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Finite Time Controller Design of Nonlinear Quantized Systems with Non-
strict Feedback Form
Xueyi Zhang, Fang Wang*, and Lili Zhang

Abstract: This article considers a finite-time control problem of nonlinear quantized systems in complex environ-
ments. The controlled system is in a non-strict feedback form. By applying a nonlinear decomposition of hysteretic
quantizer, the quantization issue is tackled successfully. By employing a structural property of radial basis function
(RBF) neural networks (NNs), the conventional backstepping method is extended to non-strict feedback nonlinear
quantized systems. Based on the finite time stability criterion, a new adaptive neural control scheme is presented.
The constructed neural controller can ensure the transient performance of nonlinear quantized systems.
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1. INTRODUCTION

The growing number of applications in complex engi-
neering environments, along with the increasing require-
ments for network, is posing new challenges for the con-
troller design for the complex systems. A haptic identifi-
cation approach was proposed for extreme learning ma-
chine(ELM) uncertain manipulator in [1]. Two neural
control schemes were developed for bimanual robots and
flexible joint robot in [2, 3]. By applying neural networks
control technique, some control scheme were developed
in [4–8]. At the same time, the quantized control prob-
lems have caught the imagination of many scholars. In
[9], a quantized feedback stabilized scheme is first pro-
posed for a kind of discrete linear systems. Serval stabi-
lized strategies were presented continuous quantized sys-
tems in [10–15]. Furthermore, the quantized control prob-
lems were considered for uncertain nonlinear systems in
[16–18]. Compared with the results in [9–15], the system
models don’t require to be exactly known for designer. In
[18], by establishing a hysteretic quantizer, chattering is
eliminated in [9–15].Considering that the quantized con-
trol scheme is hard to realize, by proposing a novel de-
composition of quantizer, a new adaptive quantized con-
trol strategy was presented in [20] and [21]. The pre-
sented adaptive quantized control method in [20] and [21]
provides an effective solution to nonlinear systems with
quantized input. It must be said that the aforementioned
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researches are concerned with infinite-time stability prob-
lems, transient responses of systems can not be be assured
in theory.However, it is significant that the practical con-
trol system possesses a transient performance.

Different from asymptotic stability control, finite-time
control strategy can get a quick transient performance.
Therefore, finite-time stability problem has attracted a lot
of attention in recent years. By establishing a terminal
sliding manifold, two sliding controllers were constructed
[22] and [23]. To overcome chattering phenomena caused
by discontinuous controller in [22] and [23], an impor-
tant finite-time Lyapunov stability theory was first built
in [24, 25]. After that, by utilizing Lyapunov stability the-
ory in [24,25], the subsequent finite-time control problems
were coped with for nonlinear systems in [25–57]. How-
ever, signal quantization is neglected in [25–57], the fi-
nite time control schemes in [26–57] cannot apply to non-
linear systems with quantized characteristic. In addition,
the controlled systems in [26–57] are in strict feedback
form. For more complex system, the finite time control
approaches in [26–57] are unavailable.

For the above-mentioned description, this article con-
siders a finite-time quantized feedback control problem
of nonlinear systems with non-strict feedback form. In
comparison with the available researches, this paper con-
tributes in the following.

1) In the most studies on finite time control in [26–55],
the data transmission is assumed to accurate transmission,
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the quantized error is ignored in media transmission. Al-
though [58] has taken the quantized error into finite time
controller design, the control strategy in [58] can be only
applied to nonlinearly parameterized systems. Instead, not
only the quantized input is considered in this manuscript,
but also the nonlinearities and their bounding functions
are unknown completely, which need not satisfy the non-
linearly parameterized form. In addition, the plant in this
paper is in non-strict feedback form, which contains strict
feedback form in [58] as a special case.

2) Compared with available studies on quantized non-
linear systems in [9–21], a new finite-time control strategy
is presented. Under the constructed controller, transient
performance of quantized system is quickly achieved.
Theoretically, an effective finite time solution is provided
for quantized control of nonlinear systems.

In this note, we work on develop a new finite time
solution for quantized nonlinear system with non-strict
feedback form, which can assure transient performance
quickly.

2. PREREQUISITES AND PROBLEM
FORMULATION

2.1. Prerequisites
Definition 1 [57]: The system ϖ̇ = f (ϖ ,u) is semi-

global practical finite-time stable (SGPFS) if for ϖ(t0) =
ϖ0, there are ε > 0 and a settling time T (ε,ϖ0)< ∞ such
that ∥ϖ(t)∥< ε , for all t ≥ t0 +T .

