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Leader-following Consensus of Nonlinear Multi-agent Systems via Reli-
able Control with Time-varying Communication Delay
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Abstract: This paper investigates the consensus problem of continuous-time leader-following nonlinear multi-agent
systems with time-varying communication delay via reliable control. The parameter uncertainty is assumed to be
bounded in given compact sets. With certain assumptions on the dynamic nonlinearity and underlying topology,
the sufficient conditions are derived in terms of linear matrix inequality (LMI) by using a suitable Lyapunov-
Krasovskii functional (LKF). It is ensure that the leader-following consensus can be achieved under the proposed
reliable control scheme. Finally, numerical simulation results are presented to demonstrate the theoretical results.
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1. INTRODUCTION

In recent years, consensus of multi-agent systems
(MAS) has become a rapidly emerging topic due to its
broad applications in various fields such as cooperative
target tracking in sensor networks, vehicle formation and
mobile robot formation [1–3]. In general, according to
whether the final consensus values are predetermined, the
consensus problem can be further classified into leader-
less consensus [4] and leader-follower consensus [5] as
two categories. In the leader-following consensus prob-
lem, the leader agent acts as a command generator, which
generates the desired reference trajectory and ignores in-
formation from the follower agents. The leader’s infor-
mation is directly access by a subset of the followers. In
addition, a consensus protocol is proposed to let all the fol-
lower agents track the leader’s trajectory (see more details
[5–8] and references therein).

Since nonlinear systems are ubiquitous in practice, re-
search on the distributed control of multiple nonlinear sys-
tems has emerged and developed rapidly. Note that the
results proposed in [5, 8, 9] only valid for MAS with lin-
ear dynamics. However, in practice, intelligent agents are
more likely to be governed by complicated intrinsic non-
linear dynamics. Indeed, there are only few results avail-
able in the existing literature to investigate the consensus
problem of MAS with nonlinear dynamics [6, 7, 10].
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In practical applications, dynamical systems are often
subjected to various perturbations, such as communica-
tion delays, uncertainty and etc. The delay is unavoidable
for networked MAS due to the process of communicating
information [11]. Therefore, the occurrence of communi-
cation delay is essential to study the consensus problem
of nonlinear MAS. The authors in [12] derived a suffi-
cient condition for all the second order agents reaching
consensus with a constant communication delay. As for
the time-varying delays, the consensus problem of MAS
is discussed in [9, 13].

In addition, uncertainty coming from modeling, mea-
surement and external disturbance is also inevitable in
practical applications and must be taken into account in
the design phase [14–16]. In the practical implementation
of MAS, the values of system parameters are subject to un-
certainties. Hence, it is important to ensure the consensus
of MAS against such a parameter deviation. Since these
deviations are lies in specified intervals called interval un-
certainty [17]. In recent years, research on more general
MAS, such as those with nonlinear and uncertain dynam-
ics, has attracted more attention. Also, few results have
been developed for consensus of nonlinear MAS with un-
certainty [10, 18, 19].

In the real world control systems, the actuator may be
subject to failures which may affect the system satisfac-
tory performance and even lead to instability of the con-
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trolled system. Thus, due to the safety demand of real-
time systems and to improve system reliability, it is im-
portant to design a reliable controller or fault-tolerant
controller in the presence of unexpected actuator faults
[20–22]. For example, the authors established in [21], the
guaranteed cost consensus problem of MAS with actuator
faults for both cases leaderless and leader-following con-
sensus. However, to the best of authors knowledge, the
reliable control design of nonlinear MAS in the presence
of interval uncertainty and time-varying communication
delay has not been considered in the existing literature.

Motivated by the above discussions, this paper proposes
a more general MAS with the nonlinear and uncertain dy-
namics. In this paper, Theorem 1 proposes the leader-
following consensus of nonlinear MAS by designing a re-
liable control with the case of actuator failures and time-
varying communication delay. Unlike previous studies,
the proposed approach in Theorem 1 does not require the
healthy actuator and it may be subject to loss of effective-
ness fault. In Theorem 2, the interval uncertainty is taken
into the model considered in Theorem 1, and then we in-
vestigate the leader-following consensus of uncertain non-
linear multi-agent systems by designing a reliable control
with time-varying communication delay and without actu-
ator failures. The motivation of this work is to generalize
the conventional control design for the leader-following
MAS subject to nonlinearity and time-varying communi-
cation delay under directed topologies.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In MAS, the communication topology of a network
of agents is represented using a digraph G = (V,E ,W).
V = {1,2, . . . ,N} is the set of nodes and if node j can com-
municates with node i then there exists an edge ei j ∈ E ,
where E = {(i, j) : i, j ∈ V} ⊂ V ×V denotes edges of a
graph. W = [wi j]N×N is the weighted adjacency matrix
of a graph G with nonnegative elements and it is defined
as follows: For non-adjacent nodes i and j (i ̸= j), the
(i, j)-entry is zero, and for adjacent nodes i and j, the
(i, j)-entry is 1. The (i, i)-entry is zero for i = 1,2, . . . ,N.
The set of all the neighbor nodes of node i is denoted by
Ni = { j ∈ V : (i, j) ∈ E , j ̸= i}. In order to study a leader-
following problem, a graph Ḡ is employed to denote the
communication topology between the N followers and the
leader (labeled 0). Meanwhile, the connection weight be-
tween agent i and the leader is denoted by bi, where if
the i−th follower is connected to the leader, then bi = 1,
otherwise bi = 0.

