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Robust Asymptotic and Finite-time Tracking for Second-order Nonlinear
Multi-agent Autonomous Systems
Shafiqul Islam* ■ and Nikolas I. Xiros

Abstract: This paper investigates consensus based distributed robust asymptotic and finite-time tracking control
strategy for second-order multi-agent autonomous systems. The protocol design uses states of the neighboring
agents with directed communication topology in the presence of uncertainty associated with the autonomous agents.
Robust adaptive learning algorithm uses with the protocol design for each follower agent to learn and adapt bounded
uncertainty associated with nonlinear dynamics of the follower agents. Adaptive learning protocol also integrates
with the follower agents protocol to learn and adapt bounded input of the leader. Lyapunov method with Graph,
classical sliding mode, and terminal sliding mode theory use to guarantee that the proposed distributed control
design can reach an agreement and follow the states of the leader in both finite-time and asymptotic sense. Analysis
shows that consensus based protocol can force the states of the followers sliding surface to track the states of the
leader sliding surface in finite-time and remain there. The proposed distributed consensus protocol does not require
the exact bound of the uncertainty associated with the follower agents. Also, the proposed protocol does not require
the exact bound of the leader input as opposed to other distributed cooperative control designs. Evaluation results
with comparison are presented to demonstrate the validity of the theoretical argument for the real-time applications.

Keywords: Asymptotic and finite-time consensus control, linear sliding mode control, multi-agent autonomous
systems, nonlinear terminal sliding mode control, robust adaptive control.

1. INTRODUCTION

Recently, research on the development of distributed
cooperative control for multi-agent systems have gained
significant attention by many researchers. The motivation
behind distributed cooperative control for multi-agent sys-
tems is because of its wide variety of civilian and military
applications such as satellite formation flying [1], swarm-
ing of aerial vehicles for radiation mapping [2], automated
highway scheduling system [3], air traffic control [4], sen-
sor network and cooperative surveillance [5–8]. This work
emphasizes on the development of the consensus based
distributed control algorithm design for multi-agent sys-
tems. The main objective in consensus design is to de-
velop distributed cooperative protocol with the neighbor-
ing states information such that the states of all the agents
can reach an agreement to perform desired task. Most
recent results on this area for the first and second order
multi-agent systems can be found in [9–13], and others.

Authors in [9,10], provided framework to analysis con-
sensus problem for the first-order multi-agent systems.
Authors showed that agents can reach an agreement only

if the topology of the interaction digraph is strongly con-
nected. In [11], authors studied consensus problem for the
second-order multi-agent systems examining the connec-
tion between communication topologies and controllabil-
ity of the systems.

Authors in [12] also analyzed convergence condition of
the states for multi-agent systems based on using sim-
ple linear protocols. Various consensus tracking proto-
cols were presented for both first-order and second-order
multi-agent systems in [13].

In view of the design and analysis, it can be seen that
the existing algorithms can ensure asymptotic consensus
property of the states of the multi-agent systems by us-
ing the dynamical model of the agents. However, in many
practical applications, the convergence of the states con-
sensus may require to achieve faster and in finite-time. To
solve the finite-time consensus problem, various consen-
sus based distributed cooperative protocols have been pro-
posed for both first and second order multi-agent systems
in the literature. Jiang and Wang in [14] showed that non-
linear interaction can be used to achieve finite-time con-
sensus for first-order agents under both fixed and switch-
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ing topology. In [15], authors proposed protocol for sin-
gle integrator to achieve finite-time consensus with con-
nected interaction topology. Wang and Xiao developed
framework for designing finite-time consensus laws for
first-order multi-agent system. Many of these above men-
tioned results achieved finite-time consensus by assuming
that the interaction topology among agents is undirected
graph. Authors in [16–21], developed finite-time consen-
sus protocols for second-order multi-agent systems. Au-
thors showed in these designs that their methods can
ensure fine-time stability based on using the bounds of
the uncertainty associated with the nonlinear dynamic of
the follower agents. Recently, distributed finite-time con-
tainment control design introduced for double integrator
multi-agent systems in [22,23]. However, there have been
no results reported in the literature where both robust
asymptotic and finite-time consensus tracking control de-
signs were studied for second-order multi-agent systems
with the presence of dynamical uncertainty.