Lemma 1 [61]: Let z j ∈ R, j = 1, ...,n,0 < p ≤ 1, then
inequality (1) holds:( n

∑
j=1

|z j|
)p

≤
n

∑
j=1

|z j|p ≤ n1−p
( n

∑
j=1

|z j|
)p

. (1)

Lemma 2 [15]: For ˙̂χ(t) =−γ χ̂(t)+ωε(t), if χ̂(t0)≥
0, then χ̂(t)≥ 0 for ∀t ≥ t0, where constants γ > 0, ω > 0,
and function ε(t) is positive.

Lemma 3 [62]: For real variables π,ϑ and positive
constants τ,λ , ι , the inequality (2) holds:

|π|τ |ϑ |λ ≤ τ
τ +λ

ι |π|τ+λ +
λ

τ +λ
ι

−τ
λ |ϑ |τ+λ . (2)

Lemma 4 [57]: For system ϖ̇ = f (ϖ ,u) and smooth
positive-definite function V (ϖ), if there are constants c >
0, 0 < σ < 1 and d > 0 such that

V̇ (ϖ)≤−cV σ (ϖ)+d, t ≥ 0, (3)

then system ϖ̇ = f (ϖ ,u) is SGPFS.
Remark 1: For the sake of the following finite-time

stability analysis, Lemma 2, Lemma 3, Lemma 1 will be
used to deal with the inequalities (17), (25) and (27), re-
spectively. To show that the system is semi-global prac-
tical finite-time stable under the condition (27), Lemma 4
will be adopted.

2.2. Problem description
Let’s consider the following quantized nonlinear sys-

tems:{
ẋ = F(x)+Gx+Bq(u(t)),

y =Cx,
(4)

where

F(x) =
[

f1(x) . . . fn(x)
]T

,

G =

[
OT Λ
0 O

]
, O = [0 . . . 0] ∈ Rn−1,

Λ =

 1 0 . . . 0
. . . . . . . . . . . .
0 . . . 0 1

 ,

B =
[
0 0 . . . 1

]T
,

C =
[
1 0 . . . 0

]T
.

In the aforementioned representations, x = [x1,x2, . . . ,xn]
T

is a state vector, y ∈ R represents system output, un-
known nonlinear function fi(x) is continuously differen-
tiable. u(t) ∈ R is a controller to be established, system
input q(u(t)) is affected by quantization action which is
defined in the following [18, 19]:

q(u(t))=



uisgn(u),
ui

1+δ
< |u| ≤ ui, u̇ < 0, or

ui < |u| ≤ ui

1−δ
, u̇ > 0

ui(1+δ )sgn(u),ui < |u| ≤ ui

1−δ
, u̇ < 0, or

ui

1−δ
< |u| ≤ ui(1+δ )

1−δ
, u̇ > 0

0, 0 ≤ |u|< umin

1+δ
, u̇ < 0, or

umin

1+δ
≤ |u| ≤ umin, u̇ > 0,

q(u(t−)), other cases,
(5)

where ui = ρ1−iumin(i = 1,2, . . .) and δ = 1−ρ
1+ρ with pa-

rameters umin > 0 and 0 < ρ < 1. q(u(t)) is in the set
U = {0,±ui,±ui(1 + δ ), i = 1,2, . . .}, the range of the
dead-zone for q(u(t)) is determined by the positive pa-
rameter umin, and the positive parameter ρ can be viewed
as a measure of quantization density.

The aim of this article is to construct a neural controller
for (1), such that y can follows a given signal yr in finite
time.

Let ȳ(i)r = [yr,y
(1)
r , . . . ,y(i)r ]T , 1 ≤ i ≤ n, where y(i)r is the

ith time derivative of yr. It is assumed that yr and y(i)r are
continuous and bounded in the following design.

Remark 2: Compared with finite-time works in [22–
55], controlled system (1) is in a quantized feedback form.
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Since the quantization of controller becomes closed-loop
system a hybrid system, the traditional finite-time control
schemes are not applicable to such quantized nonlinear
system (1). In addition, the quantized feedback control
scheme in [20] is based on infinite-time stability theory.
Theoretically, the finite-time performance of system can-
not be guaranteed under such a control strategy.