Consider the following MAS with N agents, each de-
scribed as

ẋi(t) = Axi(t)+BuF
i (t)+ f (t,xi(t)), t ≥ 0, (1)

and dynamics of the leader node labeled as 0, is described

as follows:{
ẋ0(t) = Ax0(t)+ f (t,x0(t)), t ≥ 0,

x0(0) = x0
0,

(2)

x0(t) and xi(t) (i = 1, 2, . . ., N) ∈ Rn are, respectively,
the state of the leader and agent i; A = (apq)n×n and
B = (bpq)n×n are known real constant matrices; f (t,xi(t))
and f (t,x0(t)) ∈ Rn are nonlinear functions of agent and
leader, respectively.

Assumption 1: The nonlinear function f is Lipschitz
continuous with the Lipschitz constant being α ≥ 0, that
is, ∥ f (x)− f (y)∥ ≤ α∥x− y∥ is satisfied for ∀x,y ∈ Rn.

By the continuation, uF
i (t)= [uF

i1(t), uF
i2(t), . . . ,u

F
in(t)]

T ∈
Rn denotes the control input of actuator failure and it
is described as uF

i (t) = (I − Λi(t))ui(t), where Λi(t) =
diag{Λi,1(t), Λi,2(t), . . . ,Λi,n(t)}; ui(t) is the control in-
put; uF

ik(t) = (1−Λi,k(t))uik(t) and 0 ≤ Λi,k(t) ≤ Λ̄k < 1
for i = 1,2, . . . ,N and k = 1,2, . . . ,n. At the same time,
consensus protocol ui(t) with time-varying communica-
tion delay is defined as follows:

ui(t) =K
{

∑
j∈Ni

wi j[xi(t − τ(t))− x j(t − τ(t))]

+bi[xi(t − τ(t))− x0(t − τ(t))]
}
, (3)

where τ(t) is a time-varying communication delay which
satisfying 0 ≤ τ(t) ≤ τ and τ̇(t) ≤ µ; K is the state feed-
back gain to be designed. Therefore, the actuator fault
control input (3) is consider into (1), we get

ẋi(t)

= Axi(t)+B(I −Λi(t))K
{

∑
j∈Ni

wi j[xi(t − τ(t))

− x j(t − τ(t))]+bi[xi(t − τ(t))− x0(t − τ(t))]
}

+ f (t,xi(t)), t ≥ 0,

xi(t) = x0
i , t ∈ [−τ,0], i = 1,2, . . . ,N,

(4)

where 0 ≤ Λi(t)≤ Λ ≤ I with Λ = diag{Λ̄1, Λ̄2, . . . , Λ̄n}.
Define the tracking error signal as ei(t) = xi(t)−x0(t) and
based on the above analysis, we have the following closed
loop system

ėi(t) = Aei(t)+B(I −Λi(t))K

×
{

∑
j∈Ni

wi j[xi(t − τ(t))− x j(t − τ(t))]

+bi[xi(t − τ(t))− x0(t − τ(t))]
}

+g(t,ei(t)), t ≥ 0,

ei(t) = x0
i − x0

0, t ∈ [−τ,0], i = 1,2, . . . ,N,

(5)
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where g(t,ei(t)) = f (t,xi(t))− f (t,x0(t)). Define D =
diag{b1,b2, . . . ,bN}. Then the Laplacian matrix L =
[Li j]N×N of the weighted directed graph G is defined as

Lii =
N
∑

j=1, j ̸=i
wi j and Li j =−wi j for i ̸= j. The compact form

of error system can be written as

ė(t) =(I ⊗A)e(t)+(L⊗BK)e(t − τ(t))+(D⊗BK)

× e(t − τ(t))− (L⊗B)Λ(t)(I ⊗K)e(t − τ(t))
− (D⊗B)Λ(t)(I ⊗K)e(t − τ(t))+G(t,e(t)),

(6)

where e(t) = [e1(t), e2(t), . . . , eN(t)]T denotes the er-
ror state vector. G(t,e(t)) = [g(t,e1(t)), g(t,e2(t)),
. . . , g(t,eN(t))]T is the nonlinear function and Λ(t) =
diag{Λ1(t), Λ2(t), . . . , ΛN(t)}.