In this work, both robust asymptotic and finite-time
tracking problem is investigated for second-order nonlin-
ear multi-agent autonomous system. The proposed proto-
col design for asymptotic and finite-time design only re-
quires the states of the neighboring agents with directed
communication topology. Robust adaptive learning pro-
tocol is employed for each follower agent to learn and
adapt uncertainty associated with dynamical model of the
follower agents. The protocol design also uses adaptive
learning term to learn and adapt with the bound of the
leader input. Using Graph, Lyapunov and sliding mode
control theory, asymptotic and finite-time consensus con-
vergence is given for the closed loop system formulated
by the leader-followers multi-agent autonomous systems.
The convergence analysis shows that consensus protocol
can force the states of the follower agents to track the state
of the leader in both finite-time and asymptotic sense. It
is shown in convergence analysis that the distributed con-
sensus can be ensured on the sliding mode surface if the
directed communication topology has a directed spanning
tree. The proposed protocol design does not require the
exact bound of the leader input. Also, the protocol design
does not need the exact bound of the uncertainty associ-
ated with the follower agent dynamics. Evaluation results
with comparative studies are given to demonstrate the va-
lidity of the theoretical development for the real-time ap-
plications.

The rest of the paper is organized as follows: Sec-
tion 2 provides the Graph theory, assumptions, lemmas
and dynamical model related to design and analysis of
the proposed method. Section 3 presents protocol design
and convergence analysis for distributed asymptotic con-
sensus tracking for second-order multi-agent autonomous
systems. Section 3 also gives protocol design and con-
vergence analysis for the distributed finite-time consensus
tracking for second-order multi-agent autonomous sys-

tems. Evaluation results are presented in Section 4. Fi-
nally, the paper is concluded with future works in Section
5.

2. PRELIMINARIES, LEMMAS, ASSUMPTIONS
AND DYNAMICAL MODEL

Graph theory uses to model the information exchange
between leader and follower agents to solve the coordi-
nation problems in networked based autonomous agents
[10]. The information exchanged topology between mul-
tiple agents, N, can be modeled by weighted graph as
G = {V,E,A}. V = {vi, i ∈ Ω} is the set of nodes with
agents belong to a finite set Ω = {1, ...,N}. E ⊆V ×V is
the set of edge, A is the weighted adjacent matrix of the
graph G with nonnegative elements ai j. If there is a direct
edge from vertex j to vertex i as (v j,vi) ∈ E, then agent i
can receive information from agent j as ai j > 0, otherwise
ai j = 0. It is assumed that aii = 0 for all i ∈ Ω. The set of
neighbors of agent i is defined by Yi = { j | (vi,v j) ∈ E}.
Then, the Laplacian matrix of directed graph G can be de-
fined as

M=

(
K −A

)
(1)

with the degree matrix K = diag{K1, ...,KN} and Ki =

∑ j∈Yi
ai j. For directed Graph, the interaction between

nodes vi and vik is the sequence of {vi1, ...,vik} as
(vil ,vil+1) ∈ E with l = 1, ...,k − 1. In this work, the di-
graph is assumed to be strongly connected by assuming
that every vertex can be reachable from every other ver-
tex. It also considers that the digraph has a directed span-
ning tree provided that there exist at least one node which
has a directed path to all the other nodes through directed
path. The leader-following networked of multi-agent au-
tonomous systems is composed of N+1 agents as labeled
as 0, ...,N. The leader is labeled by 0 while followers
agents are labeled from 1 to N. The interaction between
i-th follower agent and the leader can be denoted by ci.
If there is an edge between the i-th follower and leader,
then the connection weight ci is ci > 0. Otherwise, ci = 0.
The followers interaction with the leader can be defined
by a matrix P = diag(c1, ...,cN). In this work, a class
of second-order nonlinear multi-agent autonomous sys-
tems is considered that composed of a leader and follower
agents. It is assumed that the agents can communicate by
their states via local communication networks. The dy-
namics of the follower agents can be written as

ẋi = vi, v̇i = Fi(xi,vi, t)+ui, (2)

where vi ∈ ℜm, xi ∈ ℜm, Fi(xi,vi, t) and ui are the velocity,
position, unknown bounded nonlinear function and con-
trol input for i-th follower agent, respectively. The dy-
namics of the leader can be modeled as

ẋo = vo, v̇o = uo, (3)
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where vo ∈ ℜm, xo ∈ ℜm and uo are the velocity, position
and control input for the leader, respectively. It is assumed
that the state of the leader is active and time varying. Also,
the dynamic behavior of the leader is independent of the
follower agents. Then, the consensus error function can
be defined as

e1i =
N

∑
j=1

ai j(xi − x j)+(xi − xo),

e2i =
N

∑
j=1

ai j(vi − v j)+(vi − vo) (4)

with i ∈ Ω. Now, define new variable Ep = [e11, ...,e1N ]
T

and Ev = [e21, ...,e2N ]
T . Then, the consensus error function

can be rewritten in the following form

Ep =

(
M+P

)
⊗ ImX̃ ,Ev =

(
M+P

)
⊗ ImṼ (5)

with x̃i = (xi − 1N ⊗ xo), ṽi = (vi − 1N ⊗ vo), X̃ =
(x̃1, ..., x̃N)

