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Adaptive Synchronization for a Class of Fractional Order Time-delay Un-
certain Chaotic Systems via Fuzzy Fractional Order Neural Network
Xingpeng Zhang, Xiaohong Zhang, Dong Li* ■ , and Dan Yang

Abstract: Uncertainty and delay are common phenomena in chaotic systems, but their existence will increase the
difficulty of synchronization. For the sake of actualizing synchronization of fractional order time-delay uncertain
chaotic systems, we propose an adaptive fractional order fuzzy neural network synchronization scheme based on
the linear matrix inequalities. A fractional order radial basis functions neural network is applied to approximate
uncertainties. According to the output of the neural network, we design a general adaptive controller for fractional
order time-delay uncertain chaotic systems with different topological structure. Furthermore, we propose an adap-
tive fractional order fuzzy neural network by introducing fuzzy rules into the network. Then the fractional order
extension of the Lyapunov direct method is utilized to demonstrate the stability of the error systems under the
adaptive controller. Finally, numerical simulations are conducted to verify the effectiveness of the conclusions.
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1. INTRODUCTION

Fractional calculus has recently become the hot re-
search direction in the nonlinear control field owing to not
only its widely and meaningful applications in science and
engineering but also the incomplete mathematical theory.
In fact, fractional order description is more consistent with
the true nature of the system in reality, while integer-order
systems are only an idealized and simple representation.
Theoretical and experimental analysis has proved that the
known chaotic systems will also possess chaotic phenom-
ena although the order is a fractional order [1, 2].

The classical stability theory is not applicable to frac-
tional systems for its distinctive definition. Therefore, re-
searchers have proposed new methods to analyze the sta-
bility of fractional order systems. Laplace transformation
[3, 4] is the first proposed solution. Then a derivation
method of Lyapunov stability theory is proposed to an-
alyze the stability of fractional order systems, which is
the fractional order extension of Lyapunov direct meth-
ods [5–8]. Therefore, the synchronization methods of in-
teger order chaotic systems, such as impulsive method [9],
fuzzy method [10, 11], intermittent method [12], sliding
mode [13] and so on, can also be applied to fractional-
order ones by combining the fractional order stability the-
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ory. Accordingly, researchers have proposed a large num-
ber of synchronization methods for fractional order sys-
tems, such as impulsive synchronization [6], sliding mode
synchronization [14], fuzzy synchronization [15], projec-
tive synchronization [16], adaptive synchronization [17]
and so on.

Uncertainty and time-delay are two familiar phenom-
ena in nonlinear systems, which increase the complexity
and difficulty in realizing synchronization of the real sys-
tems. Even so, researches have designed a large number
of synchronization methods for systems with uncertainties
[18–20] and time-delay [21–23].

Based on the fractional order stability theory, many syn-
chronization methods for fractional order chaotic systems
with uncertainties are proposed. The methods widely used
in practice are impulsive [24], sliding mode [25], adaptive
[26], fuzzy [26], projective [27], adaptive neural network
[28, 29], fuzzy neural network [30, 31] and so on. Time-
delay emerges due to the finite speed of transmission and
speeding as well as congestions [32]. It has been reported
that the existence of time-delay may destroy synchroniza-
tion [33]. Hence, the synchronization of chaotic systems
with time-delay was studied in some literature [32–36].

And in fact, time-delay and uncertainty sometimes oc-
cur together, which makes the system more complex and
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difficult to control. It is inevitable to study the syn-
chronization of fractional chaotic systems. Therefore, re-
searches pay attention to the synchronization of fractional
order time-delay uncertain chaotic systems [37–41]. Slid-
ing mode method [37, 38], adaptive sliding robust mode
control [39], adaptive fuzzy projective control [40], adap-
tive impulsive method [41] and integer order RBF neural
network [42] and proposed.

Among these methods, some have unique characteris-
tics and can be aggregated to achieve simpler and eas-
ier control [24, 28, 30, 38–41]. The radial basis function
neural network has been theoretically proved to be able to
approximate arbitrary continuous functions with arbitrary
precisions, which is a good choice for solving uncertain-
ties. And the adaptive method can let the network and
system can easy learn the parameters. The fuzzy method
is widely used because of its simple implementation and
good effect on nonlinear functions. And the study on frac-
tional order time-delay uncertain chaotic systems is worth
doing further research to propose more methods for prac-
tical use.

All the above observations motivate us to carry out the
present study: based on the fractional order extension of
Lyapunov direction method and linear matrix inequality,
we propose an adaptive fractional order neural network
and adaptive fuzzy fractional order neural network to real-
ize the synchronization of fractional order time-delay un-
certain chaotic systems. Our proposed methods take full
advantage of the fractional order neural network, adap-
tive method, and fuzzy method. We adopt refinement con-
trol, that is, each sub-controller has its own unique con-
trol function. This design not only makes the controller
easy to understand but also facilitates the design in prac-
tice. Our study proposes the fractional order neural net-
work for fractional order chaotic systems, which fill up
the shortcomings of the fractional order neural network
synchronization method.

Compared with other methods, our adaptive controller
is subdivided into six sub-controllers corresponding to un-
certain and time-delay terms. The first sub-controller is a
gain controller whose primary role is to set the gain ma-
trix and eliminate useless information. The second and
third sub-controller are adaptive controllers correspond-
ing to the unknown Lipschitz constants. The fourth sub-
controller is a fractional order neural network controller,
which is used to control the unknown nonlinear dynamics
based on the neural network approximation. The last two
sub-controller are used to control the effect of uncertain-
ties corresponding to the nonlinear time-delay term.