Definition 1 [8]: For the error system (6) is said to be
asymptotically solve the consensus problem if and only if
for any initial conditions we have

lim
t→∞

∥xi(t)− x0(t)∥2 = 0 or lim
t→∞

∥ei(t)∥2 = 0.

3. MAIN RESULTS

3.1. Consensus of MAS without uncertainty
In this section, we study the leader-following consensus

of MAS by designing a reliable control with time-varying
communication delay.

Theorem 1: For given positive constants τ , µ , the con-
sensus of system (6) can be achieved asymptotically if
there exist positive definite matrices P̂j ( j = 1,2, . . . ,6),
X , Q0, Q1 and any matrix Z such that the following in-
equality holds

Ω̄ =

[
Ξ̄ ϒ̄
∗ Θ̄

]
< 0, (7)

where Ξ̄ , ϒ̄ and Θ̄ are defined in Appendix A. Moreover
the control gain matrix is defined as K = ZX−1.

Proof: Consider the LKF as follows: V (t) =
4
∑

i=1
Vi(t),

where

V1(t) =eT (t)(I ⊗P1)e(t),

V2(t) =
t∫

t−τ(t)

eT (s)(I ⊗P2)e(s)ds

+

t∫
t−τ

eT (s)(I ⊗P3)e(s)ds,

V3(t) =τ
t∫

t−τ

t∫
θ

ėT (s)(I ⊗P4)ė(s)dsdθ

+
τ2

2

t∫
t−τ

t∫
γ

t∫
θ

ėT (s)(I ⊗P5)ė(s)dsdθdγ,

V4(t) =
τ3

6

t∫
t−τ

t∫
δ

t∫
γ

t∫
θ

ėT (s)(I ⊗P6)ė(s)dsdθdγdδ .

Calculating the time derivatives of Vi(t), (i = 1, 2, 3, 4)
along the trajectory of MAS (6) yields,

V̇1(t) =eT (t)(I ⊗P1)ė(t)+ ėT (t)(I ⊗P1)e(t), (8)

V̇2(t)≤eT (t)[(I ⊗P2)+(I ⊗P3)]e(t)− (1−µ)
× eT (t − τ(t))(I ⊗P2)e(t − τ(t))
− eT (t − τ)(I ⊗P3)e(t − τ), (9)

V̇3(t) =ėT (t)
[

τ2(I ⊗P4)+
τ4

4
(I ⊗P5)

]
ė(t)

− τ
t∫

t−τ

ėT (s)(I ⊗P4)ė(s)ds

− τ2

2

t∫
t−τ

t∫
θ

ėT (s)(I ⊗P5)ė(s)dsdθ , (10)

V̇4(t) =
τ6

36
ėT (t)(I ⊗P6)ė(t)

− τ3

6

t∫
t−τ

t∫
γ

t∫
θ

ėT (s)(I ⊗P6)ė(s)dsdθdγ. (11)

According to Jensen’s inequality Lemma [23], we have

− τ
t∫

t−τ

ėT (s)(I ⊗P4)ė(s)ds

≤−[eT (t − τ(t))− eT (t − τ)](I ⊗P4)[e(t − τ(t))
− e(t − τ)]− [eT (t)− eT (t − τ(t))](I ⊗P4)

× [e(t)− e(t − τ(t))]. (12)

By using the lemma as in [23] for double integral inequal-
ities, it gives

− τ2

2

t∫
t−τ

t∫
θ

ėT (s)(I ⊗P5)ė(s)dsdθ

≤−

τe(t)−
t∫

t−τ

e(s)ds

T

(I ⊗P5)

τe(t)−
t∫

t−τ

e(s)ds

.
(13)

Using lemma as in [23] for triple integral terms, one can
obtain that from (11) as follows:

− τ3

6

t∫
t−τ

t∫
γ

t∫
θ

ėT (s)(I ⊗P6)ė(s)dsdθdγ
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≤

τ2

2
e(t)−

t∫
t−τ

t∫
θ

e(s)dsdθ

T

(I ⊗P6)

×

τ2

2
e(t)−

t∫
t−τ

t∫
θ

e(s)dsdθ

 . (14)

Moreover, from Assumption 1, one can seen that,

eT (t)(I ⊗ΓT Γ)e(t)−GT (t,e(t))G(t,e(t))≥ 0, (15)

where Γ = diag{α1, α2, . . . , αn}. In addition, for any ap-
propriately dimensioned matrix (I⊗Y )> 0, the following
equality holds.

