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Robust Observer Based Fault-tolerant Control for One-sided Lipschitz
Markovian Jump Systems with General Uncertain Transition Rates
Feifei Chen, Dunke Lu*, and Xiaohang Li

Abstract: This paper presents an integrated design of adaptive sliding mode observer and fault-tolerant control for a
class of one-sided Lipschitz Markovian jump systems with general uncertain transition rates. In the design process,
an adaptive sliding mode observer is first constructed to estimate the states of the original system without knowing
any information of the unknown input. Then a fault-tolerant control strategy is therefore proposed to stabilize the
closed-loop system against the unknown input. Sufficient conditions of the existences of the designed observer and
controller are deduced in the forms of linear matrix inequalities. In the end, several examples are given to illustrate
the effectiveness and make some comparisons with other results.

Keywords: Fault-tolerant control, general uncertain transition rates, Markovian jump system, one-sided Lipschitz,
observer design.

1. INTRODUCTION

In the past decades, the issues on observer design
for nonlinear systems, especially for Lipschitz nonlinear
systems, have attracted widespread attentions. Normally,
many nonlinearities existed in the systems can be de-
scribed as Lipschitz nonlinearities. However, when the
Lipschitz constant becomes lager, this condition may
turn out to be invalid [1], which is the main limita-
tion of the existing results for Lipschitz nonlinear sys-
tems. In order to overcome this short-coming, the one-
sided Lipschitz condition is introduced as a strategy to
deal with the case when the Lipschitz constant becomes
very large. It is proved that one-sided Lipschitz nonlinear
systems, which include the traditional Lipschitz nonlinear
systems, can represent larger class of nonlinear systems
in a more general sense. In recent years, many excellent
works were reported on the one-side Lipschitz systems
[2–11]. For instance, Hu in [2] first proposed the concept
of one-sided Lipschitz nonlinear systems and developed
asymptotically stable conditions of the corresponding er-
ror dynamics. Following Hu’s work, [3] and [4] proposed
the improved results, which were less conservative than
[2]. Later on, [5] proposed the existing conditions for de-
signing observers for one-sided Lipschitz systems, which
were given in the forms of nonlinear matrix inequali-
ties. Moreover, [6] and [7] investigated the problems of
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observer design for a class of discrete-time nonlinear sys-
tems subjected to one-side Lipschitz nonlinear terms. [8]
proposed full-order and reduced-order observers for one-
sided Lipschitz nonlinear systems by solving the Riccati
equations. Recently, [9] considered the exponential ob-
server design problem for one-sided Lipschitz nonlinear
systems, in which the one-sided Lipschitz constant didn’t
need to be considered in the design process.

In addition, Markovian jump system (MJS) has been
paid much attention in the control field. As MJSs can be
used to describe systems that subjected to random abrupt
and environmental changes, they are able to describe a
wide range of practical systems, including power sys-
tems, aerospace systems, manufacturing systems and net-
work control systems. Due to this fact, a large number
of results discussed the Markovian jump systems were
proposed in recent years [12–20]. For instance, [12] ad-
dressed the robust stabilization problems for a class of
MJSs, which were supposed to own uncertain switch-
ing probabilities. [15] studied the output tracking con-
troller design for continuous-time MJSs, where adaptive
laws were constructed in novel structures and the fault
can therefore be estimated efficiently. [16] proposed an
adaptive sliding mode controller for a class of nonlinear
Markovian jump systems with partly unknown transition
probabilities, where detailed information of the nonlinear
term was assumed to be unknown. [20] developed a fault-
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tolerant control strategy for MJSs with general uncertain
transition rates, in which the actuator fault were adjusted
by the designed adaptive law.

As a critical factor, the transition rates (TRs) determine
the system performance of MJS in the jump process. Until
now, many works were developed under the assumptions
that TRs were completely known [21–23]. In practice, it
is, however, difficult for designers to estimate TRs pre-
cisely and completely. Therefore, some works on MJSs
with partially unknown transition rates (PUTRs) [24–28]
or bounded uncertain transition rates (BUTRs) [29] were
widely studied. However, another description for uncer-
tain TRs, named as general uncertain TRs (GUTRs), was
presented in [30], including the BUTR and PUTR as spe-
cial cases. In this description, each TR can be completely
unknown or only the estimated value can be known, show-
ing that the GUTR is more suitable for describing the TRs
in practice [31].

To the best knowledge of the authors, few researches
focus on the robust observer and fault-tolerant control
designs for MJSs with GUTRs [20, 30–33], especially,
when subjecting to the one-side Lipschitz nonlineari-
ties. Although some effective results on observer and con-
troller design were reported for Markovian jump systems,
there still remain some problems to be solved. For ex-
ample, [28] considered the problem of fault-tolerant con-
trol for the one-sided Lipschitz MJSs against unknown in-
put, however it assumed that the transition rate was par-
tially unknown. [34] and [35] proposed fault-tolerant con-
trol strategies for MJSs with PUTRs, but no reference to
the one-side Lipschitz nonlinearities, and the bounds of
the unknown inputs needed to be known in advance. The
aforementioned results make the problem discussed in
this paper more challenging and deserve further develop-
ment. The main contributions of the proposed method are
summarized as follows:

1) We suppose that the considered Markovian jump
system is subjected to one-sided Lipschitz nonlinearity,
which brings less conservatism than those involved Lip-
schitz nonlinearities [2, 5].

