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Online Ensemble Topology Selection in Expensive Optimization Problems
Yoel Tenne

Abstract: Simulation-driven optimization problems are often computationally-expensive, an aspect which has mo-
tivated the use of metamodels as they provide approximate function values more economically. To further improve
the prediction accuracy the use of ensembles has been explored in which predictions from multiple metamodels are
combined. However, the optimal ensemble topology, namely, which types of metamodels it includes, is typically
not known, while using a fixed topology may degrade the prediction accuracy and search effectiveness. To address
this issue this paper proposes a metamodel-assisted algorithm which autonomously adapts the ensemble topology
online during the search such that an optimal topology is used throughout. An extensive performance analysis shows
the effectiveness of the proposed algorithm and approach.
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1. INTRODUCTION

Engineers and researchers often use computer simula-
tions to evaluate candidate designs so that the duration and
cost of the design process can be reduced. Such simula-
tions, which still need to be validated with real-world ex-
periments, transform the design process into an optimiza-
tion problem with three distinct features [1]:

• The simulation acts as the objective function since it
assigns objective values to candidate designs but an
analytic expression for this function is unavailable.
This might be because the output value results from
intricate calculations such as finite differences meth-
ods, or because it is a commercial or a legacy code.
Such a black-box function precludes the use of opti-
mization algorithms which require an analytic func-
tion.
• Each simulation run is computationally expensive,

that is, it requires a lengthy run time, and this severely
restricts the number of candidate designs which can
be evaluated.
• Both the real-world physics being modelled and the

numerical simulation process itself often yield an ob-
jective function which has a complicated and non-
convex landscape which further complicates the op-
timization process.

In such settings it is common to use a metamodel, namely,
a mathematical approximation of the true expensive func-
tion which provides predicted objective values at a lower
computational cost [1–3]. A variety of metamodels have
been proposed but the optimal type is problem-dependant

and is typically not known a-priori. Ensembles attempt to
address this issue by aggregating predictions from several
metamodels into a single one [4, 5]. However the effec-
tiveness of ensembles depends on their topology, namely,
which metamodels they incorporate, but the optimal topol-
ogy is usually unknown a-priori. Furthermore, due to the
high evaluation cost of the simulation it is typically im-
practical to identify the optimal topology in a ‘trial and
error’ approach. To address this challenge this paper pro-
poses an algorithm in which the ensemble topology is con-
tinuously adapted throughout the search in a rigorous and
efficient way such that the most suitable ensemble is con-
tinuously being used. The proposed algorithm also oper-
ates within a trust-region (TR) framework to ensure con-
vergence to an optimum of the true expensive objective
function. An extensive performance analysis using both
mathematical test functions and an engineering test prob-
lem shows the effectiveness of the proposed algorithm
and highlights the merit of the proposed topology selec-
tion approach. The remainder of this paper is organized
as follows: Section 2 provides the background informa-
tion, Section 3 describes in detail the proposed framework
and algorithm, and Section 4 describes an extensive per-
formance analysis and discussion of the results. Lastly,
Section 5 concludes this paper.

2. BACKGROUND

As mentioned in Section 1 expensive optimization
problems are prevalent and Fig. 1 gives a schematic lay-
out. In such cases metamodels are often used to approx-
imate the simulation’s input-output relation and to pro-
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Fig. 1. The layout of an expensive black-box optimization
problem.

vide approximate objective values at a lower computa-
tional cost. Metamodels are typically interpolants which
have been trained with previously evaluated vectors and
examples include artificial neural networks (ANNs), Krig-
ing, and radial basis functions (RBF) [6–9].

However, the use of metamodels introduces new chal-
lenges into the optimization search:

• Prediction inaccuracy: Since the computer simulation
is resource-intensive only a small number of vectors
can be evaluated and used to train the metamodel.
This in turn leads to an inaccurate metamodel which
adversely impacts the search [10]. It is therefore nec-
essary to manage the metamodel to ensure its accu-
racy during the search. To accomplish this the pro-
posed algorithm leverages on the trust-region (TR)
approach from the field of nonlinear programming
[11, 12]. In this approach the optimization is pre-
formed through a sequence of trial steps which are
constrained to a TR, namely, the region where the
metamodel is assumed to be accurate. Based on the
success of the trial steps, namely, if a new optimum
was indeed found, the TR is updated. Section 3 de-
scribes the TR approach implemented in this study.
• Metamodel suitability: Various metamodels have