T , Ṽ = (ṽ1, ..., ṽN)
T and 1N = [1, ...,1]T . The

time derivative of the above consensus error (5) be ex-
pressed as

Ėp = Ev, (6)

Ėv =

(
M+P

)
⊗ Im

[
F(x,v, t)−1N ⊗uo +u

]
(7)

with F(x,v, t) = [F(x1,v1, t), ...,F(xN ,vN , t)]T . Before
presenting the design and convergence analysis, the fol-
lowing assumptions are considered.

Assumption 1: The time varying input of the leader uo

is continuous and bounded with πo > 0 as ∥uo∥ ≤ πo.
Assumption 2: The position and velocity states of the

leader dynamic is assumed to be bounded.
Assumption 3: The nonlinear dynamical functions

F(xi,vi, t) for the follower agents are assumed to be con-
tinuous and bounded satisfies the following inequality

∥F(x,v, t)∥ ≤ η1∥X̃ ∥+η2∥Ṽ∥+ηo, (8)

where ηo = (ηo1 +η02) with ηo1 = η1αo , ηo2 = η2βo,
αo ≤ ∥xo∥, βo ≤ ∥vo∥, ηo > 0, η1 > 0, η2 > 0, αo > 0 and
βo > 0.

The proposed design and stability analysis is based on
the following Lemmas.

Lemma 1 [24]: Consider the nonlinear function ġ =
g(x) with g(0) = 0. Then, there exist continuous differ-
entiable function Vg(x) defined closed to the neighbor-
hood of the origin such that Vg(x(t)) is positive definite
and V̇g(x(t))≤−γgV

αg
g (x(t)) with γg > 0 and 0 < αg < 1.

Then, the origin is finite-time stable and the function
Vg(x(t)) reaches to zero in finite-time t f ≤ Vg(x(0))(1−αg)

γg(1−αg)
for

all t ≥ t f .
Lemma 2 [19, 20]: The digraph G = {V,E,A} is as-

sumed to have a directed spanning tree provided that

{V,E,A} has at least one root-node agent which has ac-
cess to the leader trajectory. When the graph has a directed
spanning tree, then the matrix (M+P) is invertible.

Lemma 3 [20, references there in]: If z1, ...,zN ≥ 0 and

0 < a ≤ 1, then
(

∑N
i=1 zi

)a

∥ ≤ ∑N
i=1 za

i .

Remark 1: Note that Assumption 1 is flexible and real-
istic as the input signals are usually bounded in real-time
applications. Assumptions 2 and 3 are also realistic as the
states of the nonlinear functions F(xi,vi, t) and the leader
states are assumed to be continuous and bounded over the
given compact sets.

3. MAIN RESULTS AND ANALYSIS

In this section, we develop distributed consensus proto-
cols for achieving asymptotic and finite-time consensus
tracking for the networked of nonlinear leader-follower
multi-agent autonomous systems with classical and termi-
nal sliding model mechanism. The contribution of this
work can divided into three parts. First, the paper presents
both asymptotic and finite-time consensus tracking algo-
rithm with comparative studies for the second-order non-
linear leader-follower multi-agent autonomous agents by
using classical and nonlinear terminal sliding mode mech-
anism. Second, the proposed consensus tracking protocol
design does not require the exact bound of the uncertainty
associated with the follower agents dynamic. Third, pro-
tocol design for the follower agents does not require the
exact bound of the input of the leader.

3.1. Algorithm design and convergence analysis for
asymptotic consensus tracking

This section develops consensus protocol for achiev-
ing asymptotic consensus tracking property for the net-
worked of nonlinear multi-agent autonomous systems by
using linear sliding mode dynamics. The protocol needs
to ensure asymptotic consensus property as defined as
limt→∞ ∥xi(t)− xo(t)∥= 0, limt→∞
∥vi(t)− vo(t)∥= 0. Then, present the following Theorem
1 based on classical sliding mode dynamics.