2(ėT (t)+ eT (t))(I ⊗Y )[−ė(t)+(I ⊗A)e(t)

+((L+D)⊗BK)e(t − τ(t))− ((L+D)⊗B)Λ(t)
× (I ⊗K)e(t − τ(t))+G(t,e(t))] = 0. (16)

Applying matrix Cauchy inequality [24] in (16) for any
symmetric positive definite matrices (I⊗Q0) and (I⊗Q1),
it follows that

−2ėT (t)((L+D)⊗Y B)Λ(t)(I ⊗K)e(t − τ(t))
≤ ėT (t)((L+D)⊗Y B)(I ⊗Q0)((L+D)⊗Y B)T ė(t)

+ eT (t − τ(t))(I ⊗K)T Λ(I ⊗Q0)
−1

×Λ(I ⊗K)e(t − τ(t)), (17)

−2eT (t)((L+D)⊗Y B)Λ(t)(I ⊗K)e(t − τ(t))
≤ eT (t)((L+D)⊗Y B)(I ⊗Q1)((L+D)⊗Y B)T e(t)

+ eT (t − τ(t))(I ⊗K)T Λ(I ⊗Q1)
−1

×Λ(I ⊗K)e(t − τ(t)). (18)

Using the relationship (8)− (18), and Schur complement
lemma, we have the new upper bound for derivative of
LKF V̇ (t) as follows:

V̇ (t)≤ ζ T (t)Ωζ (t), (19)

where ζ T (t) =
[

eT (t) eT (t − τ(t)) eT (t − τ)
t∫

t−τ
eT (s)ds

t∫
t−τ

t∫
θ

eT (s)dsdθ ėT (t) GT (t,e(t))
]
, and the matrix Ω

is defined in Appendix B. Due to the control gain ma-
trix K, the matrix Ω is not an LMI. In order to obtain the
LMI based constraint, let us define K = ZX−1, and X =
Y−1. After that pre and post multiplying the matrix Ω by
diag{(I ⊗X), . . .(I ⊗X)︸ ︷︷ ︸

6times

,(I ⊗ I), . . . ,(I ⊗ I)︸ ︷︷ ︸
6times

} and utilizing

the relationships P̂i = XPiX(i = 1,2, . . . ,6), we have the
left hand side of (7). From (7), it is observed that if Ω̄ < 0
then V̇ (t) < 0. Hence, it concludes that the error system
(6) is asymptotically stable. Also, according to Definition
1, the leader-following consensus is achieved via reliable
control with time-varying communication delay and with-
out uncertainty. This completes the proof of theorem. □

3.2. Consensus of MAS with interval uncertainty
Next, we consider the consensus problem of leader-

following nonlinear MAS with interval uncertainty and
time-varying communication delay. It is important to
study the leader-following consensus problem for nonlin-
ear MAS against such parameter deviations. Since these
deviations are bounded in practice, the quantities may be
intervalised as follows: A = (apq)n×n, B = (bpq)n×n, Ā =
(āpq)n×n, A = (apq)n×n, B̄ = (b̄pq)n×n, B = (bpq)n×n,

N[Ā,A] ={A = (apq)n×n ∈ Rn×n|A < A < Ā,

i.e., apq < apq < āpq, p,q = 1,2, . . . ,n.},
N[B̄,B] ={B = (bpq)n×n ∈ Rn×n|B < B < B̄,

i.e., bpq < bpq < b̄pq, p,q = 1,2, . . . ,n.}.

For notational convenience, let A0 = 1
2 (A + Ā), B0 =

1
2 (B+ B̄), HA = 1

2 (Ā−A) = (ηpq)n×n, HB = 1
2 (B̄−B) =

(βpq)n×n. Note that, every element in the matrices HA and
HB is non negative. So we can define

EA=[
√

η11e1, · · · ,
√

η1ne1, · · ·
√

ηn1en, · · · ,
√

ηnnen],

FA=[
√

η11e1, · · · ,
√

η1nen, · · ·
√

ηn1e1, · · · ,
√

ηnnen]
T ,

EB=[
√

β11e1, · · · ,
√

β1ne1, · · ·
√

βn1en, · · · ,
√

βnnen],

FB=[
√

β11e1, · · · ,
√

β1nen, · · ·
√

βn1e1, · · · ,
√

βnnen]
T,

where EA ∈ Rn×n2
, FA ∈ Rn2×n, EB ∈ Rn×n2

, FB ∈ Rn2×n

and ek denotes the k− th standard basis of Rn×1. Further-
more, we denote

Σ∗ ={Σ ∈ Rn2×n2 |Σ = diag{ε11, · · · ,ε1n, · · · ,εn1,

· · · ,εnn}, |εpq| ≤ 1, p, q = 1,2, . . . ,n}.