been proposed but the most suitable variant is prob-
lem dependant and is typically unknown a-priori
[13–15]. Ensembles aim to address this by aggre-
gating the predictions of multiple metamodels into a
single one to improve the overall prediction accuracy
[4, 5]. Fig. 2 shows an example of an ensemble setup
based on the Rosenbrock function. The ensemble
topology, namely, the set of metamodels it incorpo-
rates, is typically chosen a-priori and is unchanged
during the search. However, this can harm the search
since an unsuitable topology degrades the predic-
tion accuracy. As an example, radial basis functions
(RBF), radial basis functions neural network (RBFN),
and Kriging metamodels were used to generate four
different ensembles and their accuracies were mea-
sured with the root mean square error (RMSE) across
four test functions in dimensions 5 to 30. Table 1
gives the test results from which it follows that the
prediction accuracy varied with topology and that no
single topology was optimal. To address this issue an
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Fig. 2. An ensemble generated based on a sample of 20
vectors of the Rosenbrock function. The meta-
models used are radial basis function (RBF),
RBFN, and Kriging.

Table 1. RMS prediction error by topology.

Ensemble Topology
Function R+N R+K N+K R+N+K
Ack-5D 4.258e-01 3.702e-01 4.151e-01 2.967e-01
Ras-10D 1.223e+02 8.198e+01 1.312e+02 1.097e+02
Ros-20D 1.791e+06 1.666e+06 1.648e+06 1.693e+06
Sch-30D 1.882e+06 2.179e+06 2.343e+06 2.079e+06

Best entry per row is emphasized.
R: RBF, N: RBF network, K: Kriging.
Ack: Ackley, Ras: Rastrigin, Ros: Rosenbrock,
Sch: Schwefel 2.13.

optimization algorithm is proposed in which an op-
timal topology is continuously being selected during
the search, as described in the following section.

3. PROPOSED ALGORITHM

To address the issue of inadequate ensemble topology
an algorithm with online topology selection is proposed.
The algorithm operates in five main steps, as follows:

1) Initialization: An initial set of vectors is sampled to en-
able training the metamodels. In this study the orthogo-
nal Latin hypercube design (OLHD) sampling method
was used to ensure that an adequate space-filling sam-
ple is obtained which in turn improves the accuracy of
the resultant metamodels [16, 17].

2) The vectors which have been sampled are split into a
training and testing set and the accuracy of each candi-
date metamodel is estimated with its root mean square
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error (RMSE) of prediction, namely

e j =

√
1
l

l

∑
i=1

(
m j(xi)− f (xi)

)2
, (1)

where m j(x) is the metamodel generated based on the
training set xi , i = 1 . . . l, and f (x) is the true objective
function response. The split ratio between the training
and testing sets in this step was calibrated through nu-
merical experiments as described in Section 4.1.

3) The sampled vectors are now re-split again into train-
ing and testing sets and each metamodel variant is re-
trained. Next, for each candidate ensemble topology
its overall prediction and metamodel weights are cal-
culated as

f̂k(x) =
nk

∑
j=1

u jm̂ j(x), u j =
e−1

j

∑
nk
j=1 e−1

j
, (2a)

where f̂k(x) is the overall ensemble prediction and
m̂ j(x), j = 1 . . .nk are the participating metamodels.
The weight of each metamodel is determined such that
it is inversely proportional to the metamodel RMSE er-
ror obtained in eq. (1). Lastly the prediction accuracy
of the candidate ensemble is estimated as

εk =

√
1
l

l

∑
i=1

(
f̂k(xi)− f (xi)

)2
, (2b)

where xi , i= 1 . . . l are the testing vectors in the current
testing set. The split ratio between the training and test-
ing sets in this step was calibrated through numerical
experiments as described in Section 4.1.

4) The ensemble topology which achieved the lowest
RMSE is selected as the best topology and a corre-
sponding new ensemble is trained by using all the vec-
tors stored in memory.

5) A trust-region (TR) search is performed to find a new
and improved solution vector. First, a TR is defined
around the current best vector (xb) as a sphere of radius
∆, namely

T : ‖x−xb‖2 6 ∆ . (3)

Next a search if performed to locate an optimum in
the TR, and for efficiency a hybrid search is used
which combines an evolutionary algorithm (EA) and
an SQP algorithm such that the EA explores the do-
main globally while the SQP converges locally. During
the search responses are obtained only from the ensem-
ble without any calls to the true expensive function.

