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An Improved Consistent Subspace Identification Method Using Parity
Space for State-space Models
Jie Hou* ■ , Fengwei Chen, Penghua Li, Zhiqin Zhu, and Fei Liu

Abstract: In this paper, an alternative consistent subspace identification method using parity space is proposed.
The future/past input data and the past output data are used to construct the instrument variable to eliminate the
noise effect on consistent estimation. The extended observability matrix and the triangular block-Toeplitz matrix
are then retrieved from a parity space of the noise-free matrix using a singular value decomposition based method.
The system matrices are finally estimated from the above estimated matrices. The consistency of the proposed
method for estimation of the extended observability matrix and the triangular block-Toeplitz matrix is established.
Compared with the classical SIMs using parity space like SIMPCA and SIMPCA-Wc, the proposed method gen-
erally enhances the estimated model efficiency/accuracy thanks to the use of future input data. Two examples are
presented to illustrate the effectiveness and merit of the proposed method.
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1. INTRODUCTION

Subspace identification methods (SIMs) have been
known as very useful tools for state-space systems, which
have been attracted considerable attention [1–3] in the
past decades. The main proponents of these methods are
MOESP (Multivariate Output Error State-space) proposed
in [4], N4SID (Numerical algorithms for State-space Sub-
Space IDentification) in [5], and CVA (Canonical Variate
Analysis) in [6]. The statistical properties of these meth-
ods are fairly well established in a series of papers [7–10].
The above-mentioned methods estimate the extended ob-
servability matrix or state from a signal subspace of cer-
tain noise-free matrix, then retrieve the system matrices
based on the above intermediate results.

In parallel, owing to that the SIMs using parity space
like SIMPCA [11, 12] and SIMPCA-Wc [13], can esti-
mate the extended observability matrix and the triangu-
lar block-Toeplitz matrix simultaneously from the same
parity space of the noise-free matrix, all of the system
matrices can then be easily retrieved from the estimated
matrices. These methods have gained great interest from
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both academy and industry in the recent years, and have
been widely applied for system identification [14–20],
process monitoring and fault diagnosis [21–25], and ad-
vanced control [26–30].

Note that the instrument variables (IVs) in SIMPCA
and SIMPCA-Wc only contain the past input/output data,
which are uncorrelated with the future input data for white
input system, but are weakly correlated with the future in-
put/output data for colored input system. This may lead to
a loss in the rank of the future input/output Hankel matrix,
thus SIMPCA and SIMPCA-Wc may yield biased solu-
tions, especially, for white input systems.

To enhance the estimation efficiency/accuracy for SIM-
PCA and SIMPCA-Wc, an improvd consistent parity-
space based SIM using a new IV is proposed in the same
framework of SIMPCA and SIMPCA-Wc. The novelty of
the new IV lies in that it includes not only the past input
and output data as used in SIMPCA and SIMPCA-Wc, but
also the future input data, which can eliminate the noise
effect from the future input/output Hankel matrix without
causing a loss in the rank of the future input/output Hankel
matrix. After that, the proposed method provides consis-
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tent estimates, and this explains the reason why the new
method enhances the estimation efficiency/accuracy. Note
that the proposed method can be easily extended to recur-
sive real-time applications by the strategies in [31].

The remainder of the paper is organized as follows: In
Section 2 the identification problem is briefly presented.
In Section 3 the proposed SIM is presented in details, fol-
lowed by the consistency analysis in Section 4. Illustrative
examples are shown in Section 5 to demonstrate the effec-
tiveness of the proposed method. Finally, conclusions are
drawn in Section 6.

2. PROBLEM FORMULATION AND
ASSUMPTION

Consider the following state-space model,{
x(t +1) = Ax(t)+Bu(t),
y(t) =Cx(t)+Du(t)+ v(t),

(1)

where x(t) ∈ ℜnx ,u(t) ∈ ℜnu , and y(t) ∈ ℜny are the state-
vector, observed input signal, and observed output signal,
respectively. The system is corrupted by measurement
noise v(t)∈ ℜny . Denote by A,B,C,D the system matrices
defined with compatible dimensions.