Remark 3: Different from nonlinear systems in finite
time researches, function fi(x) contains all the state vari-
ables x1, ..,xn, and so the system (4) is a non-strict feed-
back system. To cope with non-strict feedback form, the
subsequent Lemma 6 will be provided. By using a use-
ful characteristic of RBF NN, the backstepping design ap-
proach may be generalized to the system (4).

Lemma 5 [20]: The quantized signal q(u(t)) can be
decomposed as follows:

q(u(t)) = D(u)u(t)+G(t), (6)

where D(u) and G(t) satisfy

1−δ ≤ D(u)≤ 1+δ , |G(t)| ≤ umin. (7)

2.3. RBF neural networks

In the following discussion, the radial basis functions
(RBF) NN will be applied to approximate some unknown
functions f (ζ ) defined on some compact set Ξ. As stated
in [63], for sufficiently large nodes number κ , the RBF
neural networks Φ∗T ξ (ϖ) can approximate any continu-
ous function f (ϖ) over a compact set Ξ ⊂ Rq to arbitrary
accuracy ε > 0 in the following

f (ϖ) = Φ∗T ξ (ϖ)+ ε(ϖ),∀ϖ ∈ Ξ ⊂ Rq,

where approximation error ε(ϖ) satisfies | ε(ϖ) |≤ ε ,
ξ (ϖ)= [ξ1(ϖ),ξ2(ϖ), ...,ξκ(ϖ)]T is a basis function vec-
tor, Φ∗ = [ϕ1,ϕ2, ...,ϕκ ]

T ∈ Rκ is

Φ∗ := arg min
Φ∈Rκ

{sup
ϖ∈Ξ

| f (ϖ)−ΦT ξ (ϖ)|},

where Φ ∈ Rκ is a weight vector. In this article, we will
adopt Gaussian basis function ξi(ϖ) as follows:

ξi(ϖ) = exp[− (ϖ − ιi)
T (ϖ − ιi)

ω2
i

], i = 1,2, ...,κ, (8)

where ιi = [ιi1, ιi2, ..., ιiq]
T is a center of a receptive field

and ωi is a width of the Gaussian function.
Lemma 6 [64]: If ξ (x̄q) = [ξ1(x̄q), · · · ,ξl(x̄q)]

T with
x̄q = [x1, · · · ,xq]

T is basis function vector of a RBF NN,
for ∀k ≤ q, the following relation is satisfied:

||ξ (x̄q)||2 ≤ ||ξ (x̄k)||2.

3. FINITE TIME CONTROL DESIGN

To facilitate the subsequent controller design, define un-
known constant ηi = ||Φ∗

i ||2, i = 1 . . . ,n, where Φ∗
i is a

weight vector of RBF neural networks which will be de-
signed in the next analysis. Let η̂i as an estimate of ηi,
estimation error is η̃i = ηi − η̂i. For 1 ≤ i ≤ n, design the
adaptive law as

˙̂ηi =
pi

2a2
i

ϖ2
i ξ T

i (Xi)ξi(Xi)−ρiη̂i, η̂i(t0)≥ 0, (9)

where ξi(Xi) is a basis function vector of RBF neural net-
works with Xi = [x̄T

i , ȳ
T
r ,

¯̂ηT
i ]

T , ¯̂ηi = [η̂1, ..., η̂i]
T , pi, ai, ρi

are positive design parameters, and ϖi is defined as fol-
lows:

ϖ1 = y− yr, ϖi = xi −νi−1, i = 2, · · · ,n. (10)

The virtual controller νi and controller u are designed as
follows:

νi =−ciϖ2σ−1
i − 1

2a2
i

η̂iϖiξ T
i (Xi)ξi(Xi), (11)

u =−cnϖ2σ−1
n

1−δ
− ϖnη̂nξ T

n (Xn)ξn(Xn)

2a2
n(1−δ )

. (12)

In the above definition, ci > 0 and σ = 2l−1
2l+1 (l > 2, l ∈ N)

are design constants.
Remark 4: Having said that, in (11) and (12), the num-

ber of network nodes in ΦT
i ξi(Xi) will increase exponen-

tially as the system dimension increases (see the simula-
tion section for details). Thus, huge dimension of nonlin-
ear systems often has a high demand on memory in the
process of calculation.