6) The new vector found (x?) in the TR search is evalu-
ated with the true expensive function and is compared
to xb. Based on this comparison and assuming a min-
imization problem then one of the following updates
take place:

• If f (x?) < f (xb): The trial step is considered
successful since the vector found is indeed bet-
ter than the current best one. This implies that
the ensemble is accurate and so the TR radius is
doubled to support a search in a larger region.
• If f (x?)> f (xb) and there is a sufficient number

of vectors in the TR: The trial step was unsuc-
cessful since the vector found was not in fact bet-
ter than the current best one. This implies that the
ensemble prediction is inaccurate but since the
number of vectors in the TR is deemed as suf-
ficient the poor prediction accuracy is attributed
to the TR being too large for the ensemble to be
accurate in. Accordingly, the TR radius is halved.
• If f (x?) > f (xb) and there is an insufficient

number of vectors in the TR: as above the trial
step was unsuccessful but now the poor predic-
tion accuracy is attributed to having too few vec-
tors in the TR. Accordingly, new vectors are then
sampled in the TR.

As a change from the classical TR framework the
proposed algorithm contracts the TR only if the num-
ber of vectors in the TR is above a threshold value to
avoid premature convergence. This threshold was cali-
brated through numerical experiments as detailed in Sec-
tion 4.1.

Another change from the classical framework is the ad-
dition of new vectors in the TR to improve the metamodels
prediction accuracy. The latter can be improved locally
around the current optimum or globally in regions sparse
with vectors. To achieve these opposing goals the vectors
are obtained by minimizing the function

h(x) = wh1(x)+(1−w)h2(x) , (4)

with an EA. Here h1(x) is a rank assigned based on the
objective value with 1 assigned to the best, and h2(x) is a
rank based on the distance from existing vectors in the TR
with 1 assigned to the farthest vector. The weight w rep-
resents a trade-off between the two objectives. Ranks are
used to make the process insensitive to the magnitude and
sign of the objective values and the distances. The number
of vectors sampled and their weights were calibrated by
numerical experiments as detailed in Section 4.1.

It is emphasized that while in this study the RBF,
RBFN, and Kriging metamodels were used the proposed
algorithm can accommodate any other type or number of
metamodels. To complete the description Fig. 1 gives the
full pseudocode.

4. PERFORMANCE ANALYSIS

4.1. Parameter calibration
As described in Section 3 the proposed algorithm re-

lies on four main parameters: i) the threshold number of
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Algorithm 1: Proposed algorithm with online
topology selection.
generate an initial sample and evaluate with the
true expensive function;

repeat
split the cached vectors into training-testing
sets and estimate the accuracy of candidate
metamodels;

re-split the cached vectors and estimate the
accuracies of the candidate topologies;

train an ensemble based on the most accurate
topology found;

perform a TR trial step and update the sample;
add the new vectors sampled to the cache;

until maximum number of analyses completed ;

TR vectors needed for TR contraction, ii) the number and
weights of new vectors generated in the TR, iii) the split
ratio in the metamodels evaluation, and iv) the split ratio
in the topologies evaluation.

The above parameters were calibrated based on numer-
ical experiments in which one parameters was modified in
turn while all others were kept at prescribed baseline val-
ues. For each candidate parameter setting the algorithm
was run ten times with the functions Rastrigin and Rosen-
brock each in 10D and 20D respectively, resulting in 120
runs per (3 candidate values × 4 objective functions ×
10 repetitions). Table 2 gives the tests statistics and the
ranks for each candidate settings where lower ranks indi-
cate a better performance. The functions are abbreviated
in the table by Ras for Rastrigin and Ros for Rosenbrock.
Based on the results the following settings were chosen:
i) threshold number of TR vectors: there was no conclu-
sive optimal value hence the middle setting of 0.5d was
chosen, ii) new TR vectors: sampling four new vectors
with the weights w = {0.8,0.2}, iii) training-testing split
ratio for metamodels: 40%-60%, iv) training-testing split
ratio for ensembles: 60%-40%. The chosen settings are
emphasized in bold for each evaluation.

4.2. Mathematical test functions
For a rigorous performance evaluation the set of test

functions from [18] was used in dimensions 5-40, and Ta-
ble 3 gives their details. Additionally four competing al-
gorithms were also incorporated in the tests to assess the
relative performance of the proposed algorithm:

• V1: A variant of the proposed algorithm which is
identical in operation except that it used a single
metamodel (RBF) but no ensemble topology selec-
tion.