Theorem 1 : Consider Assumptions 1 to 3 holds.
Then, if the interaction graph is directed and have a di-
rected spanning tree, then there exist sliding mode vectors
S = Ep +αEv with α > 0 and protocol u = (ul +uu +up)

up =−α−1 (M+P)−1 ⊗ Im

((
b⊗ Θ̂o

)
Sgn(S)

)
,

uu =−α−1 (M+P)−1 ⊗ Im
(
YF Θ̂F

)
,

ul =−α−1
(
(M+P)−1 ⊗ Im

)
(Ev + ksS) ,

˙̂ΘF =−ΓFY T
F S, ˙̂Θo =−ΓoSgnT (S)bT S (9)

with b = P1N , ks > 0, symmetric positive-definite ma-
trix ΓFi ∈ ℜ3×3 and Γoi > 0 such that the network of the
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leader-follower multi-agent systems (2)-(3) achieve con-
sensus tracking asymptotically.

Proof: The proof can be divided into three parts. In first
part, it proves the upper bounded of the parameter esti-
mates. Second, it shows that each sliding mode vector can
reach the sliding surface in finite-time. Finally, analysis
prove that the states of the multi-agent autonomous sys-
tems can achieve consensus tracking in finite time. First,
define the following linear classical sliding mode variable
as

si = e1i +αe2i. (10)

The sliding dynamics can be written in compact form as

S = Ep +αEv (11)

with S = (s1, ...,sn)
T . Applying (6)-(7), the derivative of Ṡ

has the following form

Ṡ = Ev +A
[

F(x,v, t)−1n ⊗uo +u
]

(12)

with A = α
(
(M+P)⊗ Im

)
. To prove the first part of

Theorem 1, the following Lyapunov function candidate is
considered

V =
ST S

2
+

Θ̃T
F Γ−1

F Θ̃F

2
+

Γ−1
o Θ̃T

o Θ̃o

2
, (13)

where Θ̃F =
(
ΘF − Θ̂F

)
and Θ̃o =

(
Θo − Θ̂o

)
. Take the

derivative along the trajectory of (12). Then, using As-
sumptions 1 and 2, V̇ can derived as

V̇ =ST
[

Ev +α
(
(M+P)⊗ Im

)(
YF ΘF +u

−1n ⊗Θo

)]
+Θ̃T

F Γ−1
F

˙̃ΘF +Γ−1
o Θ̃T

o
˙̃Θo (14)

with YF = [Sgn(S), X̃ , Ṽ], Sgn(S)= [Sgn(s1), ...,Sgn(sn)]
T ,

ΘFi = [ηo, η1, η2]
T , Θoi = πo and u = (ul + uu + up). In

view of (9), V̇ can be simplified as V̇ = −ks ∑n
i=1 ∥si∥2.

Then, it is possible to conclude from the Lyapunov sta-
bility theorem that all signals in the closed-loop system
are bounded. The parameter estimates are bounded such
that there exists positive constants Θ∗

F and Θ∗
o such that

Θ̂F ≤ Θ∗
F and Θ̂o ≤ Θ∗

o for ∀t ≥ 0. This ensures the upper
boundedness of the parameter estimates and estimation er-
rors. Second step is to prove that the sliding mode motion
occurs within a finite-time. To show that, the following
Lyapunov function candidate is considered

V =
1
2

ST S+
Θ̃T

F γ−1
F1 Θ̃F

2
+

γ−1
o1 Θ̃T

o Θ̃o

2
, (15)

where γ−1
F1i ∈ ℜ3×3 is a symmetric positive-definite matrix

and γ−1
o1i > 0. Using (9), V̇ can be simplified as

V̇ =
√

2D∥S∥√
2
−
√

2γF1

(
ε1 −∥S∥YF

)(
∥Θ∗

F − Θ̂F∥
)

√
2γF1

−
√

2γo1

(
ε2 −∥S∥b

)(
∥Θ∗

o − Θ̂o∥
)

√
2γo1

(16)

with D=
(

YF (Θ∗
F−ΘF)+b(Θ∗

o−Θo)

)
, ε1 = γ−1

F1 ΓFY T
F ∥S∥

and ε2 = γ−1
o1 ΓobT∥S∥. Now, define Π1=

(
YF (Θ∗

F−ΘF)+

b(Θ∗
o−Θo)

)
, Π2 =

√γF1

(
ε1−∥S∥YF

)
, Π3 =

√γo1

(
ε2−

∥S∥b
)

