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Adaptive Controller Design Based on Predicted Time-delay for Teleoper-
ation Systems Using Lambert W Function
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Abstract: This study develops an approach of controller design, on the basis of Lambert W function structure for
Internet-based bilateral teleoperation systems. Actually, time-delay terms in bilateral teleoperation systems lead to
an infinite number of characteristic equation roots making difficulty in analysis of systems by classical methods.
As delay differential equations (DDEs) have infinite eigenspectrums, all closed-loop eigenvalues are not feasible
to locate in desired positions by using classical control methods. Therefore, this study suggests a new feedback
controller for assignment of eigenvalues, in compliance with Lambert W function. In this regard, an adaptive
controller is accurately employed in order to provide the controller with updated predicted time-delay and robust
the system against the time-delay. This novel control approach causes the rightmost eigenvalues to locate exactly
in desired positions in the stable left hand of the imaginary axis. The simulation results show strong and robust
closed-loop performance and better tracking in constant and time-varying delay.

Keywords: Adaptive controller, delay differential equations(DDEs), eigenvalue assignment, Lambert W function,
teleoperation systems, time-delay.

1. INTRODUCTION

Up to now, various types of teleoperation systems have
been presented to enable human being to accomplish a
work in distant or perilous sites, with a diversity of appli-
cation cases, ranging from underwater to space, nuclear
activities, etc. [1]. Teleoperation systems highly suffer
from the delays in communication channel which are usu-
ally time-varying delay leading to the system instability.
The customary wave variable technique used for constant
time delays could not provide satisfactory outcomes to sta-
bilize the system under time-varying delay [1,2]. Another
problem is observed in the complex structure and uncer-
tain dynamics of nonlinear bilateral teleoperation systems
resulting in the poor performance of the system. There-
fore, designing controller for the teleoperation systems is
very necessary and highly recommended to guarantee the
system stability and strong performance of system. How-
ever, a large number of studies are conducted in this regard
to resolve the problems and meet the appropriate condi-
tions [1, 2].

As regards teleoperation systems strongly suffer from
an uncertain dynamics and kinematics, Zhao et al. sug-
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gested new nonlinear adaptive controllers for which no
thorough knowledge should be gained in terms of kine-
matics of the master-slave as well as dynamics of the
master-slave-operator-environment [2]. Lee et al. ad-
dressed the adaptive control used actuator saturation for
teleoperation systems. In order to direct the survey of
passive external forces, actuator saturation, asymmetric
time-varying delays, and unknown parameters in the sim-
ilar structure, a new switched control method is intro-
duced, where an especial switched filter is scrutinized
[3]. Peñaloza-Mejía et al. exploited actuator faults to
synchronize time-delay problem of bilateral teleoperation
systems. They modeled error dynamic system with actua-
tor faults as a time-varying delay system [4]. Mellah et al.
proposed an adaptive PID controller in order to improve
the transparency in the bilateral teleoperation systems [5].

Xie et al. designed an observer-based H∞ sliding mode
controller for a type of nonlinear uncertain neutral Marko-
vian switching systems (NUNMSSs) with general uncer-
tain transition rates [6]. In this condition, each transition
rate can be completely unknown or only its estimate value
is known. Jiang et al. addressed the problem of robust
passivity-based sliding mode control (SMC) for uncertain
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singular systems with semi-Markov switching and actua-
tor failures [7]. They emphasized on designing a common
sliding surface to reduce the jumping effect and develop-
ing a sliding mode controller to accommodate to actua-
tor faults for pacification of the singular semi-Markovian
jump system. Du et al. focused on the interval type-
2 (IT2) fuzzy sampled-data tracking control problem of
nonlinear systems subject to uncertain parameters [8]. The
controlled plant employed the Takagi–Sugeno (T–S) fuzzy
structure, where the parameter uncertainties are captured
efficiently by the upper and lower membership functions.