2) The designed observer and controller can be directly
applied to the cases with BUTRs or PUTRs, implying that
the proposed method is more universal than [27, 36].

3) Two novel stochastic adaptive laws are proposed, so
as to estimate some parameters to eliminate the influences,
brought by the unknown inputs, without knowing the up-
per bounds of the unknown inputs in advance. This shows
some superiorities over the existing results that need the
bounds of the unknown inputs being known in advance
[34, 35].

Notations: R represents the field of real numbers. Rn

denotes the n-dimensional Euclidean space. ⟨·, ·⟩ is the
inner product in Rn, given x,y ∈ Rn, then ⟨x,y⟩ = xT y,
where xT denotes the transpose of the column vector x.
Rm×n refers to the real matrix of m row and n column.

∥x∥=
√

xT x represents the 2-norm of vector x, defined as
∥x∥=

√
xT x. ′∗′ stands for the symmetric part of a matrix.

λmin(A) and λmax(A) denote the minimum and maximum
eigenvalues of the matrix A. I represents an identity ma-
trix with appropriate dimension. E {} represents the math-
ematical expectation.

2. SYSTEM DESCRIPTION

Consider a class of one-sided Lipschitz Markovian
jump systems, which is subjected to unknown input as fol-
lows:

ẋ(t) = A(r(t))x(t)+B(r(t))u(t)+D(r(t))η(t)

+ f (x(t),r(t)),

y(t) =C(r(t))x(t),

(1)

where x(t)∈Rn , u(t)∈Rm are the system state, control in-
put, and y(t) ∈ Rp is control output vector. f (x(t),r(t)) ∈
Rs and η(t) ∈ Rq are the one-sided Lipschitz nonlinear
function and unknown input. A(r(t)), B(r(t)), C(r(t)) and
D(r(t)) are coefficient matrices in appropriate dimensions
that depend on r(t). For convenience, the matrices Λ(r(t))
are denoted by Λi = Λ(r(t) = i), i ∈ S in the follow-
ing. The mode jumping process {r(t), t ≥ 0} is a right-
continuous Markov chain on the probability space, and
takes values in a finite state space S = {1,2, ..., s̄} with
the mode transition probabilities

Pr {r(t +∆) = j|r(t) = i}=

{
πi j∆+o(∆), i ̸= j,

1+πi j∆+o(∆), i = j,

where ∆ > 0, lim
∆→0

o(∆)
∆ = 0, and for i ̸= j, πi j ≥ 0 is the

transition rate from mode i at time t to mode j at time
t + ∆. Furthermore, the transition rate πi j satisfies πii =

−
s̄
Σ

j=1,i̸= j
πi j.

In this paper, the transition rate matrix Π = (πi j) is con-
sidered to be generally uncertain. For example, system (1)
with s̄ operation modes may have the following the transi-
tion rate matrix

π̂11+∆π11 ? π̂13+∆π13 · · · ?
π̂22+∆π22 ? · · · π̂s2+∆πs2

...
...

...
. . .

...
π̂s1+∆πs1 ? π̂s3+∆πs3 · · · ?

 ,

(2)

where π̂i j and ∆πi j ∈ [−εi j,εi j], εi j ≥ 0, i, j ∈ S repre-
sent the known estimated value and estimation error of
πi j, respectively. εi j represents the boundary of ∆πi j. The
symbol ‘?’ represents the complete unknown transition
rate, which means that both the estimated value and the
boundary of the estimated error are unknown. Without
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loss of generality, πi j −εi j ≥ 0(∀i, j ∈ S, j ̸= i), πi j +εi j ≤
0(∀i, j ∈ S, j = i), π̂ii =−

s̄
Σ

j=1, j ̸=i
π̂i j and εii =−

s̄
Σ

j=1, j ̸=i
εi j.

In order to distinguish symbols, for all i ∈ S, we denote

U i
k = { j : The estimated value of πi j is known for j ∈ S.}

U i
uk={j :The estimated value of πij is unknown for j∈S.}

Moreover, if U i
k ̸= /0, it is further described as U i

k ={
l1
i , l

2
i , · · · , lm

i

}
, where lm

i represents the mth known ele-
ment in the ith row of matrix Π.

Remark 1: The above descriptions of uncertain transi-
tion rates generalize those of the bounded uncertain transi-
tion rates and partially unknown transition rates. To show
this clearly, we put the two uncertain rates as follows:
(i) Partially unknown transition rate matrix [24]

π11 π12 π13 · · · ?
? π22 ? · · · π2s
...

...
...

. . .
...

πs1 ? πs3 · · · πss

 . (3)

(ii) Bounded uncertain transition rate matrix [29]
π̂11 +∆π11 π̂12 +∆π12 · · · π̂1s1 +∆π1s

π̂21 +∆π21 π̂22 +∆π22 · · · π̂2s +∆π2s
...

...
. . .

...
π̂s1 +∆πs1 π̂s2 +∆πs2 · · · π̂ss +∆πss

 . (4)

We can obviously see that if εi j = 0, ∀ j ∈ U i
k, ∀i ∈ S,

then the uncertain transition rate matrix (2) will come to
a partial unknown transition rate matrix described in (3);
If U i

uk= /0, ∀i ∈ S, the uncertain transition rate matrix (2)
will come to a bounded uncertain transition rate matrix
described in (4). Therefore, it is applicable to implement
the proposed method in the cases of MJSs with BUTRs
and PUTRs.