• V2: A variant of the proposed algorithm which is
identical in operation except that it used a single

Table 2. Results for the parameter sensitivity analysis.
(a) Threshold number of vectors for TR contraction.

0.1d 0.5d d
Function Mean R Mean R Mean R
Ras-10 4.598e+01 02 4.827e+01 03 3.530e+01 01
Ros-10 1.233e+02 02 4.393e+01 01 1.317e+02 03
Ras-20 9.256e+01 03 8.656e+01 02 7.997e+01 01
Ros-20 4.503e+02 01 5.361e+02 02 8.518e+02 03
Overall 08 08 08

d: Dimension of objective function.

(b) Weights for generating new TR vectors.

{0.8,0.6,0,4,0.2} {0.8,0.5,0.2} {0.8,0.2}
Function Mean R Mean R Mean R
Ras-10 4.598e+01 03 4.021e+01 02 3.796e+01 01
Ros-10 1.233e+02 03 7.385e+01 02 6.745e+01 01
Ras-20 9.256e+01 03 7.364e+01 02 7.084e+01 01
Ros-20 4.503e+02 01 5.618e+02 03 4.794e+02 02
Overall 10 09 05

(c) Split ratio for metamodel assessment.

80-20% 60-40% 40-60%
Function Mean Rank Mean Rank Mean Rank
Ras-10 4.598e+01 02 3.981e+01 01 5.414e+01 03
Ros-10 1.233e+02 02 1.266e+02 03 4.929e+01 01
Ras-20 9.256e+01 03 8.899e+01 02 7.970e+01 01
Ros-20 4.503e+02 01 5.578e+02 03 5.318e+02 02
Overall 08 09 07

(d) Split ratio for ensemble assessment.

80-20% 60-40% 40-60%
Function Mean Rank Mean Rank Mean Rank
Ras-10 4.598e+01 02 4.240e+01 01 4.779e+01 03
Ros-10 1.233e+02 02 1.441e+02 03 7.509e+01 01
Ras-20 9.256e+01 03 6.778e+01 01 8.337e+01 02
Ros-20 4.503e+02 01 5.379e+02 02 8.002e+02 03
Overall 08 07 09

fixed ensemble consisting of RBF, RBFN, and Krig-
ing metamodels.
• EA with periodic sampling (EA–PS) [19]: The algo-

rithm combines a Kriging metamodel and an EA, and
safeguards the metamodel accuracy by periodically
evaluating a small subset of the population with the
true objective function and incorporating them into
the metamodel.
• Expected Improvement with covariance matrix adap-

tion evolutionary strategies (EI–CMA-ES) [20]: The
algorithm combines a covariance matrix adapta-
tion evolutionary strategy (CMA-ES) algorithm with
Kriging metamodels and uses the expected improve-
ment framework to update the metamodels.
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Table 3. Mathematical test functions.

Fun. Definition Domain

Ack
−20exp

(
−0.2

√
x2

i

d

)

− exp
(

∑
d
i=1 cos(2πxi)

d

)
+20+ e

[−32,32]d

Gri

d

∑
i=1
{x2

i /4000}−
d

∏
i=1
{cos

(
xi/
√

i
)
}

+1

[−100,100]d

Ras ∑
d
i=1

{
x2

i −10cos(2πxi)+10
}

[−5,5]d

Ros ∑
d−1
i=1

{
100(x2

i − xi+1)
2 +(xi−1)2

}
[−10,10]d

Sch ∑
d
i=1

{
∑

d
j=1

[(
ai, j sin(α j)+bi, j cos(α j)

)
−
(
ai, j sin(x j)+bi, j cos(x j)

)]}2

[−π,π]d

Wei ∑
d
i=1

{
∑

20
k=0 0.5k cos

(
2π3k(xi +0.5)

)}
−d ∑

20
k=0 0.5k cos(π3k)

[−0.5,0.5]d

Ack:Ackley, Gri:Griewank, Ras:Rastrigin
Ros:Rosenbrock, Sch:Schwefel 3.12, Wei:Weierstrass

This test setup was implemented to benchmark the pro-
posed algorithm against variants with no ensemble or en-
semble selection and against reference algorithms from
the literature. In each algorithm-test function combination
30 runs were repeated to support a valid statistical anal-
ysis while the limit of evaluations of the true objective
function was 200 to represent real-world settings. Since
these are mathematical test functions which do not require
a simulation-code run the evaluation time per candidate
vector was negligible, while the total duration of an opti-
mization run time for the full 200 evaluations was in the
range of from 2-5 minutes.