Based on Lemma 1 in [17] and substituting Λi, j(t) = 0 in
(4), then the system (4) without actuator fault and (2) can
be rewritten as follows:
Agent system:

ẋi(t) =(A0 +EAΣAFA)xi(t)+(B0 +EBΣBFB)K

×
{

∑
j∈Ni

wi j[xi(t − τ(t))− x j(t − τ(t))]

+bi[xi(t − τ(t))− x0(t − τ(t))]
}
+ f (t,xi(t)),

(20)

Leader system:

ẋ0(t) =(A0 +EAΣAFA)x0(t)+ f (t,x0(t)), (21)

Error system:

ė(t) =(I ⊗ (A0 +EAΣAFA))e(t)

+(L⊗ (B0 +EBΣBFB)K)e(t − τ(t))
+(D⊗ (B0 +EBΣBFB)K)e(t − τ(t))
+G(t,e(t)). (22)

For systems (20)-(22), we have the following result.
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Theorem 2: For given positive constants τ and µ , the
leader-following consensus of system (22) without actua-
tor fault can be achieved asymptotically if there exist pos-
itive definite matrices P̂j ( j = 1,2, . . . ,6), X , any matrix
Z and positive scalars εl (l = 1,2, . . . ,6) such that the fol-
lowing inequality holds

Π̄ =

[
Ξ̃ ϒ̃
∗ Θ̃

]
< 0, (23)

where Ξ̃ , ϒ̃ and Θ̃ are defined in Appendix C. Moreover
the control gain matrix is defined as K = ZX−1.

Proof: Consider the same LKF as in Theorem 1. Then
taking time derivative of LKF and the following zero
equation is hold for any appropriate dimension matrix Y .

2[ėT (t)+ eT (t)](I ⊗Y )[−ė(t)+(I ⊗ (A0 +EAΣAFA))

× e(t)+(L⊗ (B0 +EBΣBFB)K)e(t − τ(t))
+(D⊗ (B0 +EBΣBFB)K)e(t − τ(t))+G(t,e(t))]

= 0. (24)

According to Lemma 2 in [25], one can see

2ėT (t)(I ⊗Y )(I ⊗ (EAΣAFA))e(t)

≤ ε1ėT (t)(I ⊗Y EAET
A Y T )ė(t)+ ε−1

1 eT (t)

× (I ⊗FT
A FA)e(t), (25)

2ėT (t)(I ⊗Y )(L⊗ (EBΣBFBK))e(t − τ(t))
≤ ε2ėT (t)(LLT ⊗Y EBET

B Y T )ė(t)+ ε−1
2 eT (t − τ(t))

× (I ⊗KT FT
B FBK)e(t − τ(t)), (26)

2ėT (t)(I ⊗Y )(D⊗ (EBΣBFBK))e(t − τ(t))
≤ ε3ėT (t)(DDT ⊗Y EBET

B Y T )ė(t)+ ε−1
3 eT (t − τ(t))

× (I ⊗KT FT
B FBK)e(t − τ(t)), (27)

2eT (t)(I ⊗Y )(L⊗ (EBΣBFBK))e(t − τ(t))
≤ ε4eT (t)(LLT ⊗Y EBET

B Y T )e(t)+ ε−1
4 eT (t − τ(t))

× (I ⊗KT FT
B FBK)e(t − τ(t)), (28)

2eT (t)(I ⊗Y )(D⊗ (EBΣBFBK))e(t − τ(t))
≤ ε5eT (t)(DDT ⊗Y EBET

B Y T )e(t)+ ε−1
5 eT (t − τ(t))

× (I ⊗KT FT
B FBK)e(t − τ(t)), (29)

2eT (t)(I ⊗Y )(I ⊗ (EAΣAFA))e(t)

≤ ε−1
6 eT (t)(I ⊗FT

A FA)e(t)

+ ε6eT (t)(I ⊗Y EAET
A Y T )e(t). (30)

Then, by utilizing the above inequalities (25)-(30), zero
equation (24) and with the help of Schur complement
lemma, the derivative of LKF can be written as follows:

V̇ (t)≤ ζ T (t)Πζ (t), (31)

where ζ (t) is defined in Theorem 1 and the entries of
Π = (πi, j)20×20 is given in Appendix D. Setting K =

0 1 2

34

Fig. 1. Communication topology of MAS.

ZX−1, X = Y−1 and P̂j = XPjX ( j = 1, 2, . . ., 6).
Then, pre and post multiplying both the sides of Π by
diag{(I ⊗X), . . .(I ⊗X)︸ ︷︷ ︸

6times

,(I ⊗ I), . . . ,(I ⊗ I)︸ ︷︷ ︸
14times

}, we have the

matrix Π̄. From (23) and (31), it is easily to obtain that
V̇ (t) < 0. Therefore, we conclude that the error system is
asymptotically stable with interval uncertainty and time-
varying communication delay. The proof of Theorem 2 is
completed. □

4. NUMERICAL EXAMPLES

In this section, the simulation examples are presented
to validate the effectiveness of the developed theoretical
results for considered nonlinear MAS with and without
uncertainty.