. Using Π = min{Π1,Π2,Π3}, V̇ can be writ-

ten as V̇ ≤ −
√

2ΠKL with KL =

(
∥S∥√

2
+

(∥Θ∗
F−Θ̂F∥)√
2γF1

−

(∥Θ∗
o−Θ̂o∥)√
2γo1

)
. Now, it is possible to select Θ∗

o > Θo, Θ∗
F >

ΘF , γ−1
o1 < Γ−1

o and ∥γ−1
F1 ∥< ∥Γ−1

F ∥ so that Π > 0, Π1 > 0,
Π2 > 0 and Π3 > 0. Then, applying Lemma 3, V̇ can be
written as V̇ = −

√
2ΠV

1
2 . Using Π > 0 and Lemma 1, it

can be stated that the states of the closed systems with the
proposed consensus protocol can reach the sliding surface
S = 0 in finite-time depending on the initial state of the
sliding surface S(0) and remain on this sliding surface for
all time with bounded dynamical uncertainty. Third step
is show that the state of the followers can reach consen-
sus and track the states of the leader on the sliding sur-
face in the presence of uncertainty. To do that, the follow-
ing Lyapunov function candidate is chosen as Vo =

EpEp

2 .
On S = 0, we have Ev = −αEp. Then, the time deriva-
tive of Vo can be written as V̇o = −αET

p Ep. In view of
Vo, V̇o can be simplified as V̇o ≤ −2αVo. Then, applying
Lemma 2, Ep → 0 as t → ∞. Also, on the sliding surface
S = 0, Ev → 0 as t → ∞ as Ev =−αEp. This implies that
the leader-follower multi-agent autonomous systems with
the proposed protocol can reach an agreement and achieve
asymptotic consensus tracking property. □

3.2. Algorithm design and convergence analysis for
finite-time consensus tracking

In this section, distributed consensus protocol is devel-
oped for achieving finite-time tracking for the networked
of nonlinear leader-follower multi-agent autonomous sys-
tems by using nonsingular terminal sliding model con-
trol theory. This means that, for any initial conditions,
there exist a constant t∗ such that the finite-time consen-
sus tracking can be achieved as limt→t∗ ∥xi(t)−xo(t)∥= 0,
limt→t∗ ∥vi(t)− vo(t)∥ = 0. Then, the nonlinear terminal
sliding mode based finite-time consensus tracking is pre-
sented in Theorem 2.

Theorem 2: Consider the uncertain nonlinear leader-
follower multi-agent autonomous systems (2)-(3) under
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Assumptions 1 to 3. If the interaction graph is directed
and have a directed spanning tree, then there exists nonsin-
gular terminal sliding vectors S = Ep + k1Eε

v Sgn(Ev) and
u = (up +uu +ul +us) with

up =

(
k1ε

)−1(
M+P

)−1

⊗ Im

((
b⊗ Θ̂o

)
Sgn(αc)

)
,

uu =−
(

k1ε
)−1(

M+P
)−1

⊗ Im
(
YF Θ̂F

)
,

ul =−
(

k1ε
)−1(

M+P
)−1

⊗ Im

(
E2−ε

v

)
,

us =−ks

(
k1ε

)−1(
M+P

)−1

⊗ Im

(
Sgn(αc)

)
,

˙̂ΘF =−ΓFY T
F αc,

˙̂Θo =−ΓoSgnT (αc)bT αc (17)

with k1 > 0 and 1 < ε < 2, αc = diag
(
Eε−1

v

)
S, b = P1N ,

symmetric positive-definite matrix ΓFi ∈ ℜ3×3 and Γoi > 0
such that parameters estimate are bounded as Θ̂F ≤ Θ∗

F
and Θ̂o ≤Θ∗

o and all the states of the leader-follower multi-
agent autonomous systems reach to the sliding mode sur-
face in finite-time and remain there achieving leader-
follower finite-time tracking consensus.

Proof: The proof of Theorem 2 can be shown along the
line of Theorem 1. First, the upper bounded property of
the parameter estimates is proven. To do that, nonsingular
terminal sliding variable for the i-th agent is defined as

si = e1i + k1eε
2iSgn(e2i). (18)

The sliding dynamics can be written in compact form as

S = Ep + k1Eε
v Sgn(Ev). (19)

Applying (6)-(7), the time derivative of (19) can be de-
rived as

Ṡ =Ev + k1εdiag
(
Eε−1

v

)(
M+P

)
⊗ Im

[
F(x,v, t)

−1N ⊗uo +u
]
. (20)

Now, the following Lyapunov function candidate is cho-
sen to show the boundedness of the parameter estimates.