Table 4 gives the resultant test statistics and the statisti-
cal significance level α of the performance gains and cal-
culated with the Mann–Whitney nonparametric test [21].

Test results show that the proposed algorithm per-
formed well as it achieved the best mean and median
statistics in nine out of twelve cases. Analysis of the stan-
dard deviation (SD) statistic shows that there was some
variation in the performance of proposed algorithm across
the test functions. It achieved the best (lowest) SD for the
Rosenbrock-20D and Schwefel 2.13-40D functions, and
was the third to fifth best in the remaining functions. The
test results also show that the online topology selection
was superior to using no ensembles at all by comparison
to the V1 algorithm, and was also superior to using a fixed
ensemble topology by comparison to the V2 algorithm.
The results also show that the proposed algorithm outper-
formed two representative algorithms from the literature.
Lastly, the proposed algorithm had a statistically signifi-
cant performance advantage over the reference algorithms
in 28 out of 48 comparisons (four reference algorithms ×
twelve test cases), which further demonstrates its effec-
tiveness.

The impact of the number of metamodels being used
on run-time duration was also investigated. To thoroughly
address this issue the required execution time of the pro-
posed method was studied across various test functions
and dimensions, and in scenarios involving 1 or 3 meta-
models, respectively. Table 5 gives the resultant statistics
from which it follows that in five out of the eight cases
the change was less than 5% while only for Rastrigin-
05, Schwefel-05, and Weierstrass-40 the change was in
the range of 14%-17%. Overall these results show there is
only a minor and often negligible increase in the run-time
duration as the number metamodels used increases which
highlights the effectiveness of the proposed algorithm.

An analysis was also performed on the pattern of topol-
ogy updates to study if one topology was predominately
selected or varied topologies were used. Accordingly
Fig. 3 shows the topologies selected in one run with the
Ackley-10D function and one with the Rosenbrock-20D
function. It follows that in both cases different topolo-
gies were selected. While a topology consisting of only a
Kriging metamodel was selected more frequently no sin-
gle topology was consistently optimal. These results fur-
ther highlight the merit of the proposed approach of online
topology selection.

Also, the convergence trends of the five algorithms are
compared in Fig. 4 based on runs with the Ackley-10D
and Rosenbrock-20D functions. It follows that the pro-
posed algorithm was among the fastest to converge and
achieved the best final result. The contribution of the en-
semble topology selection is evident from comparisons to
the V1 and V2 variants which converged more slowly and
achieved inferior final results.

For completeness the analysis also examined if the per-
formance gains of the proposed algorithm diminished or
even disappeared in certain settings. Accordingly, Table 6
gives the percentage difference between the mean results
of the proposed algorithm and the reference algorithms.
From analyzing these the following can be observed:

• The proposed algorithm consistently outperformed
the reference algorithms when the objective func-
tions had a prominent convex trend, namely, Ackley,

Table 5. Mean run-time by number of metamodels.

Function 1 Metamodel 3 Metamodels % change
Rastrigin-05 23.8 27.4 15.1
Rastrigin-20 20.6 20.8 0.9

Rosenbrock-05 19.4 18.4 -5.1
Rosenbrock-20 19.2 20.0 4.1

Schwefel-05 19.4 22.2 14.4
Schwefel-40 29.6 28.4 -4.0

Weierstrass-10 20.6 20.2 -1.9
Weierstrass-40 23.6 27.8 17.8

Results are in minutes.



960 Yoel Tenne

Table 4. Statistics for the test function problems.

P V1 V2 EAPS EICMA

Ack10

Mean 7.705+00 1.455+01 1.356+01 5.241+00 1.796+01
SD 8.359+00 4.649+00 8.051+00 5.590-01 1.529+00

Median 2.314+00 1.592+01 1.908+01 5.408+00 1.797+01
Min 9.007-02 2.383+00 3.457+00 4.098+00 1.443+01
Max 1.836+01 1.825+01 2.048+01 6.010+00 1.988+01

α 0.01 0.01

Gri10

Mean 1.304-01 1.972-01 2.078-01 9.579-01 9.338-01
SD 1.851-01 1.714-01 2.213-01 1.076-01 2.435-01

Median 7.747-02 1.294-01 1.357-01 9.862-01 1.007+00
Min 9.350-03 3.569-02 2.290-02 7.146-01 2.441-01
Max 6.505-01 5.661-01 7.601-01 1.046+00 1.050+00