In summary, our contributions mainly include the fol-
lowing three aspects. Firstly, our proposed adaptive frac-
tional order neural network controller is applicable to
all fractional order time-delay uncertain chaotic systems.
Secondly, the structure of multiple sub-controllers makes
the adaptive controller easier to understand and design.

Thirdly, the design of fractional order neural network,
adaptive law, and stability theory closer to the characteris-
tics of the system itself.

The rest of the paper is organized as follows: In Sec-
tion 2, basic definition, essential lemma and the model
of fractional order time-delay uncertain chaotic systems
are introduced. In Section 3, an adaptive controller is
designed based on the output of the fractional order ra-
dial basis function neural network. In Section 4, we pro-
pose a new controller by introducing fuzzy logic rules into
the fractional order radial basis function neural network.
Then, the numerical simulations are given to illustrate the
effectiveness of our theoretical results in Section 5.

2. PRELIMINARIES

In this section, we give some basic definitions, nota-
tions, and preliminary results.

2.1. Definition and lemma
Till now, there are many different definitions of frac-

tional derivatives, that is, Riemann-Liouville, Grünwald-
Letnikov and Caputo definitions. In this paper, we adopt
the Caputo definition for the reason that the proof of
Lemma 2 and Lemma 3 is based on this definition.

Definition 1 (The Fractional Derivative Caputo Right
Hand Definition) [24, 32]: The Caputo fractional deriva-
tive of order q of a continuous function f : R+ → R is de-
fined as follows.

C
0 Dq

t f (t) =
1

Γ(m)

∫ t

0

f (m)(τ)
(t − τ)q+1−m dτ, (1)

where m−1 < q < m, Γ() is the gamma function, satisfy-
ing Γ(z) =

∫ ∞
o e−ttz−1dt and Γ(z+1) = zΓ(z).

Lemma 1 (Fractional-order extension of the Lyapunov
direct method) [5]: Let x = 0 be an equilibrium point for
the non-autonomous fractional order system C

0 Dq
t x(t) =

f (x, t). Assume that there exists a Lyapunov function
V (x, t) and class-K functions γi, i = 1,2,3, satisfying

γ1∥x(t)∥ ≤V (x, t)≤ γ2∥x(t)∥,
C
0 Dq

t V (x, t)≤−γ3∥x(t)∥, (2)

where 0 < q < 1. Then fractional order system C
0 Dq

t x(t) =
f (x, t) is asymptotically stable.

Lemma 2 [7]: Let x(t) ∈ R be a continuous and deriv-
able function. Then, for any time instant t > t0

1
2

C
t0 Dq

t x2(t)≤ x(t)C
0 Dq

t x(t). (3)

If x(t) ∈ Rn, the inequality satisfies

1
2

C
t0 Dq

t (x
T (t)x(t))≤ xT (t)C

0 Dq
t x(t). (4)
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Because we use linear matrix inequalities in the follow-
ing proofs, we make little modifications to Lemma 2.

Lemma 3: Let x(t) ∈ Rn be a continuous and derivable
function vector. Then, for any time instant t > t0,

C
t0 Dq

t (x
T (t)x(t))≤ xT (t)C

0 Dq
t x(t)+(C

0 Dq
t x(t))T x(t).

(5)

The proof is straightforward, decomposing the expres-
sion (4) into two parts and applying Lemma 2.

2.2. Fractional order time-delay uncertain chaotic
systems

In this paper, we consider a class of fractional order time-
delay uncertain chaotic systems with different topological
structure, where the drive and response systems are shown
as follows:

C
t0 Dq

t x(t) =Ax(t)+ f (x(t))+Cx(t − τ)
+F(x(t),x(t − τ)), (6)

and
C
t0 Dq

t y(t) =By(t)+g(y(t))+Dy(t − τ)
+G(y(t),y(t − τ))+△By(t)+△g(y(t))

+d(t)+E(y(t),y(t − τ))+u(t), (7)

where x(t),y(t) ∈ Rn are the system state vectors, A,B ∈
Rn×n are the constant matrix, C,B ∈ Rn×n are the constant
matrix corresponding to time-delay. f (x(t)),g(y(t)) ∈ Rn

are the nonlinear valued vector functions, F(x(t),x(t −
τ)),G(y(t),y(t − τ)) ∈ Rn are nonlinear time-delay vector
functions. Besides, △B and △g(t) denotes the linear and
nonlinear uncertain terms respectively. τ denotes time-
delay. E(y(t),y(t − τ)) ∈ Rn denotes the uncertain terms
of time delay. u(t) ∈ Rn is the control input.

Let e(t) = y(t)−x(t) be the error between the drive sys-
tem (6) and response system (7). Therefore, we realize the
synchronization between systems (6) and (7), if we can let
limt→∞e(t) = 0. The dynamical expression of the error
system is obtained as follow.

C
t0 Dq

t e(t) =By(t)+(B−A)x(t)+g(y(t))

− f (x(t))De(t − τ)+(D−C)x(t − τ)
+Φ(y)+Ψ(x,y, t, t − τ)
+E(y(t),y(t − τ))+u(t), (8)

where Ψ(x,y, t, t − τ) = G(y(t),y(t − τ))− F(x(t),x(t −
τ)) and Φ(y) =△By(t)+△g(y(t))+d(t).