Example 1: Consider the MAS (2) and (4) consisting
of a leader and four followers indexed by 0 and 1,2,3,4,
respectively. The system topology is given as in Fig. 1 and
the system matrices are

A =

[
−1.0 0.3
0.1 −1.9

]
, B =

[
0.5 −1.6
−0.1 0.17

]
,

D =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , L =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

Let the time-varying communication delay as τ(t) =
0.1sin t + 0.1 with τ = 0.2 and µ = 0.1. The nonlinear
function is assumed to be f (t,xi(t)) = tanh(xi(t)). The
fault model is adopted as Λi(t) = 0.3|sin(t)|I2 and it sat-
isfying Λ = 0.3I2, where I2 represents the 2× 2 identity
matrix. By using these values to solve the LMI (7) with
the help of MATLAB LMI control toolbox, the state feed-
back gain K for reliable control protocol is estimated as
follows:

K =

[
0.2160 0.1872
2.0225 0.3962

]
. (32)

In this example, we choose the initial conditions of leader
and follower agents as x0(0) = [1.5 0.2]T and x1(0) =
[−1.5 1.6]T , x2(0) = [1.5 − 0.9]T , x3(0) = [0.5 1.0]T ,
x4(0) = [−1.0 2.6]T , respectively. Based on the reliable
control law, the state responses of error system is shown
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Fig. 2. The error between states of all follower and a
leader in (6).

in Fig. 2 and it indicates that the error system (6) is asymp-
totically stable. It is shown that the leader-following
consensus can be achieved through the proposed control
scheme.

Example 2: Consider the MAS (21) and (20) with a
leader and 4 follower agents which is depicted in the in-
teraction graph Fig. 3. The parameters of given system
as

A =

[
−0.3 0.02
0.01 0.05

]
, Ā =

[
−0.1 0.04
0.03 0.07

]
,

B =

[
2.1 0.2
0.3 2.1

]
, B̄ =

[
2.3 0.4
0.5 2.3

]
,

with nonlinear function f (t,xi(t)) = 0.01tanh(xi(t)). The
time-varying communication delay as τ(t)= 0.1sin t+0.2
with τ = 0.3 and µ = 0.1. The Laplacian matrix L and the
degree matrix D are given as

L =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , D =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

By solving the LMI in Theorem 2, the corresponding con-
trol gain matrix is calculated as

K =

[
−0.0936 0.0137
0.0065 −0.2240

]
. (33)

Choose an initial conditions of leader and follower
agents are x0(0) = [10.7 5.01]T and x1(0) = [11.2 10.9 ]T ,
x2(0) = [−1.7 2.0]T , x3(0) = [4.0 − 2.9]T , x4(0) =
[0.57 1.0]T , respectively. Based on the control gain matrix
(33), the state trajectories of leader and follower agents
are plotted in Fig. 4. It can be observed that all follower
agents can reach the region around the leader asymptoti-
cally, which confirms the effectiveness of Theorem 2.

0

1 2

4 3

Fig. 3. Interaction graph for Leader and follower.
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Fig. 4. State trajectories of xi1(t) and xi2(t), i = 0, 1, 2, 3,
4 in Example 2.

5. CONCLUSION

In this paper, the problem of leader-following consen-
sus for a MAS with time-varying communication delay
and interval uncertainty has been investigated. By using
the Kronecker product properties and proposed protocols,
the leader-following consensus problem has been trans-
formed into stabilization problem of error system. On the
basis of suitable LKF involving triple and quadruple in-
tegral terms, a sufficient condition assuring the consensus
of MAS has been addressed in terms of LMIs. Finally,
numerical examples have been provided to illustrate the
effectiveness of the proposed theoretical results.

APPENDIX A

Ξ̄ = Ξ̄ T = (Ξ̄p,q)6×6 with entries:

Ξ̄1,1 = (I ⊗ P̂2)+(I ⊗ P̂3)− τ2(I ⊗ P̂5)−
τ4

4
(I ⊗ P̂6)

− (I ⊗ P̂4)+(I ⊗AX)+(I ⊗AX)T ,

Ξ̄1,2 = (I ⊗ P̂4)+((L+D)⊗BZ), Ξ̄1,4 = τ(I ⊗ P̂5),

Ξ̄1,5 =
τ2

2
(I ⊗ P̂6),

Ξ̄1,6 = (I ⊗ P̂1)+(I ⊗AX)T − (I ⊗X),
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Ξ̄2,2 =−(1−µ)(I ⊗ P̂2)−2(I ⊗ P̂4),

Ξ̄2,3 = (I ⊗ P̂4), Ξ̄2,6 = ((L+D)⊗BZ)T ,

Ξ̄3,3 =−(I ⊗ P̂3)− (I ⊗ P̂4),

Ξ̄4,4 =−(I ⊗ P̂5), Ξ̄5,5 =−(I ⊗ P̂6),

Ξ̄6,6 = τ2(I ⊗ P̂4)+
τ4

4
(I ⊗ P̂5)+

τ6

36
(I ⊗ P̂6)

−2(I ⊗X).