This study is a serious attempt at providing a descrip-
tion of an innovative structure and adaptive controller
on the basis of Lambert W function and predicted time-
varying delay turning the Internet-oriented bilateral tele-
operation systems as robust ones when are dealing with
time-varying delay. By applying the Lambert W function,
it is possible to locate a critical subset of the eigenval-
ues for desired positions in the left hand of the imaginary
axis, which leads to stability of the system. This new ap-
proach involves eigenvalue assignment for the purpose of
avoiding undesirable effects of time-delay and making im-
provements in position, force tracking, and transparency.
The other way round, predicted time-varying delay turns
controller into an intelligent type, being of great impor-
tance to stable the teleoperation systems. This predicted
time-delay is utilized by lookup table to apply the correct
controller designed by Lambert W function for each zone.

This study is developed in the following sections: in
Section 2, bilateral teleoperation systems are described
and Lambert W function is introduced in Section 3. Sec-
tion 4 presents the new adaptive control architecture based
on the Lambert W function and predicted time-delay as
well as the stability of new methods is represented is Sec-
tion 5. After designing the controllers, simulation results
for different types of time-delay are demonstrated and the
validity of these schemes vividly is established in the Sec-
tion 6.

2. TELEOPERATION SYSTEMS

By and large, the bilateral teleoperation systems are
combined of a local site, where a hand-controller named
master is handled by a human operator, a distant site,
where a manipulator named slave tracks the master motion
and interacts with the environment in order to perform a
given work, and a communication channel which connects
both sites [9]. All in all, when a human operator controls
one or some manipulators in the remote site, the system is
so-called teleoperation system.

A general framework of the teleoperation systems is
displayed in Fig. 1. The framework is composed of five
major sections: operator, master, control and communi-
cation, slave, and environment. Actually, human opera-
tor applies a force Fm to move master manipulator with

Fig. 1. Framework of closed-loop teleoperation systems.

Xm = [ xm ẋm ] transferred through the communication
channel to the slave manipulator. Then, the slave manip-
ulator is derived by a local control Ts on the slave side.
Since the manipulator of slave has an undeniable interac-
tion with the environment, the remote force Fs is sent back
from the slave side via force Fe which pushes the slave
with Xs = [ xs ẋs ] which is transmitted back to the mas-
ter side by way of the communication channel as control
signal Tm. Therefore, by receiving this reflected force Fr,
human operator finds a virtual sense of the remote envi-
ronment.

2.1. Dynamics of teleoperation systems
The general form of dynamic equation for a couple of

n-DOF nonlinear robot manipulator in the lack of friction
or other disturbances is organized as [10]:

M(p)p̈+C(p, ṗ)+G(p) = T, (1)

where M(p), C(p, ṗ) ∈ Rn×n are positive-definite iner-
tia matrices and the Coriolis/Centripetal vector, respec-
tively. Moreover, Ṁ(p)−C(p, ṗ) is skew-symmetric,
G(p) shows the gravity vector and T stands as the torque
vector. In this study, the degree of freedom (DOF) for
the master and the slave manipulator is considered as one.
The dynamic model of a 1-DOF manipulator is:

Jθ̈(t)+bθ̇(t)+
1
2

mgl sinθ(t) = u(t), (2)

where J is the inertia, m and l are the mass and length
of manipulator, respectively, g is the gravity acceleration,
θ(t) is the angle of the rotate, u(t) is the control signal
and b is the viscous friction coefficient; however, proof is
given in [11]. The simplified linear dynamic model is:

Jθ̈(t)+bθ̇(t) = u(t). (3)

If position and velocity states are considered as (x1(t) =
θ(t)), (x2(t) = θ̇(t)), respectively, the master-slave ma-
nipulators can be symbolized in state-space description as:[

ẋm1(t)
ẋm2(t)

]
=

[
0 1
0 − bm

Jm

][
xm1(t)
xm2(t)

]
+

[
0
1

Jm

]
um(t). (4)

ym(t) =
[

1 0
][xm1(t)

xm2(t)