Theorem 1: For quantized nonlinear system (1), if the
controller (12), the virtual controller (11) and parameter
adaptive law (9) are adopted, the system output locates in
a small neighborhood of the given signal in finite time.

Proof: Following by the typical backstepping tech-
nique in [59, 60], the proof procedure is given in this sec-
tion.

Step 1: Choose Lyapunov function as V1 =
ϖ2

1
2 +

η̃2
1

2p1
,

the time derivative of V1 is

V̇1 = ϖ1

(
f1(x)+ϖ2 +ν1 − ẏd

)
− 1

p1
η̃1

˙̂η1. (13)

Applying Young’s inequality, the following inequality is
obtained.

ϖ1ϖ2 ≤
ϖ2

1

2
+

ϖ2
2

2
. (14)

Define the following unknown packaged function

f̄1(Z1) = f1 − ẏd +ϖ1, (15)
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where Z1 = [xT ,yr, ẏr]
T .

Then, we adopt a neural network Φ∗
1ξ1(Z1) to approximate

f̄1(Z1), for a given ε1 > 0,

f̄1 = Φ∗T
1 ξ1(Z1)+δ1(Z1)

with δ1 being the approximation error and satisfying
|δ1| ≤ ε1. Then, applying Lemma 6 and Young’s inequal-
ity to the term z1 f̄1 gives

ϖ1 f̄1 = ϖ1(Φ∗T
1 ξ1(Z1)+δ1(Z1))

≤ |ϖ1|(||Φ∗
1||||ξ1(Z1)||+ ε1)

≤ ϖ2
1

2a2
1

ηξ T
1 (X1)ξ1(X1)+

a2
1

2
+

ϖ2
1

2
+

ε2
1

2
, (16)

where X1 = [x1,yr, ẏr]
T . Substituting (9)-(11) and (14)-

(16) into (13), one has

V̇1 ≤−c1ϖ2σ
1 − ρ1

p1
η̃1η̂1 +

a2
1 + ε2

1

2
. (17)

Step iii (2 ≤ i ≤ n− 1): Choose the Lyapunov function
as Vi =Vi−1 +

ϖ2
i

2 + η̃2
i

2pi
, then we have

V̇i = V̇i−1 +ϖi

(
fi(x)+ϖi+1 +νi − ν̇i−1

)
, (18)

where

ν̇i−1 =
i−1

∑
j=1

∂νi−1

∂x j

[
f j(x)+ x j+1

]
+

i−1

∑
j=1

∂νi−1

∂ η̂ j

˙̂η j +
i−1

∑
j=0

∂νi−1

∂y( j)
r

y( j+1)
r . (19)

Applying Young’s inequality to ϖiϖi+1, one has

ϖiϖi+1 ≤
ϖ2

i

2
+

ϖ2
i+1

2
. (20)

Define an unknown function f̄i(Zi) as

f̄i(Zi) = fi(x)− ν̇i−1 +
3
2

ϖi, (21)

where Zi = [xT , ȳT
r ,

¯̂ηT
i ]

T , ȳr = [yr,y
(i)
r ]T .

Considering that f̄i(Zi) is unknown, we adopt a neural
network Φ∗

i ξi(Zi) to approximate it, for given εi > 0,

f̄i(Zi) = Φ∗T
i ξi(Zi)+δi(Zi) (22)

with δi being the approximation error and satisfying |δi| ≤
εi. Then, applying Lemma 6 and Young’s inequality to the
term zi f̄i gives

ϖi f̄i = ϖi(Φ∗T
i ξi(Zi)+δi(Zi))

≤ |ϖi|(||Φ∗
i ||||ξi(Zi)||+ εi)

≤ ϖ2
i

2a2
i

ηξ T
i (Xi)ξi(Xi)+

a2
i

2
+

ϖ2
i

2
+

ε2
i

2
, (23)

where Xi = [x̄T
i , ȳ

T
r ,

¯̂ηT
i ]

T .
Substituting (9)-(11) and (20)-(23) into (18), one has

V̇i ≤−
n−1

∑
j=1

c jϖ2σ
j −

n−1

∑
j=1

ρ j

p j
η̃ jη̂ j +

n−1

∑
j=1

a2
j + ε2

j

2
. (24)