Remark 2: For the considered system, a typical ex-
ample can be found in NCS (networked control system),
where Markov chain can well describe the randomness
of the time-delay and packet dropouts with all the tran-
sition rates being completely accessible. However, in fact,
it may be impossible to obtain the exact knowledge of
the transition rates in most real systems. Only estimated
values and the boundaries of the estimation errors can
be available. In summary, Markovian jump systems with
general uncertain transition rates do exist in practical ap-
plications.

Definition 1 [5]: If the nonlinear term fi(x(t)) is con-
tinuous with x(t) and conforms to the one-sided Lipschitz
condition in the region D̄i, then there exists a one-sided
Lipschitz constant δi ∈ R such that ∀x1,x2 ∈ D̄i.

⟨ fi(x(t))− fi(x̂(t)),x(t)− x̂(t)⟩ ≤ δi∥x(t)− x̂(t)∥2,
(5)

where D̄i is a compact region and contains the origin and
the condition holds when the system operates in the ith
mode.

Definition 2 [5]: The nonlinear term fi(x(t)) is called
quadratic inner-boundedness in the region D̃i, if there exist
constants σi,γi ∈ R such that ∀x1,x2 ∈ D̃i

( fi(x(t))− fi(x̂(t)))T ( fi(x(t))− fi(x̂(t)))

≤ σi∥x(t)− x̂(t)∥2

+ γi ⟨x(t)− x̂(t), fi(x(t))− fi(x̂(t))⟩ , (6)

where D̃i is a compact region and contains the origin and
the condition holds when the system operates in the ith
mode.

Remark 3: For each i∈ S, the one-sided Lipschitz con-
stants δi, σi and γi can be positive, negative or zero, but
the traditional Lipschitz constant must be positive. This
shows some superiorities over the traditional Lipschitz
condition.

Remark 4: The one-sided Lipschitz nonlinearities un-
der consideration cover a broad family on practical nonlin-
ear systems and includes the classic Lipschitz conditions
as special cases [2]. It is proved that the one-sided Lips-
chitz constants are significantly smaller than the classical
Lipschitz constants, so as to much conservatism can be
reduced while solving the LMIs [5].

Definition 3 [37]: The Markovian jump system (1)
with u(t)≡ 0 is said to be stochastically stable, if for every
initial condition x0 ∈ Rn and initial mode r0 ∈ S ,

E
{∫ ∞

0
∥x(t)∥2dt|x0,r0

}
< ∞. (7)

Assumption 1: We assume that the unknown input
η(t) is bounded that is ∥η(t)∥ ≤ ρη , where ρη is un-
known.

Assumption 2: There exist symmetric positive definite
matrices Pi ∈ Rn×n and Wi ∈ Rn×n, matrices Hi and Gi with
appropriate dimensions such that

DT
i Pi = HiCi, (8)

and

DT
i Wi = GiCi. (9)

3. ADAPTIVE SLIDING MODE OBSERVER
DESIGN

In this section, we construct an adaptive sliding mode
observer which is then used to estimate the states of sys-
tem (1).

˙̂x(t) = Aix̂(t)+Biu(t)+ fi(x̂(t))+Divei(t)

+Li(y(t)− ŷ(t)),

ŷ(t) = Ĉix(t),

(10)
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where x̂(t) ∈ Rn is the estimated state of x(t). Li ∈ Rn×p is
the observer gain matrix to be designed. vei(t) is a sliding
mode control law which will be designed in the next part.

The estimation error is defined as e(t) = x(t)− x̂(t),
then the error equation is governed by

ė(t) = ẋ(t)− ˙̂x(t). (11)

Subtract (10) from (1), one can have access to the follow-
ing error equation

ė(t) =ẋ(t)− ˙̂x(t)

=(Ai −LiCi)e(t)+ f̃i(x(t), x̂(t))+Diη(t)

−Divei(t), (12)

where f̃i(x(t), x̂(t)) = fi(x(t))− fi(x̂(t)).
Define the following sliding mode control laws:

vxi(t) = βxi(t)sgn(Svxi(t)), (13)

and

vei(t) = βei(t)sgn(Svei(t)), (14)

which are used to eliminate the effect of unknown in-
put η(t), where Svxi(t) = HiCix(t) = DT

i Pix(t), Svei(t) =
GiCie(t) = DT

i Wie(t), Hi and Gi are denoted in Assump-
tion 2 and βxi(t) and βei(t) are unknown adaptive gains,
and adjusted by adaption algorithms.

β̇xi(t) = αxi ∥Svxi(t)∥sgn(∥Svxi(t)∥− τxi)

for βxi(t)> µxi,

β̇xi(t) = µxi for βxi(t)≤ µxi,

(15)

and 
β̇ei(t)=αei∥Svei(t)∥sgn(∥Svei(t)∥−τei)

for βei(t)> µei,

β̇ei(t)=µei for βei(t)≤ µei,

(16)

with αxi < 2, αei < 2, βe(0) > 0, βx(0) > 0, 0 < τxi < 1,
0 < τei < 1, and µxi > 0, and µei > 0 being small enough.