]
, (5)[

ẋs1(t)
ẋs2(t)

]
=

[
0 1
0 − bs

Js

][
xs1(t)
xs2(t)

]
+

[
0
1
Js

]
us(t), (6)
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ys(t) =
[

1 0
][xs1(t)

xs2(t)

]
. (7)

2.2. Environment
There is no doubt that environment force, produced due

to the interaction of slave and remote environment, plays a
key role in teleoperation systems. As a result, it is of great
importance to introduce a mathematical model in order
to calculate this reaction force. In this study, the Kelvin
model simplification of the environment is employed [12].
This reaction force which performs opposite the slave is:

fs(t) = keθs(t)+beθ̇s(t), (8)

where ke displays stiffness and be shows viscous friction.
To regard the slave-master force feedback, the Rm vector
is described as:

Rm = [ rm1 rm2 ] = [ k f ke k f be ] (9)

where k f is the force feedback gain.

3. LAMBERT W FUNCTION APPROACH

It is possible to use delay differential equations (DDE)
in order to describe time-delay systems. In fact, an infi-
nite spectrum of frequencies is created due to delay term
and this phenomenon makes analysis of systems by clas-
sical methods difficult especially as regard verifying sta-
bility and designing parameters of controllers. For over-
coming this difficulty, approximations such as Pade can be
used indirectly. Controllers are also designed by employ-
ing the Lyapunov method (e.g., algebraic Riccati equa-
tions (AREs) or linear matrix inequalities (LMIs)) [13,14].
The mentioned approaches need complicated equations
and can lead to redundant terms. The estimation of this
infinite frequency spectrum demands corresponding de-
termination roots of the infinite dimensional characteris-
tic equations, which is not possible for time-delay sys-
tems. Generally, we can gain understanding of it by ap-
plying standard methods developed for systems of linear
ordinary differential equations (ODE). Thereby, in place
of closed-form solutions, DDE is often satisfied by using
asymptotic solutions, numerical techniques, and graphical
methods principally including analysis of stability as well
as controller design.

In this section, the researcher extends this technique to
achieve a complete response for DDE system established
on Lambert W function [15]. As the response presents
an analytical structure in terms of DDE parameter, it is
possible to define how parameters are included in the re-
sponse and how each term affects each eigenvalue as well
as the solution. Furthermore, each eigenvalue relates to a
specific “branch” of the Lambert W function. In this tech-
nique, the format of response is similar to the general solu-
tion format of ODEs, and notion of state transition matrix

in ODEs can be developed with regard to DDEs by em-
ploying the Lambert W function. This reveals that some
methods for control and analysis of ODE system, in ac-
cordance with notion of state transition matrix, can extend
to DDE System [16]. Actually, the Lambert W function is
introduced as function which fulfills:

Wk(Hk)eWk(Hk) = Hk. (10)

The Lambert W function [15] is a function with a complex
argument and contains an infinite number of Wk branches,
where k = (−∞, ..., −1, 0, 1, ..., ∞) [17]. The Lambert W
function method is exploited to find the roots of matrix
transcendental characteristic equation like linear matrix
differential equation containing delayed argument. This
characteristic equation has infinite root matrices. Asymp-
totic stability of matrix differential equation solutions with
delayed argument has the most influence in root matrices
corresponding to the values of the Lambert W function in
its principal and neighboring branch. In time-delay sys-
tems (TDS) with real coefficients, the maximum real part
of the characteristic equation roots correlates to one real
root or one pair of complex conjugate roots. In fact, such
a root or a pair of conjugate roots will be so-called the
rightmost root. An equilibrium point of TDS is asymptot-
ically stable if and only if the maximum real part of the
characteristic equation roots (eigenvalues) is negative and
this means that all of the eigenvalues have negative real
parts. It is clear that the stability of the system is guar-
anteed if all of eigenvalues have negative real parts. In
[18], a linear time-invariant (LTI) of DDEs, with a single
constant time-delay, T , is given as:

ẋ(t) = Ax(t)+Adx(t −T )+Bu(t), t > 0,

x(t) = g(t), t ∈ [−T,0),

x(t) = x0, t = 0, (11)

where A and Ad are n×n matrices, x(t) is a n×1 state vec-
tor, B is a n× r matrix, u(t) is a r×1 vector indicating the
external stimulation, g(t) and x(t) are a defined reshape
function and an initial value respectively being specified
in the Banach space of continuous mappings. In (11), the
reshape function g(t) and x(t) are equal on the interval
t ∈ [−T,0). The solution for (11), in term of the matrix
Lambert W function is [19]:

x(t) =
∞

∑
k=−∞

eSktCI
k +

∫ t

0

∞

∑
k=−∞

eSk(t−ξ )CN
k Bu(ξ )dξ ,

(12)

where SK is the solution matrix described as:

Sk =
1
T

Wk(AdT Qk)+A. (13)

Both types of the coefficient C in (12) are consisted of A,
Ad , T and computing approaches of them are proposed in
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[14]. In what follows, the solution for the unknown matrix
Qk is represented [18]:

Wk(AdT Qk)eWk(Ad T Qk)+AT = AdT. (14)

According to the aforementioned equation, the principal
(k = 0) and other (k ̸= 0) branches of the Lambert W func-
tion can be computed analytically [15]. On the basis of the
supposition that any pair of characteristic equation roots
of (11) has a minimum separation distance, it is feasible
to indicate that the unbounded series in (12), always con-
verge when all the roots have negative real parts or during
any limited distance [20]. The solution form in (12), as-
serts that the eigenvalues of the matrix Sk, and the matrix
eSk define the stability condition for the system of (11).
A time-delay system specified by (11) is asymptotically
stable if and only if [18]:

All the Eigenvalues of Sk, k = (−∞, ..., −1, 0, 1, ..., ∞),
have negative real parts or, equivalently, in the sense of
Lyapunov:

All the Eigenvalues of eSk , k = (−∞, ..., −1, 0, 1, ..., ∞),
are located in the unit circle.

However, calculating matrices Sk or eSk for a great deal
of branches, k = (−∞, ..., −1, 0, 1, ..., ∞) sounds intricate.
On the other hand, all eigenvalue branches of the Lam-
bert W function technique k = (−∞, ..., −1, 0, 1, ..., ∞)
are distinguishable. Actually, the obtained eigenvalues of
the principal branch (k = 0) are in nearest distance to the
imaginary axis; hence, define the system stability [21].

3.1. Assumption

Max [Re{eigenvalues of S0}
≥ Re{other eigenvalues of Sk}.

It has been proven that the roots obtained with the prin-
cipal branch (k = 0) of the Lambert W function can define
the stability of the DDE systems [22]. Yi et al. formulated
the above Assumption as the foundation not only to reveal
DDE system stability, but also to locate a subset of the
eigenvalues in favorite places. On the one hand, delayed
system, such as teleoperation systems shown by (11), suf-
fer from countless solutions for matrices Sk, k = (−∞, ...,
−1, 0, 1, ..., ∞), and on the other hand, the number of
control parameters used in feedback controller is limited;
therefore, it is not practical to design all of them at once
[23].

4. LAMBERT CONTROLLER DESIGN METHOD

In order to locate the rightmost eigenvalues to the de-
sired places in the left hand of imaginary axis, a Lambert
W function controller is designed in this part. In control-
lable ODE systems, the noticeable point is that assigning
all the closed-loop eigenvalues by designing the gains is

Fig. 2. Position-position structure of 1-DOF linear bilat-
eral teleoperation systems.

applicable. Moreover, as mentioned before, DDEs suf-
fer from numberless eigenvalues, and it is not practical
to assign all of them in the desired locations by using
classical methods. Hence, for controllable DDE systems,
the researcher employs the Lambert W function method
to determine the first matrix, S0, correlating to the major
branch, k = 0, as it is significant for the solution form of
(11), by designing a feedback controller and selecting the
feedback gains. Fig. 2 shows a position-position structure
of 1-DOF linear bilateral teleoperation systems with time-
delay in the communication channel exploiting a Lambert
W function controller. In what follows, all the possible
terms of the operator-master-slave-environment model are
considered:

Fh, Fe: respective the operator and environment force;
um, us: respective the master and slave control input;
Xm, Xs: respective position and velocity vectors for the

master and slave;
Km, Kds: Lambert Controller vectors in master;
Ks, Kdm: Lambert Controller vectors in slave;
Rm: slave-master interaction which causes to the force

reflection to the master;
Rs: master-slave interaction;
The block of “Delay & Controller” is depictured in

Fig. 3. This figure clearly shows that an adaptive predictor
controller is utilized to predict the time-varying delay and
choose adaptively the appropriate amounts for “Ks, Kdm”
taking advantage of a lookup table. Also it is of great
importance to say that this takes exactly happen for “Km,
Kds” in return channel and this demonstrates that delay is
predicted from master to slave and slave to master.

The delay block demonstrates time-delay, T , in com-
munication channel. It is of great importance to consider
that the master and slave are developed by nth-order lin-
ear differential equations, and form of the matrices in the
system can be represented in the following:

Km =
[

km1 km2 ... kmn
]
, Ks =

[
ks1 ks2 ... ksn

]
,
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Fig. 3. Delay & controller block in detail.

Kdm =
[

kdm1 kdm2 ... kdmn
]
,

Kds =
[

kds1 kds2 ... kdsn
]
,

Rm =
[

rm1 rm2 ... rmn
]
, Rs =

[
rs1 rs2 ... rsn

]
,

where ‘m’ and ‘s’ are indications of master system and
slave system respectively which can take the following
form:

Ẋm(t) = AmXm(t)+Bmum(t), (15)

Ym(t) =CmXm(t), (16)

Ẋs(t) = AsXs(t)+Bsus(t), (17)

Ys(t) =CsXs(t). (18)

In this structure of assigning unstable pole to the desirable
locations, three control modes take place:

Mode 1: u(t) = KX(t), (19)

Mode 2: u(t) = KdX(t −T ), (20)

Mode 3: u(t) = KX(t)+KdX(t −T ). (21)

It is worth noting that we can choose either similar or dif-
ferent types of controller for master system and slave sys-
tem. According to the selected control mode in the master
and slave systems, the control signal, u(t), is constructed
and utilized in dynamic of time-delay system shown in
(11). By combining (11) and (21), we can determine the
closed-loop bilateral teleoperation systems:

Ẋ(t) = (A+BK)X(t)+(Ad +BKd)X(t −T ), (22)

where,

Ẋ(t) =
[

Ẋm(t) Ẋs(t)
]T

, (23)

X(t) =
[

Xm(t) Xs(t)
]T

, (24)

X(t −T ) =
[

Xm(t −T ) Xs(t −T )
]T

. (25)

The major contribution of eigenvalue assignment in Lam-
bert controller with the new coefficients, AA=A+BK and
AAd = Ad +BKd , in (22) is that we can arrive at a solution
for the matrix Sk, by using (12), and by locating the right-
most eigenvalues to the favorite places.

λi(S0) = λi,desired for i = 1,2, ...,n. (26)

Control signal of the master, um(t), and the slave, us(t), as
shown in Fig. 2, can be given as follows:

um(t) = Fh−RmXs(t−T )+KmXm(t)+KdsXs(t−T ),
(27)

us(t) = RsXm(t −T )+KsXs(t)+KdmXm(t −T ).
(28)

By substituting (27) & (28) in (15) & (17), it can be de-
duced:

Ẋm(t) = (Am+BmKm)Xm(t)+Bm(Kds−Rm)Xs(t−T )

+BmFh, (29)

Ẋs(t) = (As +BsKs)Xs(t)+Bs(Kdm +Rs)Xm(t −T ).
(30)

