a broad experience of research in
applied mathematics. His fields of in-
terest include dynamical systems, nonlin-
ear analysis involving ordinary differen-
tial equations, fractional differential equa-
tions, boundary value problems, mathe-
matical modeling, biomathematics, New-

tonian and Non-Newtonian fluid mechanics. He has published
several articles in peer-reviewed journals. He has supervised
several M.S. students and executed many research projects suc-
cessfully. He is reviewer of several international journals. He
served as the chairman of the mathematics department at KAU
and presently he is serving as director of the research program at
KAU. Under his great leadership, this program is running quite
successfully and it has attracted a large number of highly rated
researchers and distinguished professors from all over the world.
He is also the head of NAAM international research group at
KAU.

Tasawar Hayat was born in Khanewal,
Punjab, Distinguished National Profes-
sor and Chairperson of Mathematics De-
partment at Quaid-I-Azam University is
renowned worldwide for his seminal, di-
versified and fundamental contributions in
models relevant to physiological systems,
control engineering. He has a honor of
being fellow of Pakistan Academy of Sci-

ences, Third World Academy of Sciences (TWAS) and Islamic
World Academy of Sciences in the mathematical Sciences.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

http://dx.doi.org/10.1016/j.amc.2018.12.054
http://dx.doi.org/10.1016/j.amc.2018.12.054
http://dx.doi.org/10.1016/j.amc.2018.12.054
http://dx.doi.org/10.1016/j.amc.2018.12.054