The following assumptions are made for identification.
Assumption 1: The eigenvalues of A lie inside the unit

circle.
Assumption 2: The system is minimal in the sense that

the pair (A,C) is observable and the pair (A,B) is reach-
able.

Assumption 3: The noise v(t) is a stationary zero-mean
Gaussian white noise, and it is uncorrelated with input sig-
nal.

The identification task is to estimate the system matri-
ces (A,B,C,D) up to a similarity transformation.

Denote by p and f the past and future horizons ( p =
f ≥ nx [1]). Define the past and future input Hankel ma-
trices, respectively, by

Up =


u(t − p) . . . u(t − p+N −1)
u(t − p+1) . . . u(t − p+N)
...

. . .
...

u(t −1) . . . u(t +N −2)

 , (2)

U f =


u(t) . . . u(t +N −1)
u(t − p+1) . . . u(t +N)
...

. . .
...

u(t + f −1) . . . u(t + f +N −2)

 . (3)

Similar formulations are defined for Yp, Yf , Vp, and Vp.
The state sequences are defined as

Xp = [x(t − p),x(t − p+1), ...,x(t − p+N −1)], (4)

X f = [x(t),x(t +1), ...,x(t +N −1)]. (5)

Based on the descriptiones in (1), an block-Hankel state-
space model can be formulated as

X f = ApXp +LpUp, (6)

Yp = ΓpXp +HpUp +Vp, (7)

Yf = Γ f X f +H fU f +Vf , (8)

where the controllability matrix and observability ma-
trix are, respectively, L f = [A f−1B . . .B] and Γ f =
[C⊤ . . .(CA f−1)⊤]⊤, and the triangular Toeplitz matrix
is

H f =


D . . . . . . 0
CB . . . . . . 0
...

...
. . .

...
CA f−2 . . . CB D

 .
The matrices Γp and Hp are, respectively, defined simi-
larly to Γ f and H f .

3. PROPOSED METHOD

3.1. Estimation of Γ f and H f

Introducing three short-hands Zp = [Y⊤
p U⊤

p ]
⊤, Z f =

[Y⊤
f U⊤

f ]
⊤, and Z = [Z⊤

p U⊤
f ]

⊤, (7) can be rewritten in the
state-space form

Z f =

[
Γ f H f

0 I

][
X f

U f

]
+

[
I
0

]
E f . (9)

Given that Z is highly correlated with [X⊤
f U⊤

f ]⊤, but un-
correlated to the noise term E f . We use Z⊤(ZZ⊤/N)−1/2

as IV to remove E f from Z f . By post-multiplying both
sides of (9) with Z yields

Z f Z⊤

N

(
ZZ⊤

N

)−1/2

=
1
N

([
Γ f H f

0 I

][
X f

U f

]
+

[
I
0

]
E f

)
Z⊤
(

ZZ⊤

N

)−1/2

,

(10)

where, based on Assumption 3, the second term on the
right of (10) tends to zero with probability one (w.p.1) as
N tends to infinity. That is

lim
N→∞

E f Z⊤

N

(
ZZ⊤

N

)−1/2

= 0. (11)

Thus,

lim
N→∞

Z f Z⊤

N

(
ZZ⊤

N

)−1/2

= lim
N→∞

1
N

[
Γ f H f

0 I

][
X f

U f

]
Z⊤
(

ZZ⊤

N

)−1/2

.