V =
ST S

2
+

Θ̃T
F Γ−1

F Θ̃F

2
+

Γ−1
o Θ̃T

o Θ̃o

2
. (21)

Now, first take the time derivative of above Lyapunov
function. Then use assumption 3 and then use assumption
1 to simplify the time derivative of Lyapunov function as

=ST
(

Ev+k1εdiag
(
Eε−1

v

)(
(M+P)⊗ Im

)[
YF ΘF

+u−1N ⊗πo

])
+ Θ̃T

F Γ−1
F

˙̃ΘF +Γ−1
o Θ̃T

o
˙̃Θo (22)

with YF = [sgn(S), X̃ , Ṽ], ΘFi = [ηo,η1,η2]
T , Θoi =

πo. Now, using (17), V̇ can be simplified as V̇ =

−Π
(
∥S∥2

) 1
2 ≤ 0 for S ̸= 0 and Π = min

{
kse

(ε−1)
21 , ...,

kse
(ε−1)
2N

}
. In view of V̇ , it is possible to conclude

from the Lyapunov theorem that all the signals in leader-
follower closed loop system and the parameter estimates
are bounded. This means that there exist positive con-
stants Θ∗

F and Θ∗
o such that Θ̂F ≤ Θ∗

F and Θ̂o ≤ Θ∗
o for

∀t ≥ 0. To prove that the sliding mode motion occurs
within a finite-time, the following Lyapunov function can-
didate is selected.

V =
1
2

ST S+
Θ̃T

F γ−1
F1 Θ̃F

2
+

γ−1
o1 Θ̃T

o Θ̃o

2
. (23)

Now, using protocol (17), the time derivative of V̇ can be
simplified as

V̇ =−
√

2
(

ξ1YF (Θ∗
F −ΘF)+bξ1 (Θ∗

o −Θo)

)
∥S∥√

2

−
√

2γF1

(
aF −∥S∥ξ1YF

)(
∥Θ∗

F − Θ̂F∥
)

√
2γF1

−
√

2γo1

(
ao −∥S∥ξ1b

)(
∥Θ∗

o − Θ̂o∥
)

√
2γo1

(24)

with ξ1 = diag
(
Eε−1

v

)
, aF = γ−1

F1 ΓFY T
F αc and ao =

γ−1
o1 ΓobT αc. By defining Π1 = −

√
2
(

YF (Θ∗
F−ΘF)+

b(Θ∗
o−Θo)

)
, Π2 =

√
2γF1

(
aF −∥S∥ξ1YF

)
, Π3 =

√
2γo1(

ao−∥S∥ξ1b
)

and using Π = min
{

Π1,Π2,Π3

}
, V̇ can

be simplified as

V̇ ≤−Π
(
∥S∥√

2
+

(
∥Θ∗

F − Θ̂F∥
)

√
2γF1

−
(
∥Θ∗

o − Θ̂o∥
)

√
2γo1

)
.

(25)

Now, by choosing Θ∗
o > Θo, Θ∗

F > ΘF , γo1 < Γo and
∥γF1∥ < ∥ΓF∥, one has Π1 > 0, Π2 > 0, Π3 > 0 and
Π > 0. Then, applying Lemma 3, (25) has the follow-
ing compact form V̇ ≤= −ΠV

1
2 . This implies that the

bound on ∥diag
(
Eε−1

v

)
∥ > 0 exists when Ev ̸= 0. This

arguments together with Lemma 1 and Π > 0, one can
conclude that the states of the leader-follower multi-agent
autonomous systems can reach the sliding surface S = 0
in finite-time depending on the initial state S(0) and then
remain on the surface for all time in the presence of un-

certainty. The finite-time can be calculated as t∗ = V (0)
1
2

Π .
Finally, one needs to show that the state of the follow-
ers can reach consensus and track the states of the leader
in finite-time on the sliding surface in the presence of
uncertainty. To do that, the Lyapunov function candi-
date is chosen as Vo =

ET
p Ep

2 . On the sliding surface
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S = 0, one has Ev = −kε
1E

1
ε
p . Then, the time deriva-

tive of Vo can be written as V̇o = −kε
1ET

p E
1
ε
p . Now, us-

ing ET
p E

1
ε
p = ∑N

i=1 ∑m
j=1 (e1i j)

2 (ε+1)
2ε , Vo can be written as

V̇o ≤−kε
12

(ε+1)
2ε V

(ε+1)
2ε

o . Then, using 1< ε < 2 and Lemma 1,
one can conclude that there exist a finite-time t1 depending
on the initial state Ep(to) with to > t∗ such that the error
Ep will converge to zero. Since Ep converge to zero, then,
in view of V̇o, the states Ev also converge to zero in finite-
time. Also, Lemma 2 ensures that the matrix M+P is
full rank. Then, x̃i = 0 and ṽi = 0 can be obtained as the
error function is zero as e1i = 0 and e2i = 0. □

Remark 2: The design uses sgn(.) function which may
generate chattering phenomenon. To avoid this problem,
one can estimate sgn(.) by using sat(.) function. sat(.) is
a bounded saturation function that satisfies

sat (si) =


−1, si <−ϑ ,
si

ϑ
, |si| ≤ ϑ

1, si > ϑ .