2.3. Assumptions
In addition, we give three assumptions commonly used

in nonlinear areas.
Assumption 1: The nonlinear vectors of the chaotic

system satisfy the Lipschitz condition, i.e., ∀x(t),y(t) ∈
Rn, there exists positive constants l f and Lg such

∥ f (y(t))− f (x(t))∥ ≤ L f ∥y(t)− x(t)∥,

∥g(y(t))−g(x(t))∥ ≤ Lg∥y(t)− x(t)∥. (9)

The most known chaotic systems satisfy Assumption 1,
for instance, Lorenz system, Chen system, Rössler sys-
tem, Qi system and so forth. Generally, the Lipschitz’
constants L f and Lg usually are unknown.

The chaotic systems will also show chaotic phenom-
ena when time-delay to occur in nonlinear terms [43]. It
should be noted that delay terms are usually closely re-
lated to the linear terms and nonlinear terms of the system.
In many time-delay chaotic systems, it is a direct substi-
tution in mathematical form. Hence, the time-delay term
should also satisfy the assumption similar to the Lipschitz
conditions.

In addition, the time-delay function vector is also
bounded which have been introduced in the paper [32].
Hence, two assumptions about time-delay are introduced.

Assumption 2 [32]: There exist two constant matrix
H1,H2 such the time-delay term Ψ(x,y, t, t − τ) also satis-
fies following inequality.

eT (t)Θ(x,y, t, t − τ)≤ eT (t)H1e(t)+ eT (t)H2e(t − τ),
(10)

where Θ(x,y, t, t−τ) =Ψ(x,y, t, t−τ)−G(x(t),x(t−τ)+
F(y(t),y(t − τ)).

Assumption 3 [23, 32]: There are two unknown con-
stants λ1 and λ2 such the uncertainties corresponding to
time-delay E(y(t),y(t − τ)) ∈ Rn satisfies following in-
equality.

∥E(y(t),y(t − τ))∥ ≤ λ1∥y(t)∥+λ2∥y(t − τ)∥. (11)

Remark 1: Let Dq be the simplified form of C
t0 Dq

t .

3. ADAPTIVE FRACTIONAL ORDER NEURAL
NETWORK CONTROLLER DESIGN FOR

FRACTIONAL ORDER TIME-DELAY
UNCERTAIN CHAOTIC SYSTEMS

In this section, we design an adaptive fractional or-
der neural network controller, which has several sub-
controller corresponding to the adaptive parameter uncer-
tain and time-delay terms.

3.1. Applying neural network to approximate the un-
certainties

The radial basis function (RBF) neural network is a three-
layer neural network with fast local convergence prop-
erty. It is also theoretically proved to be able to approx-
imate arbitrary continuous functions with arbitrary preci-
sion. Therefore, we apply the RBF neural network to ap-
proximate uncertainties Φ(y) =△By(t)+△g(t)+d(t) in
error system (8).

The second layer of the RBF neural network is custom-
arily Gauss function.

ϕ j(y) = exp[
−(y−ξ j)

2

δ 2
j

], ( j = 1,2, . . . ,m), (12)
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where y ∈ Rn is the input of the neural network, which is
also the intermediate output of the response system. ξ j is
the center of the neural cell lying in the i-th hidden layer,
and δ j are the width. ϕ(y) = [ϕ1(y),ϕ2(y), . . . ,ϕm(y)]T .

The third layer of RBF neural network is a linear output.

Φ̂i(y) =
m

∑
j=1

wT
i jϕ j(y) =W T

i ϕ(y), (i = 1,2, . . . ,n).

(13)

Then, the output is also the approximate value of Φ(y).

Φ̂(y) =W T ϕ(y), (14)

where W = [W1, W2, . . . , Wn] ∈ Rm×n, and Wi = [Wi1,
Wi2,. . . , Wim]

T is the weight vector fo the network.
We use optional weight value to evaluate the weight values
W , which is defined as:

W̃ = arg min
W∈Ω

[sup
y∈Sy

|Φ̂(y/W )−Φ(y)], (15)

where Ω= {W :∥W ≤M} is a valid field of the parameter,
and M is a designed parameter. Sy ⊂ Rn is an allowable set
of the state vector.
Then, the optimal estimate of uncertain terms as

Φ(y) = W̃ T ϕ(y)+ ε(y), (16)

where ∥ε(y)∥ ≤ ε̄ , ε̄ is the minimum approach error of
RBF neural network, which is given and can be ignored
when it is small enough.

3.2. Designing adaptive controller
Based on the output of the fractional order RBF neural

network, we design an adaptive controller, which also han-
dle the unknown constants corresponding to Assumptions
1 and 3.

u(t) =uc(t)+uL f (t)+uLg(t)+uW (t)+uλ1(t)

+uλ2(t), (17)

where uc(t) is the main component of controller; uL f (t)
and uLg(t) are designed to control the Lipschitz constants
L f and Lg respectively; uW (t) is applied to control the
weight of fractional order RBF neural network; uλ1(t) and
uλ2(t) are designed to control the unknown positive con-
stants λ1 and λ2 corresponding to delay uncertain term.