Step nnn: Choose the Lyapunov function as Vn = Vn−1 +
ϖ2

n
2 + η̃2

n
2pn

and apply (6), then we have

V̇n = V̇n−1 +ϖi

(
fn(x)+D(u)u(t)+G(t)− ν̇n−1

)
,

(25)

where ν̇n−1 is defined by (19).
As (9) satisfies the condition of Lemma 2, η̂n(t)≥ 0 for

∀t > t0. Therefore, from (9) and (12), one has:

ϖnD(u)u(t)≤−cnϖ2σ
n − 1

2a2
n

ϖ2
n η̂nξ T

n ξn. (26)

Applying Young’s inequality to ϖnG(t), one has

ϖnG(t)≤ 1
2

ϖ2
n +

1
2

u2
min. (27)

Define an unknown function f̄n(Zn) as

f̄n(Zn) = fn(x)− ν̇n−1 +
3
2

ϖn, (28)

where Zn = [xT , ȳT
r ,

¯̂ηT
n ]

T , ȳr = [yr,y
(n)
r ]T . Similar to the

processing in (13), and substituting (9)-(12), (26)-(27) into
(25), one has

V̇n ≤−
n

∑
i=1

ciϖ2σ
i −

n

∑
i=1

ρi

pi
η̃iη̂i +

n

∑
i=1

a2
i + ε2

i

2
+

1
2

u2
min.

(29)

At the same time, from the definition of η̃i, we have

η̃iη̂i = η̃i(ηi − η̃i)≤−1
2

η̃2
i +

1
2

η2
i . (30)

Based on (30), (29) can be rewritten as

V̇n ≤ −
n

∑
i=1

ciϖ2σ
i −

n

∑
i=1

ρi

2pi
η̃2

i + γ, (31)

where γ = ∑n
i=1

ρi
2pi

η2
i +∑n

i=1
a2

i +ε2
i

2 + 1
2 u2

min .
Then, applying Lemma 3, let π = 1, ϑ = 1

2pi
η̃2

i , and

τ = σ ,λ = 1−σ , ι = (1−σ)
1−σ

σ , one has( 1
2pi

η̃2
i

)σ
≤ σι +

1
2pi

η̃2
i . (32)

Combing (34) and (35), one has

V̇n ≤−
n

∑
i=1

ciϖ2σ
i −

n

∑
i=1

ρi

( 1
2pi

η̃2
i

)σ
+d
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≤−c
n

∑
i=1

ϖ2σ
i − c

n

∑
i=1

( 1
2pi

η̃2
i

)σ
+d, (33)

where c = min{ci,ρi, i = 1,2, . . . ,n} and d = γ +

∑n
i=1 ρiσι .
Furthermore, applying Lemma 1, we have

V̇n ≤−c
( n

∑
i=1

(ϖ2
i

2
+

1
2pi

η̃2
i

))σ
+d

≤−cV σ
n +d. (34)

Let T⋇ = 1
(1−σ)φc

[
V 1−σ

n (ϖ(0),) −
(

d
(1−φ)c

)(1−σ)/σ]
with (ϖ(0)) = (ϖ1(0), . . . ,ϖn(0),η1(0), . . . ,ηn(0))T , then
from Lemma 4, for ∀t ≥ T⋇, V σ

n (ϖ) ≤ d
(1−φ)c , that is, all

the signals in the closed-loop system are SGPFS.
Furthermore, from the definition of V , for ∀t ≥ T⋇, we
have

|y− yr| ≤ 2
( d
(1−φ)c

) 1
2σ
. (35)

That is, system output locates in a small neighborhood of
the reference signal in finite time.

4. SIMULATION EXAMPLE

Example 1: Here, the following example is presented
to show the effectiveness of the proposed scheme.

ẋ1 = x2 + f1(x),

ẋ2 = x3 + f2(x),

ẋ3 = q(u)+ f3(x),

y = x1, (36)

where q(u) defined in (9), and δ = 0.25, µmin = 0.2 are
set. The reference signal is chosen as yr = sin(t).

Remark 4: It is clear that system (36) is in a non-strict
feedback system because fi(x) include all the state vari-
ables xi, which is more general than the linearly param-
eterized quantized systems in [58]. In addition, the non-
linearities fi(x) are unknown to designer. Therefore, the
only existing finite-time quantized control strategy in [58]
is unavailable.