Remark 5: In (15) and (16), the parameters µxi > 0 and
µei > 0 are introduced to guarantee that βxi(t) and βei(t)
are always positive scalars.

Remark 6: According to the structures of adaptive
laws (15) and (16), we can see that the control gains βxi(t)
and βei(t) can be always adjusted to appropriate values on-
line, avoiding being too small or large, so as to guarantee
good estimations and control performances.

Lemma 1: With the sliding mode terms (13) and (14),
the adaptive gains βxi(t) and βei(t), defined in (15) and
(16), have upper bounds βxi

∗ and βei
∗, for all t ≥ 0 with

βxi
∗ ≥ ρx and βei

∗ ≥ ρe.
Proof: We omit the proved process, which is similar to

[38].

4. OBSERVER-BASED FAULT-TOLERANT
CONTROL DESIGN

In this section, we propose a fault-tolerant controller for
the system (1). The fault-tolerant controller can be con-
structed as u(t) = K(r(t))x(t)−B†

i Divxi(t), where x(t) is
the real system state, vxi(t) is defined in (13) and B†

i is by
an inverse of Bi.

Assumption 3:

rank(
[

Bi Di
]
) = rank(Bi).

Lemma 2: For any Penrose-Moore inverse B†
i of the

matrix Bi and any Fi that satisfies Assumption 3, we have
BiB

†
i Di = Di. Proof: Assumption 3 implies that there exist

some matrices ∑i such that B†
i ∑i = Di. Thus, BiB

†
i Di =

BiB
†
i Bi∑i. Since B†

i is a Penrose-Moore inverse of Bi,
we have BiB

†
i = I. Therefore, BiB

†
i Bi∑i = Bi∑i = Di. This

concludes the proof.

Using Lemma 2, the closed-loop system is given by

ẋ(t) = (Ai+BiKi)x(t)−Divxi(t)+Diη(t)+ fi(x(t), t).
(17)

The sufficient conditions of the existence of proposed con-
troller are given in Theorem 1.

Theorem 1: If there exist scalar ψi > 0, symmetric
positive definite matrices Pi ∈ Rn×n, Wi ∈ Rn×n, Qi ∈ Rn×n,
Mi j ∈Rn×n, Ni j ∈Rn×n, Oi j ∈Rn×n, and some positive con-
stants υ1i, υ2i, κ1i, κ2i and φi, such that for any i ∈ S

ϒ1i Pi +
γiυ2i−υ1i

2 I 0 0
∗ −υ2iI 0 0
∗ ∗ ϒ2i Wi +

γiκ2i−κ1i
2 I

∗ ∗ ∗ −κ2iI

< 0,

(18)

where ϒ1i = PiAi + Ai
T Pi +Ri + Ri

T + ∑
j∈Si

k

π̂i j(Pj −Qi)+

∑
j∈Si

k

2εi jMi j− ∑
j∈Si

k

εi j(Pj−Qi)+υ1iδi+υ2iσi−φiI, Ri=PiBiKi

and ϒ2i =WiAi+AT
i Wi−YiCi−Ci

TY T
i + ∑

j∈Si
k

π̂i j(Wj−Oi)+

∑
j∈Si

k

2εi jNi j− ∑
j∈Si

k

εi j(Wj −Oi)+κ1iδi+κ2iσi−φiI, Yi=WiLi.

Pj −Qi ≥ 0, j ∈ Si
uk, j = i, (19)

Pj −Qi ≤ 0, j ∈ Si
uk, j ̸= i, (20)

Pj −Qi −Mi j ≤ 0, j ∈ Si
k, (21)

Wj −Oi ≥ 0 , j ∈ Si
uk, j = i, (22)

Wj −Oi ≤ 0, j ∈ Si
uk, j ̸= i, (23)

Wj −Oi −Ni j ≤ 0, j ∈ Si
k, (24)

min ψi > 0[
−ψiI (DT

i Pi −HiCi)
T

∗ −I

]
< 0, (25)
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[
−ψiI (DT

i Wi −GiCi)
T

∗ −I

]
< 0. (26)

then the error system (12) and the closed-loop system
(17) are stochastically stable. The controller gains and
observer gains can be obtained by Ki= (BT

i Bi)
−1BT

i P−1
i Ri

and Li =Wi
−1Yi.

Proof: Consider the Lyapunov function candidate of

Vζ (ζ (t),r(t))

= ζ (t)T P̃(r(t))ζ (t)+
1
2
(βxi(t)−β ∗

xi)
2

+
1
2
(βei(t)−β ∗

ei)
2

= xT (t)P(r(t))x(t)+ eT (t)W (r(t))e(t)

+
1
2
(βxi(t)−β ∗

xi)
2 +

1
2
(βei(t)−β ∗

ei)
2, (27)

where P̃(r(t)) = diag{P(r(t)),W (r(t))} and ζ (t) =[
x(t)T e(t)T ]T

. If at time t, r(t) = i, the weak in-
finitesimal operator acting on V (•) at time t is given by

ℓVζ (ζ (t), i)

= xT (t)
[
Pi(Ai +BiKi)+(Ai +BiKi)

T Pi

]
x(t)

+ xT (t)
s̄

∑
j=1

πi jPjx(t)+2xT (t)Pi fi(x(t))

+2xT (t)PiDiη(t)−2xT (t)PiDivxi(t)

+ β̇xi(t)(βxi(t)−βxi
∗)

+ eT (t)
[
Wi(Ai −LiCi)+(Ai −LiCi)

TWi

]
e(t)

+ eT (t)
s̄

∑
j=1

πi jWje(t)+2eT (t)Wi f̃i(x(t), x̂(t))

+2eT (t)WiDiη(t)

−2eT (t)WiDivei(t)+ β̇ei(t)(βei(t)−βei
∗). (28)

In fact, for Qi > 0 and Oi > 0, there exist
s̄
∑
j=1

πi jxT (t)Qix(t) = 0 and
s̄
∑
j=1

πi jeT (t)Oie(t) = 0 since

we have
s̄
∑
j=1

πi j = 0.