And each sub-controller has the following form:

uc =−Ke(t)+ f (y(t))−g(x(t))− (B−A)x(t)

− (D−C)x(t − τ)−G(x(t),x(t − τ)
+F(y(t),y(t − τ)),

uL f =−γ f L̂ f e(t),

uLg =−γgL̂ge(t),

uW =−W T ϕ(y), (18)

uλ1 =

{
0, ∥eT (t)∥= 0,

−1
∥eT (t)∥ρ1λ̂1∥y(t)∥, otherwise,

uλ2 =

{
0, ∥eT (t)∥= 0,

−1
∥eT (t)∥ρ2λ̂2∥y(t − τ)∥, otherwise,

where K is the control gain matrix, L̂ f and L̂g are the esti-
mation value of unknown Lipschitz constants L f and Lg

respectively; λ̂1 and λ̂2 are the estimation value of un-
known constants λ1 and λ2 respectively. γ f , γg, ρ1, ρ2 are
positive constants.

The adaptive law of unknown parameters satisfies fol-
lowing fractional derivative:

DqWi = µiei(t)ϕ(y), (i = 1,2, . . . ,n),

DqL̂ f = γ f eT (t)e(t),

DqL̂g = γgeT (t)e(t), (19)

Dqλ̂1 = ρ1e(t)∥y(t)∥,

Dqλ̂2 = ρ2e(t)∥y(t − τ)∥.

3.3. Stability analysis
Theorem 1: Designing the controller u(t) as (17) and

each sub-controller as (18). The adaptive law of the
weight and uncertain terms are designed as (19). Assume
there exist two positive constants β1 and β2, and two semi-
definite positive matrix P,Q, if the following conditions
are satisfied.

(A1) The following linear matrix inequality holds.(
(B−K)T +B−K +HT

1 +H1 +β1P H2 +D
HT

2 +DT β2Q

)
≤ 0, (20)

(A2) γ f > 1, γg > 1, ρ1 > 1, ρ2 > 1.
Then the error system (8) is asymptotically stable.

Proof: Firstly, we construct a Lyapunov function based
on Lemma 1 to analyze stability.

V (t) =eT (t)e(t)+
n

∑
i=1

1
µi
(W̃i −Wi)

T (W̃i −Wi)

+(L̂ f −L f )
2 +(L̂g −Lg)

2 +(λ̂1 −λ1)
2

+(λ̂2 −λ2)
2. (21)

Applying Lemma 3, the derivative of Lyapunov function
satisfies

DqV (t) =eT (t)Dqe(t)+(Dqe(t))T e(t)

−
n

∑
i=1

1
µi
[(W̃i−Wi)

TDqWi+(DqWi)
T(W̃i−Wi)]

+2(L̂ f −L f )DqL̂ f +2(L̂g −Lg)DqL̂g

+2(λ̂1 −λ1)Dqλ̂1 +(λ̂2 −λ2)Dqλ̂2. (22)



Adaptive Synchronization for a Class of Fractional Order Time-delay Uncertain Chaotic Systems via Fuzzy ... 1213

Substituting controller (17) whose each sub-controller is
(18) into the error system (8), we get the new presentation
of the error system.

Dqe(t) =(B−K)e(t)+g(y(t))−g(x(t))+De(t − τ)
+ f (y(t))− f (x(t))+Θ(x,y, t, t − τ)

+E(y(t),y(t − τ))+(W̃ −W )ϕ(y) (23)

+△ψ(t, t − τ)− γ f L̂ f e(t)− γgL̂ge(t)

− 1
∥eT∥

λ̂1∥x(t)∥− 1
∥eT∥

λ̂2∥x(t − τ)∥.

Applying Assumptions 1, 2 and 3, then the sub-term
eT (t)Dqe(t)+(Dqe(t))T e(t) in (22) satisfies

eT (t)Dqe(t)+(Dqe(t))T e(t)

≤ eT (t)[(B−K)T +(B−K)+HT
1 +H1]e(t)

+eT (t)(H2+D)e(t−τ)+eT (t−τ)(H2+D)T e(t)

+2LgeT (t)e(t)+2L f eT (t)e(t)

+ eT (t)(W̃ −W )T ϕ(y)+ϕ T (y)(W̃ −W )e(t)

+ eT (t)P(λ1∥x(t)∥+λ2∥x(t − τ)∥)
−2γ f L̂ f eT e(t)−2γgL̂geT e(t)

−2∥e(t)∥ρ1λ̂1∥x(t)∥−2∥e(t)∥ρ2λ̂2∥x(t−τ)∥.
(24)

For other sub-items of (22), the fractional order adaptive
law (19) is considered, then we get the following results.

n

∑
i=1

1
µi
[(W̃i −Wi)

T DqWi +(DqWi)
T (W̃i −Wi)]

=−
n

∑
i=1

1
µi
(W̃i −Wi)

T µiei(t)ϕ(y)

−
n

∑
i=1

1
µi

µiϕ T (y)ei(t)(W̃i −Wi) (25)

=−eT (t)(W̃ −W )T ϕ(y)−ϕ T (y)(W̃ −W )e(t),

and

eT
L f

DqeT
L f
= (L̂ f −L f )γ f eT (t)e(t),

eT
Lg

DqeT
Lg
= (L̂g −Lg)γgeT (t)e(t),

eT
λ1

DqeT
λ1
= (λ̂1 −λ1)ρ1eT (t)∥x(t)∥, (26)

eT
λ2

DqeT
λ2
= (λ̂2 −λ2)ρ2eT (t)∥x(t − τ)∥.