Bilateral teleoperation systems with respect to control sig-
nals sent from master to slave through the communication
channel can be expressed as follows:[

Ẋm(t)
Ẋs(t)

]
=

[
Am +BmKm 0

0 As +BsKs

][
Xm(t)
Xs(t)

]
+

[
0 Bm(Kds −Rm)

Bs(Kdm +Rs) 0

][
Xm(t −T )
Xs(t −T )

]
+

[
Bm 0
0 Bs

][
Fh

0

]
, (31)

where Am and As are 2× 2 matrices, Bm and Bs are 2× 1
vectors, Km and Kds are 1×2 Lambert controller gain vec-
tors in master system, Ks and Kdm are 1×2 Lambert con-
troller gain vectors used in slave system, Xm and Xs are
2×1 state vectors in master and slave, respectively. Suc-
cess in feedback controller design depends on the control
gain matrices, K and Kd , for master and slave systems in
order to guarantee the stability in closed-loop system of
(22).

The control parameters in the teleoperation systems
(see Fig. 2) are: Km = [ km1 km2 ], Ks = [ ks1 ks2 ],
Kdm = [ kdm1 kdm2 ], and Kds = [ kds1 kds2 ]. In other
words, there are eight control parameters for assigning
rightmost eigenvalues to desired locations in the left hand
of imaginary axis. Four steps should be taken for the
gains, K and Kd :

Step 1: Choose the desired eigenvalues, λi,desired for
(i = 1, 2, ..., n) in (26), and set an equation so that the
selected eigenvalues are viewed as eigenvalues of the ma-
trix S0. Note that S0 is the solution matrix resulting from
the principal branch (k = 0) and λi(S0) which are the cor-
responding eigenvalues.

Step 2: Apply two new coefficient matrices, AA = A+
BK and AAd = Ad +BKd , in (22) to (14), and come up
with a numerical solution to calculate the matrix Q0 for
the principal branch (k = 0). It should be noticed that K
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and Kd are unknown matrices with unknown terms, and
the matrix Q0 is a function consisting of K and Kd .

Step 3: Calculate S0 and its eigenvalues as the function
of the unknown matrix K and Kd by substituting the matrix
Q0 in (14) with (13).

Step 4: Using numerical technique such as “fsolve”
function in Matlab software to solve S0 for the unknown
K and Kd .

5. SCATTERING THEORY AND STABILITY

This section contains a theorem that describes an end-
to-end model for the teleoperation systems based on the
scattering matrix analysis. In accordance with scattering
matrix, teleoperation systems is described as b = S(s)a,
where a = [ a1 a2 ]T and b = [ b1 b2 ]T are input and
output waves of the teleoperation systems, respectively.

5.1. Theorem
Necessary and sufficient conditions for robust stability

of teleoperation systems are [24]:
(a) S(s) includes no poles in the closed right half plane.
(b) If ∆ is the structured perturbation of s:

Supω [µ∆(S( jω))]≤ 1,

where µ∆(s) is the structured singular value of matrix S. A
practical advantage of µ∆(s) is µ∆(s) ≤ ᾱ(s), where ᾱ(s)
is the maximum singular value of ∆ and S(s) is the scatter-
ing matrix. As the structure in Fig. 2 shows, input-output
relation can be expressed as follows:

Ẋm = AmXm +Bmum, (32)

um = KmXm +KdsXs(t −T )+Fh −Fe(t −T ). (33)

If aforementioned control signal is substituted in the mas-
ter state space description:

Xm = (sI −Am −BmKm)
−1Bm[Fh + e−T sKdsXs − e−T sFe].