Then, we have

eT (t)
s̄

∑
j=1

πi jWje(t)− eT (t)
s̄

∑
j=1

πi jOie(t)

= eT (t) ∑
j∈Si

k

πi jWje(t)+ eT (t) ∑
j∈Si

uk

πi jWje(t)

− eT (t) ∑
j∈Si

k

πi jOie(t)− eT (t) ∑
j∈Si

uk

πi jOie(t)

= eT (t)∑
j∈Si

k

πi j(Wj −Oi)e(t)

+ eT (t) ∑
j∈Si

uk

πi j(Wj −Oi)e(t). (29)

For the term eT (t) ∑
j∈Si

uk

πi j(Wj −Oi)e(t), there are two sce-

narios for discussion.
(i) If i = j, then πi j ≤ 0, and from (24) we can have

eT (t) ∑
j∈Si

uk

πi j(Wj −Oi)e(t)< 0.

(ii) If i ̸= j, then πi j ≥ 0, and from (25) we can have

eT (t) ∑
j∈Si

uk

πi j(Wj −Oi)e(t)< 0.

Thus, from (i) and (ii), we can conclude that

eT (t) ∑
j∈Si

uk

πi j(Wj −Oi)e(t)< 0. (30)

So similarly, it’s easy to derive

xT (t) ∑
j∈Si

uk

πi j(Pj −Qi)x(t)< 0. (31)

Substitute (30) and (31) into (28), we have

ℓVζ (ζ (t), i)

≤ xT (t)
[
Pi(Ai +BiKi)+(Ai +BiKi)

T Pi

]
x(t)

+2xT (t)PiDiη(t)−2xT (t)PiDivxi(t)

+ β̇xi(t)(βxi(t)−βxi
∗)

+2xT (t)Pi fi(x(t))+2eT (t)Wi f̃i(x(t), x̂(t))

+ eT (t)
[
Wi(Ai −LiCi)+(Ai −LiCi)

TWi

]
e(t)

+2eT (t)WiDiη(t)−2eT (t)WiDivei(t)

+ β̇ei(t)(βei(t)−βei
∗)

+ xT (t) ∑
j∈Si

k

πi j(Pj −Qi)x(t)

+ eT (t) ∑
j∈Si

k

πi j(Wj −Oi)e(t). (32)

Furthermore, notice that πi j = π̂i j +∆πi j, |∆πi j| ≤ εi j and
(21), we have

∑
j∈Si

k

πi j(Pi −Qi)

= ∑
j∈Si

k

(π̂i j +∆πi j)(Pj −Qi)

= ∑
j∈Si

k

[
π̂i j(Pj −Qi)+(∆πi j + εi j)(Pj −Qi)

− εi j(Pj −Qi)
]

≤ ∑
j∈Si

k

π̂i j(Pj −Qi)+ ∑
j∈Si

k

2εi jMi j − ∑
j∈Si

k

εi j(Pj −Qi).

(33)

In the same way, we can derive from (24) that

∑
j∈Si

k

πi j(Wi −Oi)



Robust Observer Based Fault-tolerant Control for One-sided Lipschitz Markovian Jump Systems with General ... 1619

≤ ∑
j∈Si

k

π̂i j(Wj −Oi)+ ∑
j∈Si

k

2εi jNi j − ∑
j∈Si

k

εi j(Wj −Oi).

(34)

Therefore, noticing (33) and (34), then (32) can result in

ℓVζ (ζ (t), i)

≤ xT (t)
[

Pi(Ai +BiKi)+(Ai +BiKi)
T Pi

+ ∑
j∈Si

k

π̂i j(Pj −Qi)+ ∑
j∈Si

k

2εi jMi j

− ∑
j∈Si

k

εi j(Pj −Qi)

]
x(t)+2xT (t)Pi fi(x(t))

+2xT (t)PiDiη(t)−2xT (t)PiDivxi(t)

+ β̇xi(t)(βxi(t)−βxi
∗)+ eT (t)

[
Wi(Ai +BiKi)

+(Ai +BiKi)
TWi + ∑

j∈Si
k

π̂i j(Wj −Qi)

+ ∑
j∈Si

k

2εi jMi j − ∑
j∈Si

k

εi j(Wj −Oi)

]
e(t)

+2eT (t)Wi f̃i(x(t), x̂(t))+2eT (t)WiDiη(t)

−2eT (t)WiDivei(t)+ β̇ei(t)(βei(t)−βei
∗). (35)

Based on (14) and (16), we have

2eT (t)WiDiη(t)−2eT (t)WiDivei(t)