ϒ̄ = (ϒ̄p,q)6×6 with entries:

ϒ̄1,1 = (I ⊗ I), ϒ̄1,4 = (I ⊗ΓX),

ϒ̄1,5 = ((L+D)⊗BQ1), ϒ̄2,2 = (I ⊗Z)T Λ,

ϒ̄2,6 = (I ⊗Z)T Λ, ϒ̄6,1 = (I ⊗ I),

ϒ̄6,3 = ((L+D)⊗BQ0).

Θ̄ = diag{Θ̄1,1, Θ̄2,2, Θ̄3,3, Θ̄4,4, Θ̄5,5, Θ̄6,6} with entries:

Θ̄1,1 =−(I ⊗ I), Θ̄2,2 =−(I ⊗Q0),

Θ̄3,3 =−(I ⊗Q0), Θ̄4,4 =−(I ⊗ I),

Θ̄5,5 =−(I ⊗Q1), Θ̄6,6 =−(I ⊗Q1),

and the remaining terms are zero.

APPENDIX B

The matrix Ω is defined as follows: Ω =

[
Ξ ϒ
∗ Θ

]
,

where Ξ = Ξ T = (Ξp,q)6×6, ϒ = (ϒp,q)6×6, Θ = Θ T =
diag{Θ1,1, Θ2,2, Θ3,3, Θ4,4, Θ5,5, Θ6,6} with

Ξ1,1 = (I ⊗P2)+(I ⊗P3)− τ2(I ⊗P5)−
τ4

4
(I ⊗P6)

− (I ⊗P4)+(I ⊗YA)+(I ⊗YA)T ,

Ξ1,2 = (I ⊗P4)+((L+D)⊗Y BK), Ξ1,4 = τ(I ⊗P5),

Ξ1,5 =
τ2

2
(I ⊗P6), Ξ1,6 = (I ⊗P1)+(I ⊗YA)T

− (I ⊗Y ),

Ξ2,2 =−(1−µ)(I ⊗P2)−2(I ⊗P4),

Ξ2,3 = (I ⊗P4), Ξ2,6 = ((L+D)⊗Y BK)T ,

Ξ3,3 =−(I ⊗P3)− (I ⊗P4), Ξ4,4 =−(I ⊗P5),

Ξ5,5 =−(I ⊗P6),

Ξ6,6 = τ2(I ⊗P4)+
τ4

4
(I ⊗P5)+

τ6

36
(I ⊗P6)

−2(I ⊗Y ),

ϒ1,1 = (I ⊗Y ), ϒ1,4 = (I ⊗Γ),

ϒ1,5 = ((L+D)⊗Y BQ1), ϒ2,2 = (I ⊗K)T Λ,

ϒ2,6 = (I ⊗K)T Λ, ϒ6,1 = (I ⊗Y ),

ϒ6,3 = ((L+D)⊗Y BQ0),

Θ1,1 =−(I ⊗ I), Θ2,2 =−(I ⊗Q0),

Θ3,3 =−(I ⊗Q0), Θ4,4 =−(I ⊗ I),

Θ5,5 =−(I ⊗Q1), Θ6,6 =−(I ⊗Q1),

and the remaining terms are zero.

APPENDIX C

Ξ̃ = Ξ̃ T = (Ξ̃p,q)10×10, ϒ̃ = (ϒ̃p,q)10×10,

Θ̃ = (Θ̃p,q)10×10

with

Ξ̃1,1 = (I ⊗ P̂2)+(I ⊗ P̂3)− τ2(I ⊗ P̂5)−
τ4

4
(I ⊗ P̂6)