Combining inequality (24), (25) and (26) to rewrite and
simplify the fractional derivate of Lyapunov function (22)
leads to

DqV (t)≤eT (t)[(B−K)T +(B−K)+HT
1 +H1]e(t)

+ eT (t)H2e(t − τ)+ eT (t − τ)HT
2 e(t)

+2(1− γ f )L f ∥e(t)∥2 +2(1− γg)Lg∥e(t)∥2

+(1−ρ1)λ1∥e(t)x(t)∥

+(1−ρ2)λ2∥e(t)x(t − τ)∥. (27)

Applying LMI method to solve the time-delay terms in
inequality (27) i.e.,

eT (t)[(B−K)T +(B−K)+HT
1 +H1]e(t)

+ eT (t)H2e(t − τ)+ eT (t − τ)HT
2 e(t)

=

(
e(t)

e(t − τ)

)T( Ξ H2 +D
HT

2 +DT 0

)(
e(t)

e(t − τ)

)
,

(28)

where Ξ = (B−K)T +(B−K)+HT
1 +H1.

Then, we apply condition (A1) and (A2).

DqV (t)

≤
(

eT (t)
eT (t − τ)

)(
−β1P 0

0 −β2Q

)(
e(t)

e(t − τ)

)
+(1− γ f )L f P∥e(t)∥2 +(1− γg)LgP∥e(t)∥2

+(1−ρ1)λ1P∥e(t)x(t)∥
+(1−ρ2)λ2P∥e(t)x(t − τ)∥

≤ 0. (29)

Obviously, inequality (29) satisfies Lemma 1. Hence,
error system (8) tends to be stable, which implies syn-
chronization of fractional order uncertain chaotic system
(6) and (7) is achieved. □

4. ADAPTIVE FRACTIONAL ORDER FUZZY
NEURAL NETWORK CONTROLLER DESIGN

FOR FRACTIONAL ORDER TIME-DELAY
UNCERTAIN CHAOTIC SYSTEMS

In this section, we introduce fuzzy logic rules into RBF
neural network to propose an adaptive controller. The de-
signed fuzzy RBF neural network is also used to approxi-
mate the uncertainties.

4.1. Applying fuzzy neural network to approximate
the uncertainties

Fuzzy radial basis function network (RRBF) can realize
fortification by adding a layer based on the RBF network.
The inputs of the FRBF are the elements in vector y.

The second layer is the membership layer, where each
node in this layer corresponds to one linguistic label of
one of the input variables in the input layer [18]. With the
choice of the Gaussian membership function, the opera-
tion performed in this layer is

ϕ j(yk) = exp[
−(yk −ξk j)

2

δ 2
k j

], (30)

where ξk j and δk j ( j = 1, 2, . . . , m, k = 1, 2, . . . , r) are the
mean and standard deviation of the Gaussian function of
the k-th partition for the j-th input variable y.
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And the third layer is the rule layer, where each node in
this layer represents one fuzzy logic rule and performs
precondition matching of a rule [18]. The output of a rule
node in this layer is calculated by the product operation as
follows:

r j(ϕ j(yk)) =
r

∏
k=1

ϕ j(yk) =
r

∏
k=1

exp[
−(yk −ξk j)

2

δ 2
k j

],

(31)

where r j represents the j-th output of the rule layer, which
also represents the firing strength of the corresponding
fuzzy rule.
Hence, the final output of FRBF as

Ri(ϕ j(yk)) =
m

∑
j=1

wi jr j(ϕ j(yk)), (32)

where i = 1, 2, . . . , n.
The output of the network is also the approximate value of
Φ(y). Therefore,

Φ̂(y) = Ri(ϕ j(yk)) =W T r(y), (33)

where W = [W1, W2, . . . , Wn] ∈ Rm×n, and Wi = [Wi1, Wi2,
. . . , Wim]

T is the weight vector for network.
We use optional weight value to evaluate the weight values
W , which is defined as

W̃ = arg min
W∈Ω

[sup
y∈Sy

|Φ̂(y/W )−Φ(y)],

where Ω= {W :∥W ≤M} is a valid field of the parameter,
and M is a designed parameter. Sy ⊂ Rn is an allowable set
of the state vector.
Then, the optimal estimate of uncertain terms as

Φ(y) = W̃ T r(y)+ ε(y),

where ∥ε(y)∥ ≤ ε̄ , ε̄ is the minimum approach error of
RBF neural network, which is given and can be ignored
when it is small enough.

In addition, we also apply this FRBF network to ap-
proximate the uncertainties corresponding to the time-
delay instead of Lemma 3. In order to achieve this, the
input of the network should be y(t) and y(t − τ). There-
fore, the approximate value of uncertainties Φ(y(t)) +
E(y(t),y(t − τ)) is as follows:

Φ(y(t))+E(y(t),y(t − τ)) = W̃ T r(y, t − τ)+ ε(y).
(34)

Remark 2: This network implements the method of
fuzzy reasoning. The number of nodes in each layer rep-
resents the number of inputs, partitions, rules, and dimen-
sions respectively.

4.2. Designing fuzzy adaptive controller
Considering a fuzzy rule basis with R rules which have

the following I f −T hen forms.
Plant rule i: if z1 is Mi1, z2 is Mi2, z3 is Mi3. Then

Dqx(t) = Aix(t)+Cix(t − τ), (35)

Dqy(t) = Biy(t)+Diy(t − τ)+W̃ T r(y, t − τ)+ui(t).