+ β̇ei(t)(βei(t)−βei
∗)

= 2ST
vei
(t)η(t)−2βei(t)∥Svei(t)∥

+ β̇ei(t)(βei(t)−βei
∗)

≤ 2∥Svei(t)∥ρe −2βei(t)∥Svei(t)∥
+2βei

∗ ∥Svei(t)∥−2βei
∗(t)∥Svei(t)∥

+αei ∥Svei(t)∥sgn(∥Svei(t)∥− τei)(βei(t)−βei
∗)

≤ 2(ρe −βei
∗)∥Svei(t)∥−2(βei(t)−βei

∗)∥Svei(t)∥
+αei ∥Svei(t)∥sgn(∥Svei(t)∥− τei)(βei(t)−βei

∗).
(36)

In the same way, we can derive that

2xT (t)PiDiη(t)−2xT (t)PiDivxi(t)

+ β̇xi(t)(βxi(t)−βxi
∗)

≤ 2(ρx −βxi
∗)∥Svxi(t)∥−2(βxi(t)−βxi

∗)∥Svxi(t)∥
+αxi ∥Svxi(t)∥sgn(∥Svxi(t)∥− τxi)(βxi(t)−βxi

∗).
(37)

For the sign function in (36) and (37), we handle it in dif-
ferent ways in two cases.

Case 1: Suppose that ∥Svxi(t)∥ ≥ τxi and ∥Svei(t)∥ ≥ τei,
then with the aid of Lemma 1, (36) and (37) can be written
as

2xT (t)PiDiη(t)−2xT (t)PiDivxi(t)

+ β̇xi(t)(βxi(t)−βxi
∗)

≤ 2(ρx −βxi
∗)∥Svxi(t)∥

+(αxi −2)(βxi(t)−βxi
∗(t))∥Svxi(t)∥

< 0,

and

2eT (t)PiDiη(t)−2eT (t)PiDivei(t)

+ β̇ei(t)(βei(t)−βei
∗)

≤ 2(ρe −βei
∗)∥Svei(t)∥

+(αei −2)(βei(t)−βei
∗)∥Svei(t)∥

< 0.

From Lemma 1 and the definitions of αxi and αei, (35)
becomes

ℓVζ (ζ (t), i)

≤ xT (t)
[

Pi(Ai +BiKi)+(Ai +BiKi)
T Pi

+ ∑
j∈Si

k

π̂i j(Pj −Qi)+ ∑
j∈Si

k

2εi jMi j

− ∑
j∈Si

k

εi j(Pj −Qi)

]
x(t)+2xT (t)Pi fi(x(t))

+ eT (t)
[
Wi(Ai +BiKi)+(Ai +BiKi)

TWi

+ ∑
j∈Si

k

π̂i j(Wj −Oi)+ ∑
j∈Si

k

2εi jNi j

− ∑
j∈Si

k

εi j(Wj −Oi)

]
e(t)+2eT (t)Wi f̃i(x(t), x̂(t)).

(38)

On the other hand, based on Definition 1 and 2, we can get

υ1iδixT (t)x(t)− υ1i

2
xT (t) fi(x(t))−

υ1i

2
f T
i (x(t))x(t)

≥ 0, (39)

υ2iσixT (t)x(t)+
υ2i

2
γixT (t) fi(x(t))

+
υ2i

2
γi f T

i (x(t))x(t)−υ2i f T
i (x(t)) fi(x(t))

≥ 0, (40)

κi1δieT (t)e(t)− κi1

2
eT (t) f̃i(x(t), x̂(t))

− κi1

2
f̃ T
i (x(t), x̂(t))e(t)

≥ 0, (41)

κi2σieT (t)e(t)−κi2 f̃ T
i (x(t), x̂(t)) f̃i(x(t), x̂(t))

+
κi2

2
γieT (t) f̃i(x(t), x̂(t))

+
κi2

2
γi f̃ T

i (x(t), x̂(t))e(t)

≥ 0, (42)
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ℓVζ (ζ (t), i)≤


x(t)

fi(x(t))
e(t)

f̃i(x(t), x̂(t))


T


ϒ1i −φiI Pi +
γiυ2i −υ1i

2
I 0 0

∗ −υ2iI 0 0

∗ ∗ ϒ2i −φiI Wi +
γiκ2i −κ1i

2
I

∗ ∗ ∗ −κ2iI




x(t)
fi(x(t))

e(t)
f̃i(x(t), x̂(t))

.
(43)

where υ1i, υ2i, κ1i and κ2i are some positive constants.
By adding (39)-(42) into the right-hand side of (38),

(43) can be readily obtained, which is at the top of this
page.
According to Theorem 1, we obtain that

ϒ1i Pi +
γiυ2i−υ1i

2 I 0 0
∗ −υ2iI 0 0
∗ ∗ ϒ2i Wi +

γiκ2i−κ1i
2 I

∗ ∗ ∗ −κ2iI

< 0.

(44)

Therefore, (43) combining with (44) implies that

ℓVζ (ζ (t), i)≤ ϑ T (t)


−φiI 0 0 0
∗ 0 0 0
∗ ∗ −φiI 0
∗ ∗ ∗ 0

ϑ(t)

=−φiζ T (t)ζ (t), (45)

where ϑ(t) =
[

x(t) fi(x(t)) e(t) f̃i(x(t), x̂(t))
]T .