(12)
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Since the following rank conditions hold (to be clarified in
the proof of Theorem 1)

rank

(
lim

N→∞

Z f Z⊤

N

(
ZZ⊤

N

)−1/2
)

= rank
([

Γ f H f

0 I

])
= nx + f nu. (13)

The general estimates of Γ f and H f are then given by[
Γ̂ f Ĥ f

0 I

]
= Û1, (14)

where Û1 is obtained from a low-rank approximation us-
ing singular value decomposition (SVD)

Z f Z⊤

N

(
ZZ⊤

N

)−1/2

= [Û1 Û2]

[
Ŝ1 0
0 Ŝ2

][
V̂⊤

1
V̂⊤

2

]
, (15)

where Ŝ1 ∈ ℜ(nx+ f nu)×(nx+ f nu), Û1 ∈ ℜ f (nu+ny)×(nx+ f nu),
V̂⊤

1 ∈ ℜ(nx+ f nu)×p(nu+ny), Ŝ2 ∈ ℜ( f ny−nx)×( f ny−nx), Û2 ∈
ℜ f (nu+ny)×( f ny−nx), and V̂⊤

2 ∈ ℜ( f ny−nx)×p(nu+ny). We shall
refer to these singular vectors of Û2 and V̂⊤

2 as the parity
space or null space.

In this paper, Γ f and H f are estimated from the left par-

ity space of Z f Z⊤

N

(
ZZ⊤

N

)−1/2
. By post-multiplying both

sides of (14) with Û⊤
2 yields,

Û⊤
2

[
Γ̂ f Ĥ f

0 I

]
= 0. (16)

Denoting

Û⊤
2 = [Û⊤

21,Û
⊤
22], (17)

where Û⊤
21 and Û⊤

22 are the first f ny columns and the last
f nu columns of Û⊤

2 , respectively. Substituting (17) into
(16) yields

Û⊤
21Γ̂ f = 0, (18)

−Û⊤
21Ĥ f = Û⊤

22. (19)

It follows from (18) that

Γ̂ f = [Û⊤
21]

⊥, (20)

where [Û⊤
21]

⊥ is a matrix for projection onto the orthogonal
complement of the row space of Û⊤

21.
To estimate H f , it is preferred to estimate H f 1 =

[DT (CB)T . . . (CA f−2B)T] to avoid redundant computa-
tion. Letting

−Û⊤
21 = [ϕ1 . . . ϕ f ], (21)

Û⊤
22 = [φ1 . . . φ f ], (22)

where ϕi ∈ ℜ(iny−nx)×ny and φi ∈ ℜ(iny−nx)×nu for i =
1, . . . , f .
Substituting (21) and (22) into (19) yields

[ϕ1 . . . ϕ f ]Ĥ f 1 = [φ1 . . . φ f ]. (23)

It follows that

ξ Ĥ f 1 = η , (24)

where

η =


ϕ1 . . . ϕ f−1 ϕ f

ϕ2 . . . ϕ f 0
...

...
. . .

...

ϕ f 0
... 0

 , (25)

ξ = [φ1 . . . φ f ]
⊤. (26)

A least squares (LS) solution to Ĥ f 1 is then obtained as

Ĥ f 1 = ξ †η . (27)

3.2. Estimation of system matrices
The matrices Ĉ and Â can be extracted directly from Γ̂ f

as follows:

Ĉ = Γ̂(1 : ny,1 : nx), (28)

Γ̂ f (nx +1 : f ny, :) = Γ̂ f (1 : ( f −1)ny, :)Â, (29)

where Matlab notation is used for partitioning matrices.
Therefore, a LS solution of Â is obtained as

Â = Γ̂†
f (1 : ( f −1)ny, :)Γ̂ f (nx +1 : f ny, :). (30)

The matrices B̂ and D̂ can then be extracted directly from
Ĥ f 1 along with Ĉ and Â. It follows from Ĥ f 1 that

H f 1 =

[
Iny 0
0 Γ(1 : ( f −1)ny,1 : nx)

][
D
B

]
. (31)

Therefore, a LS solutions of B̂ and D̂ are obtained as[
D̂
B̂

]
=

[
Iny 0
0 Γ̂(1 : ( f −1)ny,1 : nx)

]†

Ĥ f 1. (32)

The improved subspace identification method using parity
space (SIMps) can be summarized as follows:

Input: Sampled input-output data; Past and future
horizons p and f ; System order nx.
Output: System matrices A, B, C, D
Step 1: Eliminate the noise term as (10);
Step 2: Perform SVD as (15);
Step 3: Estimate Γ f and H f 1 as (20) and (27);
Step 4: Estimate A, B, C, D as (28), (30) and (32).
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4. CONSISTENT ANALYSIS

As is well-known in [11–13] that to obtain consistent
estimates of system matrices (A,B,C,D), the rank condi-
tions in (13) must be strictly fulfilled. The explicit con-
ditions on the input signals and on the system for con-
sistency of SIMps are then established by analyzing the
rank conditions in (13), as stated in the following theorem.
Before analying the consistency of SIMps, the following
Lemmas are first given.