(34)

In slave subsystem:

Ẋs = AsXs +Bsus, (35)

us = RsXm(t −T )+KsXs +KdmXm(t −T ). (36)

By replacing the mentioned control signal in the slave
state space description, it is obtained:

Xs = ψ(s)Xm, (37)

ψ(s) = (sI −As −BsKs)
−1Bs(Kdm +Rs)e−T s. (38)

By inserting (37) into (34) and providing a concise sum-
mary, we will have:

Xm = a(s)Fh +b(s)Fe, (39)

Fig. 4. S(s) SVD for different time-delays.

where

a(s) = β(s)
−1Bm, (40)

b(s) =−β(s)
−1e−T sBm, (41)

β(s) = sI −Am −BmKm

−e−2T sBmKds(sI−As−BsKs)
−1Bs(Kdm+Rs).

(42)

By inserting (39) into (37), we obtain:

Xs = c(s)Fh +d(s)Fe, (43)

where

c(s) = α(s)a(s), (44)

d(s) = α(s)b(s). (45)

As the result, for establishing a structure for teleoperation
systems by exploiting Lambert W function controller, it is
required to estimate the scattering matrix as follows:

S(s) =
[

a(s) b(s)
c(s) d(s)

]
. (46)

Then, SVD (singular value decomposition) of S( jω) for
different time-delays is computed and plotted. Fig. 4 is
an indication of scattering matrix norm for different time-
delays. It is clear that Supω [µ∆(S( jω))] ≤ 1 for different
time-delays is acceptable; therefore teleoperation systems
controlled by Lambert W function has stable structure and
robust performance on different values of time-delay. This
figure shows that maximum norm occurs in interval [1,10]
frequency while minimum norm belongs to time-delay 0.1
sec and maximum is possessed by time-delay 0.5 sec.

6. SIMULATION RESULTS

The most common and generic dynamic test for control
scheme is step response, through which the tracking con-
trol performance with human operator is evaluated. For a
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better response, a local feedback is taken into considera-
tion in order to place the closed-loop poles in master and
slave systems at locations [−2 −4 ], and then we calcu-
late Lambert adaptive controller gain matrix for locating
unstable poles in system of (31), to the desired locations.
For calculating these gains, the “fsolve” function in Mat-
lab is exploited. Despite undesirable effect of time-delay,
this adaptive composed controller causes the controlled
system to show an appropriate performance and stable be-
havior in Internet-based bilateral teleoperation systems.
Seen from other way round, Azorin et al. introduced a
feedback controller for the bilateral teleoperation systems
[25] and in order to validate the simulation results, they are
compared with Azorin’s controller scheme results. Simu-
lation parameters are as follows:

Master:


Jm = 1.5 kgm2,

bm = 11
Nm

rad/s
,

Slave:


Js = 2 kgm2,

bs = 15
Nm

rad/s
,

Environment:


ke = 100 Nm/rad,

be = 1
Nm

rad/s
,

Rs = [ rs1 rs2 ] = [ 1 1 ],′

Force reflection gain: k f = 0.1,

Desired poles: λdesired =−1.5±0.01i.

Fig. 5 falls into three parts, in which we can see sim-
ulation results of constant time-delay, 500 msec, part (a)
contains time-varying input with different amplitudes and
frequencies. When this input is applied to the system and
output response displays a strong performance and does
good tracking, controller design is acceptable. Part (b)
consists of position of master, slave of Lambert W func-
tion, and slave of Azorin’s controller [22] for time-varying
input relating to part (a). This figure clearly exposes that
the slave of Lambert W function controller predicts the
performance of the master better and tracks master quicker
rather than slave of previous controller (Azorin). This part
strongly demonstrates the superiority of the proposed con-
troller in comparison with the previous controller. Master
and slave control signal of proposed (Lambert) and previ-
ous (Azorin) controller are illustrated in part (c). Although
proposed controller reaches master faster, it needs lower
control signal in compliance with previous controller and
it is other advantage of this impressive controller. How-
ever, all of them have bounded and acceptable response
with respect to input signal.

There are four parts in Fig. 6, representing controller
parameters for 500 msec time-delay and time-varying in-
put. Internet is utilized in teleoperation systems as com-
munication channel; consequently, delay is undeniable
and should be considered. Part (a) illustrates Km having
two parameters stabling master subsystem and placing its
poles in the desired places. Part (b) explains Kds gains be-

Fig. 5. Simulation results for 500 msec time-delay.