Denote that φ = min
i∈S

{φi}, then

ℓVζ (ζ (t), i)≤−φiζ T (t)ζ (t)≤−φζ T (t)ζ (t). (46)

Therefore, by using Dynkin’s formula [39], we obtain

E
{∫ t

0
ℓVζ (ζ (s),r(s))dζ

}
= E

{
Vζ (ζ (t),r(t))

}
−E

{
Vζ 0

}
, (47)

where Vζ 0 is the initial value of Vζ (ζ (t),r(t)).
Employing (46) and (47), we can get

E
{

Vζ (ζ (t),r(t))
}
−E

{
Vζ 0

}
≤−φE

{∫ t

0
Vζ (ζ (s),r(s))ds

}
. (48)

Dividing both sides of (50) by −φ , we can get

E
{∫ t

0
Vζ (ζ (s),r(s))ds

}
≤ 1

−φ
[
E
{

Vζ (ζ (t),r(t))
}
−E

{
Vζ 0

}]
≤

E
{

Vζ 0
}

φ
, (49)

which implies that

E
{∫ ∞

0
∥ζ (t)∥2dt|ζ0,r0

}
< ∞ (50)

by noticing φ > 0. It means that the error dynamics (12)
and the augmented system (17) are stochastically stable
according to Definition 3.

Case 2: Suppose now ∥Svxi(t)∥≤ τxi and ∥Svei(t)∥≤ τei,
then ℓVζ (ζ (t), i) ≤ −φζ T (t)ζ (t) will sign indefinite and
this will lead to instability of the closed-loop system tem-
porarily. The instability may cause that ∥Svxi(t)∥ increases
over τxi and ∥Svei(t)∥ increases over τei. As soon as
∥Svxi(t)∥ becomes greater than τxi and ∥Svei(t)∥ becomes
greater than τei, ℓVζ (ζ (t), i) ≤−φζ T (t)ζ (t) will be sat-
isfied as discussed in case 1.

In addition, the conditions in (8) and (9) can be con-
verted into a minimization problem based on some LMI
constraints. The linear equality condition (8) is in equiva-
lent to

tr((DT
i Pi −HiCi)

T (DT
i Pi −HiCi)) = 0.

Introduce the conditions

(DT
i Pi −HiCi)

T (DT
i Pi −HiCi)< ψiI,

where ψi is a positive scalar, and by Schurs complement it
is equivalent to[

−ψiI (DT
i Pi −HiCi)

T

∗ −I

]
< 0.

In the same way, according to the linear equality condition
(9), we can derive that[

−ψiI (DT
i Wi −GiCi)

T

∗ −I

]
< 0.

Therefore, the problems of solving the existence condi-
tions of the designed observer and controller are now con-
verted into the problems of finding the global minimiza-
tion problems:

min ψi subject to (8),(9) and Theorem 1. (53)

Remark 7: From observing the derivations (36) and
(37), we add the terms 1

2 (βxi(t)−β ∗
xi)

2 and 1
2 (βei(t)−β ∗

ei)
2
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into the Lyapunov function in order to cope with the un-
known input terms 2xT (t)PiDiη(t) and 2eT (t)WiDiη(t)
existing in the error dynamics (12) and closed-loop sys-
tem (17).

Remark 8: It is worth noting that the auxiliary matri-
ces Qi and Oi are important since they can provide more
freedom for the inequality constraints (19)-(26).

Remark 9: In this paper, the proposed method pos-
sesses generality as it can be directly applied to the Marko-
vian jump systems with BUTRs and PUTRs. In partic-
ular, (18), (21) and (24)-(26) are the existing conditions
for BUTR case; (18)-(20), (22)-(23) and (25)-(26) are for
PUTR case by setting πi j = π̂i j and εi j = 0 for i, j ∈ S.

□

5. SIMULATION STUDY

5.1. Practical example study
In this section, a practical example will be provided to

demonstrate the effectiveness of the proposed to approach.
Consider the linearized model of an F-404 aircraft engine
system in [34]

A(t) =

 −1.46 0 2.428
0.1643+0.5θ(t) −0.4+θ(t) −0.3788

0.3107 0 −2.23


with θ(t) being an uncertain model parameter. Let θ(t) be
subjected to a Markov process r(t) with s = 3, described

as θ(t) =


0, r = 1,
−1, r = 2,
−2, r = 3.

The transition rate matrix is chosen as

Π =

 −1+∆π11 ? ?
2 −3+∆π22 ?

0.1+∆π31 0.1+∆π32 −0.2+∆π33

 .

Other coefficient matrices are set as follows:

B1 =

0.1
0

0.2

 , B2 =

 0.1
−0.1
−1

 , B3 =

0.3
0
1

 ,

D1 =

0.1
0

0.2

 , D2 =

 0.1
−0.1
−1

 , D3 =

0.3
0
1

 ,

C1 =C2 =C3 =

 1 0 0
0 1 1
1 0 1

 .

Assume that ε11 = ε22 = ε31 = ε32 = ε33 = 1 and κ1i =
υ1i = 0.5 and κ2i = υ2i = 0.6 and φi = 1, i = 1,2,3.
We assume the f (x,u, i) = 3.33sin(x), i = 1,2,3 and by
the expression and Definition 1 and 2, we can prove that

f T
i (x(t))x(t)≤ 3.33∥x(t)∥2,

f T
i (x(t)) fi(x(t))≤ 11.2∥x(t)∥2.