α 0.01 0.01

Ras05

Mean 6.377+00 9.360+00 8.018+00 7.631+00 2.131+01
SD 3.728+00 7.852+00 8.349+00 4.811+00 4.890+00

Median 5.980+00 7.464+00 4.298+00 7.226+00 2.139+01
Min 1.997+00 1.005+00 3.369+00 1.621+00 1.353+01
Max 1.195+01 2.787+01 3.076+01 1.456+01 3.006+01

α 0.01

Ros05

Mean 1.477+01 3.317+01 1.369+02 2.074+02 3.701+02
SD 3.931+01 7.649+01 2.801+02 1.640+02 2.320+02

Median 2.578+00 3.616+00 6.765+00 1.796+02 3.498+02
Min 2.528-02 1.783+00 4.277+00 1.368+01 7.677+01
Max 1.265+02 2.443+02 8.842+02 5.617+02 6.719+02

α 0.01 0.01 0.01

Sch05

Mean 5.438+02 3.973+02 3.710+02 5.598+02 3.333+02
SD 8.945+02 9.715+02 6.578+02 4.995+02 3.227+02

Median 7.454+01 2.814+00 1.763+02 4.804+02 2.050+02
Min 2.614-02 6.026-02 5.037+01 5.685+01 3.426+01
Max 2.205+03 3.088+03 2.221+03 1.817+03 1.080+03

α

Wei10

Mean 6.742+00 9.217+00 8.421+00 4.817+00 5.909+00
SD 1.995+00 1.805+00 2.113+00 7.271-01 2.777+00

Median 6.580+00 9.346+00 8.870+00 4.813+00 5.805+00
Min 3.934+00 7.116+00 5.315+00 3.623+00 1.657+00
Max 1.079+01 1.293+01 1.166+01 6.016+00 9.409+00

α 0.01

Ack20

Mean 6.594+00 9.028+00 1.998+01 6.814+00 1.863+01
SD 5.852+00 6.503+00 3.322-01 2.461-01 1.921+00

Median 4.016+00 5.718+00 2.001+01 6.744+00 1.934+01
Min 2.772+00 3.605+00 1.928+01 6.468+00 1.493+01
Max 1.835+01 1.875+01 2.041+01 7.203+00 2.044+01

α 0.05 0.01 0.05 0.01

Gri40

Mean 1.068+00 1.307+00 8.421+00 1.461+00 1.102+00
SD 2.697-02 1.279-01 1.113+00 6.031-02 3.032-02

Median 1.065+00 1.292+00 8.252+00 1.454+00 1.096+00
Min 1.037+00 1.163+00 6.722+00 1.387+00 1.071+00
Max 1.130+00 1.502+00 1.039+01 1.595+00 1.157+00

α 0.01 0.01 0.01 0.01

Ras20 Mean 6.696+01 6.708+01 9.603+01 1.223+02 2.105+02
SD 3.865+01 1.692+01 3.047+01 1.219+01 3.914+01
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Median 4.943+01 6.964+01 9.286+01 1.230+02 2.296+02
Min 3.938+01 4.392+01 4.843+01 1.046+02 1.395+02
Max 1.605+02 8.870+01 1.530+02 1.429+02 2.507+02

α 0.05 0.01 0.01

Ros20

Mean 5.839+02 1.031+03 8.186+02 8.435+02 3.967+03
SD 2.094+02 5.818+02 3.823+02 3.012+02 9.406+02

Median 5.956+02 8.665+02 7.932+02 7.782+02 3.685+03
Min 2.143+02 5.483+02 3.078+02 4.676+02 3.141+03
Max 8.905+02 2.517+03 1.521+03 1.439+03 6.144+03

α 0.01 0.05 0.01

Sch40

Mean 7.727+05 8.981+05 1.935+06 1.774+06 1.667+06
SD 2.219+05 2.571+05 6.789+05 2.509+05 6.520+05

Median 7.243+05 8.622+05 2.032+06 1.744+06 1.528+06
Min 5.130+05 5.885+05 8.715+05 1.415+06 8.933+05
Max 1.131+06 1.362+06 3.065+06 2.104+06 2.871+06

α 0.01 0.01 0.01

Wei40

Mean 2.824+01 4.160+01 4.394+01 3.045+01 3.598+01
SD 4.401+00 4.261+00 3.885+00 1.645+00 1.463+01

Median 2.547+01 4.227+01 4.461+01 2.995+01 2.597+01
Min 2.421+01 3.353+01 3.726+01 2.878+01 2.100+01
Max 3.482+01 4.794+01 4.867+01 3.337+01 5.817+01

α 0.01 0.01
Ros:Rosenbrock, Sch:Schwefel-3.12, Wei:Weierstrass
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Fig. 3. Selected topologies for two test functions. R: RBF,
N: RBFN, K: Kriging.
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Fig. 4. Convergence plots for two test functions.