Lemma 1 [32]: For matrices X1 ∈ℜm×n and X2 ∈ℜn×r,
the following rank conditions hold

1) rank(X1)≤ min(m,n),
2) rank(X1) + rank(X2) − n ≤ rank(X1X2) ≤

min(rank(X1),rank(X2)),
3) rank(X1)≤ rank(X⊤

1 ).
Lemma 2 [7]: For matrices X1 ∈ ℜm×m, X2 ∈ ℜn×n,

X3 ∈ ℜn×m, and a non-singular matrix X4 ∈ ℜn×n, and the
block-matrix

W =

[
X1 X2

X3 X4

]
∈ ℜ(m+n)×(m+n). (33)

Then,

rank(W ) = n+ rank(X1 −X2X−1
4 X3). (34)

Theorem 1: SIMps is consistent if the general Assump-
tions 1-3 and the following conditions hold

1) The input signal is persistently exciting (PE) of order
n+ p+ f ;

2) p ≥ nx and f ≥ nx.
Proof: By substituting (7) into the left side of (13)

yields

rank

(
lim

N→∞

Z f Z⊤

N

(
ZZ⊤

N

)−1/2
)

= rank

(
lim

N→∞

1
N

[
Γ f H f

0 I

][
X f

U f

]
+

[
I
0

]
E f

Yp

Up

U f

⊤

Ξ

)
,

(35)

where Ξ =

 1
N

 Yp

Up

U f

 Yp

Up

U f

⊤


−1/2

. Since that the

input and noise are jointly stationary and uncorrelated
with each other, (35) can be rewritten as

rank

(
lim

N→∞

Z f Z⊤

N

(
ZZ⊤

N

)−1/2
)

= rank

[Γ f H f

0 I

]
lim

N→∞

1
N

[
X f

U f

]Yp

Up

U f

⊤
(Ξ

N

) .

(36)

If f ≥ nx, based on Assumption 2,

rank(Γ f ) = nx. (37)

In view of Lemma 2, the rank of the first factor at the right
side of (36) can be computed as follows

rank
([

Γ f H f

0 I

])
= rank(Γ f )+ f nu = nx+ f nu. (38)

According to the statement (1) in Lemma 1, we have

rank

lim
N→∞

 1
N

[
X f

U f

]Yp

Up

U f

⊤
(Ξ

N

)≤ nx+ f nu.

(39)

In view of the statement (2) in Lemma 1, the conditions
(13) hold if and only if

rank

lim
N→∞

1
N

[
X f

U f

]Yp

Up

U f

⊤
(Ξ

N

)= nx+ f nu.

(40)

By substituting (6), (7) and (8) into (40), the condition in
(40) is equivalent to

rank

[Ap Lp 0
0 0 I

]
lim

N→∞

(
Ξ1

N

)Γp Hp 0
0 I 0
0 0 I

⊤

×

Γp Hp 0
0 I 0
0 0 I

lim
N→∞

(
Ξ1

N

)Γp Hp 0
0 I 0
0 0 I

⊤


= nx + f nu, (41)

where Ξ1 =

 1
N

 Xp

Up

U f

 Xp

Up

U f

⊤
. The first factor at

the right side of (41) has full row rank of f nu + nx if the
system (1) is reachable from u(t) and if p ≥ nx, that is

rank
([

Ap Lp 0
0 0 I

])
= nx + f nu. (42)

The second factor at the right side of (41) has full row rank
if input is PE of order p+ f +nx. Then,

rank
(

lim
N→∞

Ξ1

)
= nx + f nu. (43)

The third factor at the right side of (41) is full row rank
of nx +(p+ f )nu if p ≥ nx along with the statement (3) in
Lemma 1 and Lemma 2, that is

rank

 Γp Hp 0
0 I 0
0 0 I

= nx +(p+ f )nu. (44)
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Table 1. Overview of different IVs for different algo-
rithms.