In the simulation, f1(x) = 0.5x2
2 sin(x3) + x2 sin2(x2),

f2(x)= sin(x1)cos(x1)x2
2+

2x3+x3
3

1+x2
2+x2

3
, f3(x)= sin(x1−x2)x2

3.
To apply the design strategry in Theorem 1, the cen-
ters of the basis functions are set evenly in the interval
[−2,2], and the width of the basis functions are selected
as 2. In particular, five nodes for each input dimen-
sion of ΦT

1 ξ1(X1), ΦT
2 ξ2(X2) and ΦT

3 ξ3(X3) are adopted.
Thus, ΦT

1 ξ1(X1) includes 53 nodes with centers spaced
evenly in [−2,2]3; ΦT

2 ξ2(X2) includes 56 nodes with cen-
ters spaced evenly in [−2,2]6; ΦT

3 ξ3(X3) includes 59

nodes with centers spaced evenly in [−2,2]9. In sim-
ulation, the design parameters are chosen as σ = 103

107 ,
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Fig. 1. y and yr.
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Fig. 2. x2 and x3.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

 Time(sec)

 

 
η1
η̂1

Fig. 3. η1 and η̂1.

c1 = c2 = c3 = 10, a1 = a2 = a3 = 1, r1 = r2 = r3 =
7.5, ρ1 = 1.6, ρ2 = ρ3 = 0.8; the initial conditions
is given as [x1(0),x2(0),x3(0), η̂1(0), η̂2(0), η̂3(0)]T =
[0.25,0,0,0.2,0.2,2]T . The corresponding simulation re-
sults are shown by Figs. 1-6. From the simulation results,
we can see that output y can follow the given signal to a
bounded set, in addition, all the closed-loop system sig-
nals are bounded in finite time.

To show that the effect of the main design parameters on
the system performances, two group parameters are con-
sidered.
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Case 1: a1 = a2 = a3 = 1, p1 = p2 = p3 = 7.5, ρ1 = 1.6,
ρ2 = ρ3 = 0.8, σ = 103

107 , c1 = c2 = c3 = 10.
Case 2: a1 = a2 = a3 = 1.2, p1 = p2 = p3 = 6, ρ1 = 1.2,

ρ2 = ρ3 = 0.6, and the selection of σ , ci is similar to Case
1.

Under Case 1 and Case 2, define the tracking error in-
dex as ∑M

k=1[y(k)− yr(k)]2, define the estimating error in-
dexes as ∑M

k=1[η1 − η̂1]
2, ∑M

k=1[η2 − η̂2]
2 and ∑M

k=1[η3 −
η̂1]

3, define the control gain index as , ∑M
k=1[u(k)]

2, where
M represents the sampling number. The above perfor-

Table 1. Performance index comparisons under Case 1
and Case 2.

Performance comparisons Case 1 Case 2
∑M

k=1[y(k)− yr(k)]2 0.481 0.668
∑M

k=1[η1 − η̂1]
2 0.3890 0.576

∑M
k=1[η2 − η̂2]

2 0.6430 0.9163
∑M

k=1[η3 − η̂3]
2 0.8430 1.2163

∑M
k=1[u(k)]

2 12.5897 18.8097

mance indexes are calculated within 0 ∼ 20s and the sam-
pling period is set as 0.01 s. The performance indexes
comparisons under two cases are shown by Table I. From
Table 1, it is clear that the smaller ai, and the larger pi

and ρi, the smaller the the tracking error and the estimat-
ing errors. However, the control energy becomes larger
when ai are smaller and pi, ρi are larger. Thus, the design
parameters should be chosen on the basis of the system
requirements.

5. CONCLUSION

This article discusses a finite-time control issue of quan-
tized nonlinear systems with non-strict feedback form.
Based on the backstepping technique, by applying a non-
linear decomposition of hysteretic quantizer and structural
property of radial basis function neural networks, an adap-
tive quantized control scheme is put foreword. The de-
signed neural controller can ensure the transient perfor-
mance of nonlinear quantized systems. Finally, we put
Theorem 1 to the simulation to testify the effectiveness of
main result. It should be pointed out that the proposed
controller in this paper is based on the known state. More
general case, if the state variables are partially measurable,
then it would be better to synthesize the controller based
on the measurement output [65–67]. Thus, as our fu-
ture works mainly focus on the finite-time output feedback
control design. On the other hand, as stated in [68–71], for
the underlying systems suffering from actuator faults, the
reliable control is an interesting issue. How to extend the
current results to the finite time control of nonlinear sys-
tems actuator faults, is also our future research direction.
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