Also let e(t) = y(t)− x(t) be the error between drive and
response system. Then we get the error system under the
i− th fuzzy rule as

Dqe(t) =Biy(t)−Aix(t)+Diy(t − τ)−C(i)x(t − τ)

+W̃ T r(y, t − τ)+ui(t). (36)

Based on the output of the fractional order FRBF neural
network, we also design a fuzzy adaptive controller, which
also satisfies the above fuzzy rule, i.e. plant rule i: if z1 is
Mi1, z2 is Mi2, z3 is Mi3. Then

ui(t) =−Kie(t)− (Bi −Ai)x(t)− (Di −Ci)x(t − τ)
−W T r(y, t − τ). (37)

The updating law of the fractional order FRBF neural net-
work satisfies the fractional order differential.

DqWi = µiei(t)r(y, t − τ), (i = 1,2, . . . ,n). (38)

Therefore, combining the controller (37), the error system
(36) can be rewritten as

Dqe(t) =(Bi −Ki)e(t)+Die(t − τ)

+(W̃ −W )T r(y, t − τ). (39)

Next, using singleton fuzzifier, product inference, and
weighted average anti-fuzzification, the system (13) can
be rewritten as

Dqe(t) =
r

∑
i=1

hi(e(t))((Bi −Ki)e(t)+Die(t − τ))

+(W̃ −W )T r(y, t − τ), (40)

where hi(e(t)) =
ωi(e(i))

∑r
i=1 ωi(e(i))

, ωi(e(t)) = ∏3
j=1 Mi j(e(t)),

and ∑r
i=1 ωi(e(i))> 0, ∑r

i=1 hi(e(t)) = 1.

4.3. Stability analysis
A new theorem is proposed based on the adaptive fuzzy

fractional order FRBF neural network controller.

Theorem 2: Designing the fuzzy controller u(t) as
(37). The adaptive law of the weight satisfies (38). As-
sume there exist two positive constants αi and βi, and two
semi-definite positive matrix P and Q. If the following
LMI condition satisfies.(

(Bi −Ki)
T +(Bi −Ki)+αiP Di

DT
i βiQ

)
≤ 0, (41)

Then, the fuzzy error system (40) is asymptotically stable.
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Proof: Constructing a Lyapunov function which satis-
fies Lemma 1.

V (t) = eT (t)e(t)+
n

∑
i=1

1
µi
(W̃i −Wi)

T (W̃i −Wi). (42)

According to Lemma 3, the derivate of Lyapunov function
(42) satisfies

DqV (t) =eT (t)Dqe(t)+(Dqe(t))T e(t) (43)

−
n

∑
i=1

1
µi
[(W̃i−Wi)

TDqWi+(DqWi)
T(W̃i−Wi)].

Therefore, applying (40), the eT(t)Dqe(t)+(Dqe(t))Te(t)
in (43) satisfies

eT (t)Dqe(t)+(Dqe(t))T e(t)

=
r

∑
i=1

hi(e(t))eT (t)((Bi −Ki)
T +Bi −Ki)e(t)

+
r

∑
i=1

hi(e(t))eT (t)Die(t − τ)

+
r

∑
i=1

hi(e(t))eT (t − τ)DT
i e(t) (44)

+ eT (t)(W̃ −W )T r(y, t, t − τ)

+ rT (y, t, t − τ)(W̃ −W )e(t).

For other items of (37), the fractional order adaptive law
(38) is considered, then we get the following results.

n

∑
i=1

1
µi
[(W̃i −Wi)

T DqWi +(DqWi)
T (W̃i −Wi)]

=−
n

∑
i=1

1
µi
(W̃i −Wi)

T µiei(t)r(y, t, t − τ)

−
n

∑
i=1

1
µi

µirT (y, t, t − τ)ei(t)(W̃i −Wi) (45)

=−eT (t)(W̃ −W )T r(y, t, t − τ)

− rT (y, t, t − τ)(W̃ −W )e(t).

Combining (44) and (45), the derivate of Lyapunov func-
tion (43) can be simplified as

DqV (t)

=
r

∑
i=1

hi(e(t))eT (t)((Bi −Ki)
T +Bi −Ki)e(t)

+
r

∑
i=1

hi(e(t))eT (t)Die(t − τ)

+
r

∑
i=1

hi(e(t))eT (t − τ)DT
i e(t) (46)

=
r

∑
i=1

hi(e(t))
(

e(t)
e(t − τ)

)T ( Ξ Di

DT
i 0

)(
e(t)

e(t − τ)

)
.

Therefore, based on the LMI condition (41), the derivate
of Lyapunov function (43) satisfies

DqV (t)

≤−
r

∑
i=1

hi(e(t))[αieT (t)Pe(t)+βieT (t − τ)Qe(t − τ)]

≤−[αeT (t)Pe(t)+βeT (t − τ)Qe(t − τ)]
r

∑
i=1

hi(e(t))

≤−[αeT (t)Pe(t)+βeT (t − τ)Qe(t − τ)]
≤ 0. (47)

Obviously, inequality (47) satisfies Lemma 1. Hence, er-
ror system (40) is asymptotically stable. □

5. NUMERICAL SIMULATION

We provide the following numerical examples in this
section to verify our main results developed in this paper.