Algorithms IVs
SIMps Z⊤(ZZ⊤/N)−1/2

SIMPCA [11] Z⊤
p

SIMPCA-Wc [13] Z⊤
p (ZpZ⊤

p /N)−1/2

Combining (42), (43), and (44), it is obvious that the rank
conditions in (13) hold under the conditions as summa-
rized in Theorem 1. This completes the proof. □

Remark 1: For clarity the presentation of the main
idea, we only study systems subject to measurement
noises. Extending SIMps to systems with both measure-
ment/process noises does not change of the arguments of
the paper generally at least if pnu ≥ nx [7].

Remark 2: The three algorithms (SIMps, SIMPCA
[12], and SIMPCA-Wc [13]) identify the system matri-
ces under the same algorithm framework, but each uses a
different IV, see Table 1 for more details. These IVs are all
uncorrelated with noise, but the IV in SIMps including the
future data is maximally correlated with than other IVs.

Remark 3: To get consistent estimations of Γ f and H f ,
the following rank condition must be fulfilled for SIM-
PCA and SIMPCA-Wc as pointed in [11].

rank

(
lim

N→∞

Z f Z⊤
p

N

)
= nx + f nu. (45)

Substituting (6), (7), and (8) into (45), we have

rank

(
lim

N→∞

Z f Z⊤
p

N

)

= rank

([
Γ f H f

0 I

][
Ap Lp 0
0 0 I

]
lim

N→∞

(
Ξ1

N

)

×

Γp Hp 0
0 I 0
0 0 0

⊤)
. (46)

Under the assumed conditions shown in Theorem 1, the
rank of the previous three factors in (46) can be computed
as (42), (38), and (43), which are equivalent to nx + f nu,
nx + f nu, and nx +(p+ f )nu, respectively. The rank of the
last factor in (46) along with Lemma 2 is nx + pnu.Then,
(46) along with the statement (2) in Lemma 1 is

nx ≤ rank

(
lim

N→∞

Z f Z⊤
p

N

)
≤ min(nx + f nu,nx + pnu). (47)

Its obviously that the rank condition for consistency of
SIMPCA and SIMPCA-Wc may not be fulfilled.

Remark 4: For linear/nonlinear systems with
nonGaussian noises, output constraints, outliers-in-
measurements, and error-in-variables which are common
in practical applications, the proposed method may not
guarantee consistent estimations. These issues have been
considered in the recent references [19, 20, 33–35], and
deserves further exploration in our future work.

5. ILLUSTRATION

In this section, we use two examples to evaluate the pro-
posed SIMps method and compare it with the SIMPCA
[11, 12] and SIMPCA-Wc methods [13].

Example 1: The following second-order system is the
nominal model for numerical simulation study [11, 36]:{

x(t +1) = Ax(t)+Bu(t),
y(t) =Cx(t)+Du(t)+ v(t),

where

A =


0.67 0.67 0 0
−0.67 0.67 0 0
0 0 −0.67 −0.67
0 0 0.67 0.67

 ,
B =

[
0.6598 1.9698 4.3171 −2.6436

]⊤
,

C =
[
−0.5749 1.0751 −0.5225 0.1830

]
,

and D =−0.7139.
The noises are white, Gaussian, and zero-mean, with

variance of σ 2. The parameters are chosen as p = f = 7,
and both colored and white signals are used as the input
excitation.