So we can define that δi = 3.33, σi = 11.2, and γi = 0,
i = 1,2,3.
Next, solving (18)-(26) yields

P1 =

 59.1650 −1.0503 14.2392
−1.0503 53.0335 15.6147
14.2392 15.6147 56.7398

 ,

P2 =

 9.9569 −0.0510 0.0972
−0.0510 9.8800 0.1586
0.0972 0.1586 9.8794

 ,

P3 =

 5.5216 0.0021 −0.111
0.0021 5.4937 0.0361
−0.0111 0.0361 5.5080

 ,

Q1 =

 20.2979 −0.0091 0.0187
−0.0091 20.2831 0.0283
0.0187 0.0283 20.2821

 ,

Q2 =

 14.4492 0.0042 −0.0142
0.0042 14.4356 0.0073
−0.0142 0.0073 14.4500

 ,

Q3 =

 41.6633 −0.0018 0.0027
−0.0018 41.6639 0.0031
0.0027 0.0031 41.6614

 ,

W1 =

 26.3589 −0.6638 6.3016
−0.6638 24.5583 7.2155
6.3016 7.2155 25.4580

 ,

W2 =

 12.8143 −0.3878 1.0631
−0.3878 12.4159 1.3967
1.0631 1.3967 12.2690

 ,

W3 =

 8.4069 −0.1517 0.4467
−0.1517 8.2914 0.6101
0.4467 0.6101 8.1221

 ,

O1 =

 30.8718 −0.0683 0.1907
−0.0683 30.8085 0.2488
0.1907 0.2488 30.7720

 ,

O2 =

 26.3009 −0.0544 0.1425
−0.0544 26.2673 0.1847
0.1425 0.1847 26.2144

 ,

O3 =

 17.8571 −0.0018 0.0025
−0.0018 17.8565 0.0029
0.0025 0.0029 17.8552

 ,

L1 =

 397.3631 30.4289 −110.2430
46.0398 364.5661 −105.5184

−121.7591 −90.9029 412.9625

 ,

L2 =

 2194.7245 17.8486 −65.7473
21.2350 1888.8452 55.4966
−67.9463 58.8492 2087.3421

 ,

L3 =

 3.9119∗103 8.7327 −59.4770
8.7683 3.4744∗103 112.0319

−59.3017 113.5079 3.7446∗103

 ,
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Fig. 1. State estimation of x1(t) with generally uncertain
TRs.

Fig. 2. State estimation of x2(t) with generally uncertain
TRs.

K1 =
[
−193.54 −648.14 −269.81

]
,

K2 =
[

106.79 200.11 509.40
]
,

K3 =
[
−267.74 −118.24 −462.59

]
.

For this simulation, the unknown input is assumed to be
η(t)= 5sin(t). Fig. 4 shows the switching signal r(t). Ac-
cording to Figs. 1-3, we can see that the estimated values
of states can track the real values quickly and precisely,
which implies that the designed observer can be employed
successfully. In addition, all the state trajectories shown in
Figs. 1-3 converge to zero, which means that the stochastic
stability of the closed-loop system can be guaranteed.

5.2. Compared study 1
In order to verify the generality of the proposed ap-

proach, we modify the transition rate matrix (2) to BUTR

type as Π =

 −1+∆π11 0.5+∆π12 0.5+∆π13

2+∆π21 −3+∆π22 1+∆π23

0.1+∆π31 0.1+∆π32 −0.2+∆π33

.

In this case, the existence conditions in Theorem 1 be-
come (18), (21) and (24)-(26). According to Figs. 5-7, we
can see that the proposed method can be applied to MJSs
with BUTRs successfully, as discussed in Remark 9.

Fig. 3. State estimation of x3(t) with generally uncertain
TRs.

Fig. 4. Switching signal.

5.3. Compared study 2
We modify the transition rate matrix (2) to PUTR type

as Π =

 −1 ? ?
2 −3 ?

0.1 0.1 −0.2

. In this case, the existence

conditions in Theorem 1 become ((18)-(20), (22)-(23) and
(25)-(26) with πi j = π̂i j and εi j = 0 for i, j ∈ S. According
to Figs. 8-10, we can see that the estimation and control
performances are both satisfactory.

6. CONCLUSION

In this paper, we investigate the problem of design-
ing robust observer and fault-tolerant controller for one-
sided Lipschitz Markovian jump systems with general un-
certain transition rates against the existing unknown in-
put. First, a robust observer involved sliding mode con-
trol terms is proposed to provide the estimations of the
states. Then a fault-tolerant controller, by virtue of sliding
mode technique, is proposed to stabilize the closed-loop
system. Finally, the simulations validate the effectiveness
of the proposed method. In future research, we will de-
velop some other control methods, such as networked con-
trol [40], sliding mode control [41], sampled-data control
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Fig. 5. State estimation of x1(t) with bounded uncertain
TRs.

Fig. 6. State estimation of x2(t) with bounded uncertain
TRs.

Fig. 7. State estimation of x3(t) with bounded uncertain
TRs.

[42, 43] and event-based control [44], for the considered
system.
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