− (I ⊗ P̂4)+(I ⊗A0X)+(I ⊗A0X)T ,

Ξ̃1,2 = (I ⊗ P̂4)+((L+D)⊗B0Z), Ξ̃1,4 = τ(I ⊗ P̂5),

Ξ̃1,5 =
τ2

2
(I ⊗ P̂6), Ξ̃1,6 = (I ⊗ P̂1)+(I ⊗A0X)T ,

Ξ̃1,8 = (I ⊗ΓX), Ξ̃1,9 = (I ⊗FAX)T ,

Ξ̃2,2 =−(1−µ)(I ⊗ P̂2)−2(I ⊗ P̂4),

Ξ̃2,3 = (I ⊗ P̂4), Ξ̃2,6 = ((L+D)⊗B0Z)T ,

Ξ̃2,10 = (I ⊗FBZ)T , Ξ̃3,3 =−(I ⊗ P̂3)− (I ⊗ P̂4),

Ξ̃4,4 =−(I ⊗ P̂5), Ξ̃5,5 =−(I ⊗P6),

Ξ̃6,6 = τ2(I ⊗ P̂4)+
τ4

4
(I ⊗ P̂5)+

τ6

36
(I ⊗ P̂6)

−2(I ⊗X),

Ξ̃6,7 = (I ⊗ I), Ξ̃7,7 =−(I ⊗ I), Ξ̃8,8 =−(I ⊗ I),

Ξ̃9,9 =−ε1(I ⊗ I), Ξ̃10,10 =−ε2(I ⊗ I),

ϒ̃1,5 = ε4(LLT ⊗EB), ϒ̃1,6 = ε5(DDT ⊗EB),

ϒ̃1,7 = ε6(I ⊗EA), ϒ̃1,8 = (I ⊗FAX)T ,

ϒ̃2,1 = (I ⊗FBZ)T , ϒ̃2,9 = (I ⊗FBZ)T ,

ϒ̃2,10 = (I ⊗FBZ)T , ϒ̃6,2 = ε1(I ⊗EA),

ϒ̃6,3 = ε2(LLT ⊗EB), ϒ̃6,4 = ε3(DDT ⊗EB),

Θ̃1,1 =−ε3(I ⊗ I), Θ̃2,2 =−ε1(I ⊗ I),

Θ̃3,3 =−ε2(I ⊗ I), Θ̃4,4 =−ε3(I ⊗ I),

Θ̃5,5 =−ε4(I ⊗ I), Θ̃6,6 =−ε5(I ⊗ I),

Θ̃7,7 =−ε6(I ⊗ I), Θ̃8,8 =−ε6(I ⊗ I),

Θ̃9,9 =−ε4(I ⊗ I), Θ̃10,10 =−ε5(I ⊗ I),

and the remaining terms are zero.

APPENDIX D

The entries of Π = (πp,q)20×20 as

π1,1 = (I ⊗P2)+(I ⊗P3)− τ2(I ⊗P5)−
τ4

4
(I ⊗P6)

− (I ⊗P4)+(I ⊗YA0)+(I ⊗YA0)
T ,
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π1,2 = (I ⊗P2)+((L+D)⊗Y B0K),

π1,4 = τ(I ⊗P5), π1,5 =
τ2

2
(I ⊗P6),

π1,6 = (I ⊗P1)+(I ⊗YA0)
T , π1,8 = (I ⊗Γ),

π1,9 = (I ⊗FA)
T , π1,15 = ε4(LLT ⊗Y EB),

π1,16 = ε5(DDT ⊗Y EB), π1,17 = ε6(I ⊗Y EA),

π1,18 = (I ⊗FA)
T ,

π2,2 =−(1−µ)(I ⊗P2)−2(I ⊗P4), π2,3 = (I ⊗P4),

π2,6 = ((L+D)⊗Y B0K)T , π2,10 = (I ⊗KT FT
B ),

π2,11 = (I ⊗KT FT
B ), π2,19 = (I ⊗FBK)T ,

π2,20 = (I ⊗FBK)T , π3,3 =−(I ⊗P3)− (I ⊗P4),

π4,4 =−(I ⊗P5), π5,5 =−(I ⊗P6),

π6,6 = τ2(I ⊗P4)+
τ4

4
(I ⊗P5)+

τ6

36
(I ⊗P6)

−2(I ⊗Y ),

π6,7 = (I ⊗Y ), π6,12 = ε1(I ⊗Y EA),

π6,13 = ε2(LLT ⊗Y EB), π6,14 = ε3(DDT ⊗Y EB),

π7,7 =−(I ⊗ I), π8,8 =−(I ⊗ I), π9,9 =−ε1(I ⊗ I),

π10,10 =−ε2(I ⊗ I), π11,11 =−ε3(I ⊗ I),

π12,12 =−ε1(I ⊗ I), π13,13 =−ε2(I ⊗ I),

π14,14 =−ε3(I ⊗ I), π15,15 =−ε4(I ⊗ I),

π16,16 =−ε5(I ⊗ I), π17,17 =−ε6(I ⊗ I),

π18,18 =−ε6(I ⊗ I), π19,19 =−ε4(I ⊗ I),

π20,20 =−ε5(I ⊗ I),

and the other terms are zero.
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