5.1. Adaptive fractional order neural network syn-
chronization for fractional order time-delay un-
certain Lorenz system

The model of the fractional order time-delay Lorenz sys-
tem is shown as follows:Dqx1(t)

Dqx2(t)
Dqx3(t)


=

−σ σ 0
γ −1 0
0 0 0

x1(t)
x2(t)
x3(t)

+

 0
−x1(t)x3(t)
x1(t)x2(t)


+

0 0 0
0 0 0
0 0 −β

x1(t − τ)
x2(t − τ)
x3(t − τ)

 . (48)

When the parameters are appropriately chosen, i.e., σ =
10, β = 8/3, γ = 28, time-delay τ = 0.4 and order q =
0.95, the fractional order time-delay Lorenz system also
show chaos phenomenon (Fig. 1 and paper [35]).

When fractional order time-delay Lorenz system has
uncertainty, the mathematic model is below.Dqy1(t)

Dqy2(t)
Dqy3(t)


=

−σ σ 0
γ −1 0
0 0 0

y1(t)
y2(t)
y3(t)

+

 0
−y1(t)y3(t)
y1(t)y2(t)


+

0 0 0
0 0 0
0 0 −β

y1(t − τ)
y2(t − τ)
y3(t − τ)

+

0.1(y2(t)−y1(t))
0.1(y1(t)−y2(t))

0


+

 0
0.1y1(t)y3(t)
0.1y1(t)y2(t)

+

0.01sin(πt)y2(t)y3(t)
0.01sin(πt)y1(t)y3(t)
0.01sin(πt)y1(t)y2(t)
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Fig. 1. The fractional order time-delay Lorenz chaotic at-
tractors with σ = 10, β = 8/3, γ = 28, q = 0.95,
and τ = 0.4.
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Fig. 2. The chaos synchronization error between system
(48) and (49) under controller (50) with k =−10.

+

 0
0

−0.1y3(t − τ)

 . (49)

Because this is the self-synchronization of fractional order
Lorenz system, hence the adaptive parameters are only γ f

and ρ2. Therefore, design the controller based on equation
the adaptive controller (17) and (18) satisfying the adap-
tive law (19).

u1(t) =−k1e1(t)−W T
1 ϕ(y)− γ f L̂ f e1(t),

u2(t) =−k2e2(t)−W T
2 ϕ(y)− γ f L̂ f e2(t),

u3(t) =−k3e3(t)−W T
3 ϕ(y)− γ f L̂ f e3(t)

−ρ2λ̂2e3(t)∥y3(t − τ)∥. (50)

In controller (50), the gain matrix is K = diag(−10, −10,
−10), and the parameters are µ = 1, γ f = 1.2, ρ2 = 1.2.
Then the result of synchronization under controller (50)
is shown in Fig. 2 and Fig. 3. The numerical results in
Fig. 3 also illustrate that the adaptive parameters eventu-
ally tends to a stable value.
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Fig. 3. State curve of uncertain parameters (γ f and ρ2) be-
tween system (48) and (49) under controller (50).
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Fig. 4. The fractional order time-delay financial chaotic
attractors with a = 3, b = 0.1, c = 1, q = 0.95, and
τ = 0.5.

5.2. Adaptive fractional order neural network syn-
chronization for fractional order time-delay un-
certain Lorenz system and financial system

Then, we do the simulation of synchronization of the
chaotic system with the different structure. Considering
fractional order time-delay financial system [43] as the the
response system.Dqy1(t)

Dqy2(t)
Dqy3(t)


=

−a 0 1
0 −b 0
0 0 −c

y1(t)
y2(t)
y3(t)

+

 0 0 0
0 0 0
−1 0 0

y1(t − τ)
y2(t − τ)
y3(t − τ)


+

y1(t)y2(t − τ)
1− y2

1(t − τ)
0

 . (51)

When the parameters are approximately chosen, i.e.
(a,b,c) = (3,0.1,1), τ = 0.5, q = 0.95, the fractional or-
der time-delay financial system will also has chaotic phe-
nomena [43] shown in Fig. 4.
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When fractional order time-delay financial system has
uncertaintiesDqy1(t)

Dqy2(t)
Dqy3(t)


=

−a 0 1
0 −b 0
0 0 −c

y1(t)
y2(t)
y3(t)

+

 0 0 0
0 0 0
−1 0 0

y1(t − τ)
y2(t − τ)
y3(t − τ)


+

y1(t)y2(t − τ)
1− y2

1(t − τ)
0

+

0.1(y3(t)− y1(t))
−0.1y2(t)
−0.1y3(t)


+

0.1y1(t)y2(t−τ)
1−0.1y2

1(t−τ)
0

+

0.01sin(πt)y2(t)y3(t)
0.01sin(πt)y1(t)y3(t)
0.01sin(πt)y1(t)y2(t)

.

(52)

Because chaos is bounded, there exist a positive constant
M such that ∥y(t)∥≤ M. Then Assumption 2 satisfiese1(t)

e2(t)
e3(t)

T y1(t)y2(t − τ)− x1(t)x2(t − τ)
y2

1(t − τ)− x2
1(t − τ)

−e1(t − τ)−βe3(t)


= e1(t)(y1(t)y2(t − τ)− x1(t)y2(t − τ))

+ e1(t)(x1(t)y2(t − τ)− x1(t)x2(t − τ))
+e2(y1(t−τ)−x1(t−τ))(y1(t−τ)+x1(t−τ))
− e3(t)e1(t − τ)−βe3(t)e3(t − τ)

= y2(t − τ)e1(t)e1(t)+ x1(t)e1(t)e2(t − τ)
+(y1(t − τ)+ x1(t − τ))e2(t)e1(t − τ)
− e3(t)e1(t − τ)−βe3(t)e3(t − τ)

= eT (t)H1e(t)+ eT (t)H2e(t − τ), (53)

where

H1 =

y2(t − τ) 0 0
0 0 0
0 0 0

 ,

H2 =

 0 x1(t) 0
y1(t − τ)+ x1(t − τ) 0 0

−1 0 −β

 .