Griewank, Rosenbrock, Rastrigin, as evident from the
positive percentages. However, with the Schwefel and
Weierstrass functions which do not have this fea-
ture the reference algorithms were occasionally bet-
ter. This implies that a prominent nonconvex land-
scape was more challenging to model even with an
ensemble and in such scenarios the advantage of the
proposed algorithm diminished. The bivariate version
of these functions is shown in Fig. 5 in which the con-
vex and nonconvex landscapes can be seen.
• The relative performance gains of the proposed al-

gorithm did not vary much with the function dimen-
sion. This is evident from comparing the results for
the same reference algorithm and objective function
across different dimensions, namely, only in 11 out
of 24 comparisons was the difference in the low di-
mensional case larger than in the corresponding high
dimensional case. These results indicate that all al-
gorithms were similarly affected by the increased di-
mensionality and the relative performance gains were
maintained.
• Using a single metamodel versus using a topologi-

cally-complicated ensemble had little impact on the
relative performance gains of the proposed algorithm.
This is indicated by comparing the differences in the
means between the proposed algorithm and the V1
and also the V2 variants, namely, only in 5 out of
12 comparisons the V2 (ensemble) results were lower
than the V1 (single metamodel) results.

Overall the main factor which impacted the perfor-
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Fig. 5. The test functions used from top left horizontally:
Ackley, Griewank, Rastrigin, Rosenbrock, Schwe-
fel 3.12, Weierstrass.

mance of the proposed algorithm was the landscape of
the objective function. In functions which do not have a
prominent global convex shape the performance advan-
tage of the proposed algorithm was less obvious. However,
the function dimension or the complexity of the meta-
models being used did not strongly affect performance.

4.3. Engineering problem
To augment the preceding analysis an additional test

problem was used in which objective values were obtained
from a computer simulation, as in real-world simulation-
driven problems. The aerospace problem used is that of
designing an airfoil which minimizes its aerodynamic fric-
tion force (also termed drag) while maximizing its ben-
eficial lift force, all at some prescribed flight condition.
In practice the drag and lift are represented by the drag
and lift coefficients cd and cl , respectively. Fig. 6 gives
a schematic layout of the airfoil problem. Such airfoil
problems are well-established test cases for evaluating
the effectiveness of optimization algorithms, for example
[22, 23].

To represent candidate airfoils the method of [24] was
used in which an airfoil profile is defined as

y = yb +
h

∑
i=1

αibi(x), (5)

where yb is a baseline airfoil profile, taken here to be the
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Fig. 6. Schematic layout of the airfoil problem.

Table 6. Percent change of mean results between proposed
and reference algorithms.

Function V1 V2 EAPS EICMAES
Ack-10 88.8 76.0 580.2 133.1
Gri-10 51.2 59.4 634.6 616.1
Ras-05 46.8 25.7 19.7 234.2
Ros-05 124.6 826.9 1304.2 2405.8
Sch-05 -26.9 -31.8 2.9 -38.7
Wei-10 36.7 24.9 -28.6 -12.4
Ack-20 36.9 203.0 3.3 182.5
Gri-40 22.4 688.5 36.8 3.2
Ras-20 0.2 43.4 82.6 214.4
Ros-20 76.6 40.2 44.5 579.4
Sch-40 16.2 150.4 129.6 115.7
Wei-40 47.3 55.6 7.8 27.4

NACA0012 symmetric airfoil, bi are geometric basis func-
tions [25] defined as

bi(x) =
[
sin
(

πx
log(0.5)

log(i/(h+1))

)]4
, (6)

and αi ∈ [−0.01,0.01] are the weights to calibrate, namely,
the design variables. A low-dimensional case with 6 basis
functions and a high-dimensional case with 20 basis func-
tions were examined.

The lift and drag coefficients of candidate airfoils were
obtained by using XFoil which is a computational fluid
dynamics simulation for analysis of subsonic isolated air-
foils [26]. Since the objective function required execution
of the aerodynamics code each airfoil evaluation required
10-30 seconds while the total duration of an optimization
run was in the range of 30 minutes to 1 hour. To ensure
structural integrity the thickness (t) between 0.2 to 0.8 of
the chord line had to be equal to or larger than a critical
value t? = 0.1. Accordingly the objective function used
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Table 7. Statistics for the airfoil problem.