By using sat(.), one can also ensure the same results that
presented in Theorems 1 and 2. To show that, one can
follow the same steps as used in Theorem 2 and Theo-
rem 1. Then, using sat(.) in Theorem 2, V̇ can be sim-
plified as V̇ = −Π∑N

i=1 sisat(si). This means that, for
si ̸= 0, V̇ < 0 as sisat(si) > 0. This implies that the func-
tion V continue to decrease until si ≤ ϑ . Now, applying
sat(si)=

si
ϑ , V̇ can be simplified as V̇ ≤−Π

ϑ ∑N
i=1 ∥si∥2 ≤ 0.

Then, using Lyapunov theory, one can conclude that all
the sliding modes converge to zero. Thus all signals in
leader-follower closed-loop multi-agent autonomous sys-
tems are bounded provided that the parameter estimates
are bounded. This means that it is possible to replace
sgn(.) by sat(.) function so that the finite-time conver-
gence can be ensured.

4. EVALUATION RESULTS

This section implements and evaluates the designs to
show the effectiveness of the proposed distributed finite-
time and asymptotic consensus algorithms. In evaluation,
second-order multi-agent autonomous systems are consid-
ered with one leader and six follower agents. The interac-
tion topologies with autonomous agents are depicted in
Fig. 1.

For the given topology, the Laplacian matrix M can be
written as M= [0 0 0 0 0 0;−1 1 0 0 0 0; −1 0 1 0 0 0;0
−1 0 1 0 0; 0 0 0 −1 2 −1;0 0 −1 −1 0 2]. The interaction
matrix P between leader and followers can be defined as
P = [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 0 0 0 0;0 0 0 0 0 0; 0 0 0
0 0 0;0 0 0 0 0 0].

The initial states of the leader are chosen as xo(0) = 1,
vo(0) = 0.5. To examine the consensus behavior, four sets

Fig. 1. The interaction topology between autonomous
agents and leader for the second-order nonlinear
multi-agent autonomous systems [20].

of time varying and state dependents inputs are selected
for the leader as uo1 = 0.01sin(0.1t), uo2 = 0.5cos(0.01t),
uo3 = 5+ sin(0.2xo)+ cos(0.5vo), uo4 = 3+ sin(0.6xo)+
sin(.5vo). uo1 and uo3 applies from 0 sec. to 50 sec. while
uo2 and uo4 uses from 50 sec. to 120 sec. The input profile
for the leader input is depicted in Fig. 2.

The initial states of the follower agents are chosen as
x0i(0) = [4, 2, 3, −0.5, −1, −2]T , v0i(0) = [−1, 0.8, −1,
−0.5, −0.5, 2]T with i ∈ {1, 2, 3, 4, 5, 6} [20]. The
nonlinear dynamics for the follower agents are defined
as F1(x1,v1, t) = sin(.2x1) + 0.5v1 + 2, F2(x2,v2, t) =
sin(.2x2) + 0.5v2 + .08, F3(x3,v3, t) = sin(x3) + 0.5v3 +
1, F4(x4,v4, t) = sin(0.5x4) + v4 + 0.5, F5(x5,v5, t) =
sin(0.1x5)+0.05v5 +0.7 and F6(x6,v6, t) = cos(0.5x6)+
2v6 +0.3.

The control design parameters for the finite-time con-
sensus design introduced in Theorem 2 are chosen as

0 20 40 60 80 100 120
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Fig. 2. The time history of the input for the leader uo.
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Fig. 3. The external disturbance for the follower agents.
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Fig. 4. The time history of the position states for the leader
and follower agents for Theorem 2.

k1 = 4.50, ε = 0.05, ks = .5, ΓFi = 10−3I3×3, Γoi = 10−3.
All the followers dynamics are corrupted by external dis-
turbances as depicted in Fig. 3.