Therefore, the adaptive controller is design based on (17),
(18) and (19).

u1(t) =−k1e1(t)+(a−σ)x1(t)+σx2(t)− x3(t)

−W T
1 ϕ(y)−x1(t)x2(t−τ)−(γ f L̂ f +γgL̂g)e1(t)

−ρ1λ̂2e1(t)∥y1(t)∥−ρ2λ̂2e1(t)∥y1(t − τ)∥,
u2(t) =−k2e2(t)+(b−1)x2(t)− y1(t)y3(t)

−x2
1(t−τ)−W T

2 ϕ(y)−γ f L̂ f e2(t)−γgL̂ge1(t)

−ρ1λ̂2e2(t)∥y2(t)∥−ρ2λ̂2e2(t)∥y2(t − τ)∥,
u3(t) =−k3e3(t)+ x3(t)+ x1(t − τ)−βx3(t)
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Fig. 5. The chaos synchronization error between system
(48) and (52) under controller (54) with k =−10.
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Fig. 6. The state curve of uncertain parameters (γ f , γg, ρ1,
and ρ2) between system (48) and (52) under con-
troller (54).
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Fig. 7. The chaos synchronization error with the gain ma-
trix K = [−12,−9,0;−30,−20,14;−12,0,−7].

+y1(t)y2(t)−W T
3 ϕ(y)−γ f L̂ f e3(t)−γgL̂ge3(t)

−ρ1λ̂1e3(t)∥y3(t)−ρ2λ̂2e3(t)∥y3(t − τ)∥.
(54)

In controller (54) the gain matrix is K = diag(−10, −10,
−10). Designing the update law of parameters as (19),
where µ = 1, γ f = 1.25, γg = 1.5, ρ1 = ρ2 = 1.75.
Then the result of synchronization under controller (54)
is shown in Fig. 5 and Fig. 6. When the gain matrix is

K =

−12 −9 0
−30 −20 14
−12 0 −7

 shown in Fig. 7.
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5.3. Adaptive fractional order fuzzy neural network
synchronization for fractional order time-delay
uncertain financial system

Applying the IF − T HEN rule proposed in section 4 on
the drive and controlled response systems (48) and (51).

Plant rule i: if z1 is Mi1, z2 is Mi2, z3 is Mi3, (i = 1, 2,
. . . , r). Then

Dqx(t) = Aix(t)+Cix(t − τ),

Dqy(t) = Biy(t)+Diy(t − τ)+W̃ T r(y, t − τ)+ui(t).

Consider the case where there are only two fuzzy rules,
i.e., r = 1, 2. Hence, for x1(t) ∈ [d1,d2] = [2,6].

A1 =

−σ σ 0
λ −1 −d1

0 d1 0

 , A2 =

−σ σ 0
λ −1 −d2

0 d2 0

 ,

B1 =

−a −d1 1
d1 −b 0
0 0 −1

 , B2 =

−a −d2 1
d2 −b 0
0 0 −1

 ,

C1 =

 0 −d1 0
d1 0 0
0 0 −β

 , C2 =

 0 −d2 0
d2 0 0
0 0 −β

 ,

D1 =

 0 −d1 0
0 0 d1

−1 0 0

 , D2 =

 0 −d2 0
0 0 d2

−1 0 0

 .

And the membership function M1 and M2 are

M1 =
−x1 +d2

d2 +d1
, M2 =

x1 −d1

d2 +d1
.

Then the gain matrix is designed as K = diag(−5, −5,
−5). The initial value of drive and response systems are
x0 = [−2,4,−2] and y0 = [2,−3,1]. Then the controller
ui(t) is designed as (37). Therefore, the synchronization
error is shown in Fig. 8.
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Fig. 8. The chaos synchronization error between frac-
tional order time-delay uncertain Lorenz and finan-
cial system under the fuzzy neural network.

6. DISCUSSION AND CONCLUSION

6.1. Discussion
Our proposed adaptive controller can well implement

the synchronization of fractional order time-delay uncer-
tain chaotic system, But there are still limitations. In the
process of using fractional order neural network to ap-
proximate uncertainties, we only update the weights W
of the last layer but neglect the center ξ and width δ of
Gaussian function.

The cause of this problem is chain rule of derivatives
does not apply to the three common definitions of frac-
tional calculus. Therefore, this is the challenge we are
facing and will be the focus of our future research. In the
following research, we will try to use the local fractional
derivatives, which is a new definition, to study the syn-
chronization method of fractional order neural network.

6.2. Conclusion
In this paper, two adaptive controllers based on frac-

tional order radial basis function neural network and fuzzy
fractional order radial basis function neural network are
proposed for the synchronization of the fractional order
time-delay uncertain controller. The scheme is based on
the linear matrix inequality, the properties of the fractional
order neural network, the fractional order differential and
fuzzy method. The design of the controller as a combina-
tion of several sub-controllers is also very helpful for the
practical use of this method.
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