P V1 V2 EAPS EICMA

Air06

Mean -8.360+1 -8.048+1 -8.203+1 -7.799+1 -7.231+1
SD 1.320+1 1.659+1 2.261+1 2.250+0 7.159-1

Median -7.567+1 -7.533+1 -7.554+1 -7.831+1 -7.264+1
Min -1.068+2 -1.268+2 -1.436+2 -8.036+1 -7.290+1
Max -7.488+1 -7.174+1 -6.405+1 -7.238+1 -7.099+1

α 0.01

Air20

Mean -3.247+0 -3.202+0 -3.239+0 -3.174+0 -3.212+0
SD 6.421-2 6.991-2 8.932-2 8.887-2 9.405-2

Median -3.231+0 -3.208+0 -3.206+0 -3.142+0 -3.202+0
Min -3.354+0 -3.303+0 -3.414+0 -3.348+0 -3.327+0
Max -3.151+0 -3.098+0 -3.134+0 -3.070+0 -3.036+0

α 0.05
Best mean and median in each test are emphasized.
Air06/20: 6D/20D dimensional airfoil problem, respectively.

Table 8. Mean run-time by number of metamodels.

Function 1 Metamodel 3 Metamodels % change
Airfoil-06 32.6 30.2 -7.3%
Airfoil-20 35.0 35.2 0.5%

Results are in minutes.

was

f =− cl

cd
+ p, p =


t?

t
·
∣∣∣∣ cl

cd

∣∣∣∣ if t < t?,

0 otherwise,
(7)

where p is the penalty for violation of the thickness con-
straint. The flight conditions used were an altitude of
30,000 ft, a speed of Mach 0.75, namely 75% of the speed
of sound, while the angle of attack (AOA) was 5◦ and 15◦

in the 6D and 20D cases, respectively.
Tests were performed following the setup of Section 4.2

and Table 7 gives the resultant statistics. The performance
trends for this problem are consistent with those in Section
4.2 which shows that the proposed algorithm was effective
also in this engineering problem.

As in the preceding analysis the impact of the number
metamodels being used on the execution time was ana-
lyzed and results are given in Table 8. The results are
consistent with those observed earlier, namely, there is
only a minor variation of the run-time as the number of
metamodels increases, an aspect which highlights the ef-
ficiency of the proposed algorithm.

In terms of the topologies selected Fig. 7 shows results
from a run in the 6D case and in a 20D case, respectively.
As in Section 4.2 it follows that no single topology was the
overall optimal and that different topologies were selected
throughout.

Lastly, Fig. 8 shows the convergence plots from a 6D
and from a 20D run, respectively, from which it follows
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Fig. 7. Selected topologies for the airfoil problems. The
abbreviations are: R:RBF, N:RBFN, K:Kriging.
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Fig. 8. Convergence plots for two airfoil problems.

that the proposed algorithm achieved both the fastest con-
vergence and a superior final result.

5. CONCLUSION

Metamodels are used in computationally expensive
black-box optimization problems to address the chal-
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lenges of a high evaluation cost, a lack of an analytic func-
tion expression, and a complicated function landscape. To
improve the prediction accuracy ensembles aggregate pre-
dictions from several metamodels into a single output.
However the optimal ensemble topology, namely, which
metamodels it incorporates, is typically unknown a-priori
while using a fixed topology may degrade the prediction
accuracy.

To address this issue this paper has proposed a new op-
timization algorithm in which the most suitable topology
is selected online during the search. The proposed algo-
rithm also operates within a TR framework to ensure con-
vergence to an optimum of the true expensive black-box
function.

In an extensive performance analysis the proposed al-
gorithm was benchmarked against several other candidate
algorithms and across a variety of test problems. Analy-
sis shows that: a) the proposed algorithm consistently out-
performed the other algorithms in terms of the final re-
sult achieved and convergence speed, b) the proposed ap-
proach of online selection of the ensemble topology im-
proved the search effectiveness, and c) the optimal ensem-
ble topology varied continuously during the search and no
single topology was consistently best. Overall test results
show that the proposed algorithm and approach were ef-
fective across a range of black-box optimization problems
with both a limited number of function evaluations and
varied function features and dimensions.
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