Then, apply finite-time consensus tracking based con-
trol algorithm developed in Theorem 2 for the given
leader-follower multi-agent autonomous systems. The
sampling time is chosen as 0.001 sec. The evaluation re-
sults are shown in Figs. 4 to 6. Fig. 4 presents the evalua-
tion results of the position states of the leader and follow-
ers. The velocity and zoom velocity states of the leader
and followers are shown in Figs. 5 to 6. From these figs.,
we see that the consensus based distributed controller de-
sign can ensure consensus tracking property with the pres-
ence of nonlinear dynamical model uncertainty and exter-
nal disturbance uncertainty.

The proposed design in Theorem 2 is now compare with
robust finite-time consensus algorithm designed by using
terminal sliding mode control mechanism [20]. The con-
trol design parameters are remained similar to our previ-
ous evaluation. For fair comparison, all other design pa-
rameters and scenarios are also kept same as to our pre-
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Fig. 5. The time history of the velocity states for the leader
and follower agents for Theorem 2.
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Fig. 6. The time history of the zoomed velocity states for
the leader and follower agents for Theorem 2.

vious test. Then, apply robust finite-time distributed con-
sensus control designed by Theorem 1 of [20]. Figs. 7 to
8 depict the evaluation results of the position and velocity
states for the leader and follower autonomous agents. It
can be seen from these results that the systems explodes
approximately at 54.5 sec. due to very large modeling er-
ror and external disturbance uncertainty.

The goal is now to compare proposed asymptotic con-
sensus protocol with the finite-time consensus protocol on
the same second-order nonlinear multi-agent autonomous
systems as used in previous evaluation. The control design
parameters for asymptotic consensus design are chosen as
α = 4, ks = 50, ΓFi = .005I3×3, Γoi = 0.001. To exam-
ine the consensus convergence property, all other design
parameters and test scenarios are kept same as previous
evaluation. Then, apply robust consensus tracking con-
trol proposed in Theorem 1 for the given leader-followers
multi-agent autonomous systems.
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Fig. 7. The time history of the position states for the leader
and follower agents for Theorem 1 [20].
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Fig. 8. The time history of the velocity states for the leader
and follower agents for Theorem 1 [20].

The evaluation results are shown in Figs. 9 to 11. Fig. 9
shows the evaluation results of the position states of the
leader and followers autonomous agents. The velocity and
zoomed velocity states of the leader and followers agents
are given in Figs. 10 to 11. From these results, it can be
seen that the distributed controller can ensure consensus
tracking with the presence of model uncertainty and dis-
turbance. In view of these results, it can also be noticed
that the consensus tracking performance under Theorems1
and 2 is almost same. The design parameters for asymp-
totic consensus design can be selected to ensure the same
consensus tracking speed as finite-time consensus track-
ing design.

Remark 3: It should be noted that finite-time consen-
sus design parameters are more sensitive than asymptotic
consensus. Therefore, the designer can tune the parame-
ters of the classical linear sliding mode based asymptotic
consensus more easily than the nonlinear terminal sliding
mode based finite-time design.

Remark 4: The adaptation law given in protocols may
exhibit discontinuous property. To ensure that the param-
eters estimates remain bounded over the compact sets, we
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Fig. 9. The time history of the position states for the leader
and follower agents for Theorem 1.
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Fig. 10. The time history of the velocity states for the
leader and follower agents for Theorem 1.
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Fig. 11. The time history of the zoomed velocity states for
the leader and follower agents for Theorem 1.

can introduce a projection mechanism to limit the param-
eter estimates [25].
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5. CONCLUSION AND FUTURE WORKS

In this paper, both robust asymptotic and finite-time
consensus tracking algorithms have been studied for
second-order nonlinear leader-following autonomous
agents. The protocols have been designed by using the
states of the neighboring agents with directed communi-
cation network topology in the presence of uncertainty.
Lyapunov and Graph theory with linear classical sliding
mode and nonlinear terminal sliding mode control theory
has been used to prove robust asymptotic and finite-time
consensus tracking of autonomous agents with the pres-
ence of uncertainty. The evaluation results with com-
parison have been presented to show the effectiveness of
the proposed results for real-time applications. Both de-
signs are simple and easy to implement as they do not use
the bounds of the leader input and uncertainty associated
with the follower agent systems. However, the evaluation
shows that the asymptotic design is more easier to develop
and implement than finite-time consensus design. The de-
sign parameters in asymptotic consensus can be chosen
to achieve faster tracking convergence as the finite-time
design. Moreover, the proposed design and analysis is
assumed that the data transmission delay between agents
is performed by using dedicated communication network.
Therefore, the data transmission delay was assumed to be
zero as autonomous agents are connected via local net-
work. In future, the proposed design and development will
be extended for open distributed communication network
along the line of the results presented in [26–28].
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