Case 1 (Colored input): The input is a combina-
tion of 10 sine waves with different frequencies u(t) =
∑10

j=1 sin(0.3898p jk). We investigate the effectiveness
and merit of SIMps under different noise variances σ 2 =
0.1,0.3. For illustration, a Monte-Carlo (MC) test of
fifty runs is performed with 500 data points for each run.
Fig. 1 shows a comparison of computed singular values of
Z f Z⊤

N

(
ZZ⊤

N

)−1/2
, Z f Z⊤

p

N , and Z f Z⊤
p

N

(
ZpZ⊤

p

N

)−1/2
in the SIM-

PCA, SIMPCA-Wc and SIMps methods. Since the singu-
lar values in all methods decline quickly when the order
is larger than 12, it can be concluded that f nu + nx = 11.
These methods provide consistent estimated results.

Fig. 2 shows a comparison of the poles of A estimated
by using different methods. More details about the mean
and variance of the estimated poles are demonstrated in
Table 2. Further, the Bode magnitude plots of the ob-
tained models are shown in Fig. 3, which are calculated
by the bode command in the Matlab System Identification
Toolbox. Due to the IVs in these methods are correlated
with the future input data for colored input, all of the iden-
tified poles and Bode magnitude are consistent. Moreover,
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Fig. 1. Comparison of computed singular values using dif-
ferent methods for Case 1.
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Fig. 2. Comparison of estimated poles using different
methods for Case 1. (red “+”: true value).

it can be seen that SIMps results in a slight smaller vari-
ance compared to SIMPCA and SIMPCA-Wc under the
same noises variances.

Case 2 (White noise input): The input is chosen as a
zero-mean white Gaussian noise with unit variance. Sev-
eral noises variances σ 2 = 0.1, 0.3 are chosen to better
show the effectiveness and merit of SIMps. Fifty MC tests
are performed with 500 data points for each noise vari-
ances. A comparison of computed singular values in these
methods are shown in Fig. 4. It can be seen that the sin-
gular value in SIMps obviously falls off a cliff with order
12, but this value in SIMPCA and SIMPCA-Wc is only
5. The SIMPCA and SIMPCA-Wc methods lead to a loss
in the rank of the future input/output Hankel matrix, thus

Table 2. Identified poles using different algorithms for
Case 1.

Methods σ 2 True poles

-0.6700±0.6700i 0.6700±0.6700i

SIMPCA 0.1 -0.6700(±0.005)±
0.6674i(±0.0042)

0.6697(±0.0069)±
0.6737i(±0.0050)

SIMPCA-Wc 0.1 -0.6700(±0.0005)±
0.6672i(±0.0043)

0.6709(±0.0059)±
0.6740i(±0.0050)

SIMps 0.1 -0.6700(±0.0004)
±0.6680i(±0.0023)

0.6702(±0.0041)±
0.6721i(±0.0032)

SIMPCA 0.3 -0.6700(±0.0008)±
0.6635i(±00096)

0.6610(±0.0168)±
0.6775i(±0.0102)

SIMPCA-Wc 0.3 -0.6700(±0.0008)±
0.6644)i(±0.0081)

0.6643(±0.0115)±
0.6753)i(±0.0086)

SIMps 0.3 -0.6700(±0.0006)±
0.6672i(±0.0042)

0.6691(±0.0065)±
0.6733i(±0.0056)
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Fig. 3. Bode magnitude plots using different methods for
Case 1. (red: true value).

SIMPCA and SIMPCA-Wc may yield biased estimates.
Fig. 5 shows a comparison of poles estimated using these
methods. A straight comparison of the mean and variance
from the estimation of these poles are demonstrated in Ta-
ble 3. Fig. 6 shows the identified Bode magnitude plots.
Due to that only the new IV in SIMps is correlated with
the future input data for white input, the proposed IV is
more correlated with than the other IVs in SIMPCA and
SIMPCA-Wc. It can be seen from Figs. 5 and 6 and Table
3 that the proposed method generally enhances the esti-
mated model efficiency/accuracy compared to SIMPCA
and SIMPCA-Wc under same noise variances.

Example 2: Consider an injection moulding process
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Fig. 4. Comparison of computed singular values using dif-
ferent methods for Case 2.
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Fig. 5. Comparison of estimated poles using different
methods for Case 2. (red “+”: true value).

studied in the references [37, 38]:x(t +1) =

[
1.2810 −0.5916
1 0

]
x(t)+ [1,0]⊤u(t),

y(t) = [1.69,1.419]x(t)+ v(t).

The input excitation is a weakly correlated signal:

u(t) = (1+0.8q−1 +0.6q−2)u0(t),

where u0(t) is a PBRS signal with mean value 0.5 and
variance 0.4. The noises are assumed to Gaussian white
with zero-mean and variance of 0.1. Fifty MC tests are
performed with 9000 data points. Fig. 7 shows a compar-
ison of poles estimated by using these methods and Fig. 8
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Fig. 6. Bode magnitude plots using different methods for
Case 2. (red: true value).

Table 3. Identified poles using different algorithms for
Case 2.

Methods σ 2 True poles

-0.6700±0.6700i 0.6700±0.6700i

SIMPCA 0.1 -0.6713(±0.0308)±
0.6410i(±0.0097)

0.6708(±0.0172)±
0.6759i(±0.1023)

SIMPCA-Wc 0.1 -0.6293(±0.0619)±
0.6152i(±0.1593)

0.6661(±0.0375)±
0.6725i(±0.0318)

SIMps 0.1 -0.6703(±0.0037)
±0.6664i(±0.0038)

0.6703(±0.0067)±
0.6743i(±0.0329)

SIMPCA 0.3 -0.6602(±0.1917)±
0.6002i(±0.1584)

0.6599(±0.0553)±
0.6743i(±0.0329)

SIMPCA-Wc 0.3 -0.6470(±0.0658)±
0.6270)i(±0.1125)

0.6644(±0.0379)±
0.6765i(±0.0337)

SIMps 0.3 -0.6695(±0.0061)±
0.6659i(±0.0069)

0.6708(±0.0085)±
0.6753i(±0.0069)
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Fig. 7. Comparison of estimated poles using different
methods for Example 2. (red “+”: true value).

shows the identified Bode magnitude plots. A straight
comparison of the mean and variance from the estimation
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Fig. 8. Bode magnitude plots using different methods for
Example 2. (red: true value).

Table 4. Identified poles using different algorithms for Ex-
ample 2.

True poles 0.6410±0.4251i
SIMPCA 0.6406(±0.0084)±0.4242(±0.0060)i

SIMPCA-Wc 0.6407(±0.0117)±0.4257(±0.0326)i
SIMps 0.6408(±0.0026)±0.4248(±0.0017)i

of these poles are demonstrated in Table 4.
While the identified poles and Bode magnitude are con-

sistent, the SIMps algorithm results in a smaller variance
of the estimated Bode magnitude compared to SIMPCA
and SIMPCA-Wc. It is again seen that the SIMps method
enhances identification accuracy compared to SIMPCA
and SIMPCA-Wc.

6. CONCLUSION

A consistent subspace method using parity space,
SIMps, has been developed in the same framework with
SIMPCA and SIMPCA-Wc, in which a new IV which
consists of the future/past input data and past output data
was used to eliminate the noise effect. Since the new
IV is highly correlated with the future data but uncorre-
lated with the noise, the rank conditions for consistent
estimation of the extended observability matrix and the
triangular block-Toeplitz matrix can be fulfilled. There-
fore, the SIMps method can provide consistent estimates.
However, the IVs in SIMPCA and SIMPCA-Wc are con-
structed by only the past input /output data, which are
uncorrelated with the future input data for white input
systemsbut weakly correlated with the future input data
for colored input systems. The rank conditions for con-
sistent estimations of the extended observability matrix
and the triangular block-Toeplitz matrix may not fulfilled
strictly. As a consequence, SIMPCA and SIMPCA-Wc
may yield a biased solution, especially, for white input
systems. The main merit of SIMps is that it can en-
hance the estimated model efficiency/accuracy compared
to SIMPCA and SIMPCA-Wc, as supported by the rank
condition analysis and two numerical examples presented
in the previous sections of this paper.
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