Fig. 6. Adaptive controller gains for 500 msec time-delay.

ing designed to make telepresence at master joystick and
keep system behavior in an acceptable manner. This graph
also has 2 lines which the former is constant and the lat-
ter is variable and this shows that one variable parameter
can satisfy the system needs. Located in the master side,
Km and Kds keep master poles in the left side of imagi-
nary axis and this, in turn, stabilize the system; moreover,
the goal of utilizing the Kds is to improve systems per-
formance. Part (c) and (d) contain Ks and Kdm controller
gains in the slave side for 500 msec time-delay, respec-
tively. Frankly speaking, Ks places slave poles at the de-
sired place in the left of imaginary axis and Kdm transfers
delayed master data to slave. Each of them has 2 param-
eters which the first is constant and the second is vari-
able. These parameters guarantee the system stability and
improve system performance to obtain the appropriate re-
sults.

There are three parts in Fig. 7, indicating simulation re-
sults for time-varying delay. Internet is utilized in teleop-
eration systems as communication channel. As its time-
delay types are variable, we can test controller of time-
varying delay shown in part (a). Part (b) demonstrates
master and Lambert-Azorin slave positions being obtained
by applying Fig. 5(a) as time-varying input and part (a)
of this figure as time-varying delay. This figure firmly
validates the adequate performance of the Lambert-based
controller. As a matter of fact, although the proposed con-
troller is brightly robust over noise of time-varying delay,
output of previous controller strongly is affected by fluc-
tuations relating to time-varying delay and presents a poor
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Fig. 7. Simulation results for time-varying delay.

Fig. 8. Adaptive controller gains for time-varying delay.

and non-robust performance.
Part (c) contains master and Lambert-Azorin slave con-

trol signal for time-varying delay. This part, also, ap-
proves the excellence of the proposed controller with re-
spect to the control signal. In fact, not only slave of previ-
ous controller suffers from a fluctuated output which neg-
atively affects actuator, but also needs higher value of con-
trol signal which is harmful for actuator. Parts (b) and (c)
in this figure completely demonstrate the unquestionable
superiority of the proposed controller.

There are four parts in Fig. 8, representing controller
parameters for time-varying delay and time-varying input.
Internet is utilized in teleoperation systems as commu-
nication channel; consequently, delay is undeniable and
should be considered. Part (a) demonstrates Km gains for
time-varying delay. Part (b) explains Kds gains being de-
signed to make telepresence at master joystick and keep
system behavior in an acceptable manner. This graph also
has 2 lines which the former is constant and the latter is
variable and this show that one variable parameter can sat-
isfy the system needs. Located in the master side, Km and
Kds keep master poles in the left side of imaginary axis
and this, in turn, stabilize the system; moreover, the goal
of utilizing the Kds is to improve systems performance.
Part (c) and (d) contain Ks and Kdm controller gains in the
slave side for time-varying delay, respectively. In fact, Ks

places slave poles at the desired place in the left of imag-
inary axis and Kdm transfers delayed master data to slave.
Each of them has 2 parameters which the first is constant
and the second is variable.

7. CONCLUSION

In this study, the researcher deployed a new controller
for teleoperation systems based on Lambert W function
method. Time-delays in communication channel lead to
an infinite number of eigenvalues in teleoperation systems.
They are calculated by delay differential equations and
cause instability in these systems. Due to infinite num-
ber of eigenspectrums, the systems face difficult; however,
by using this method a critical subset of these eigenspec-
trums is assigned to the desired possible locations in the
complex plane. Moreover, in order to robust the system
against the time-varying delay of communication chan-
nel, an adaptive controller is employed. Then, the re-
searcher described a method for preserving stability in
teleoperation systems in accordance with scattering the-
ory. The findings demonstrated that the proposed con-
troller of Lambert W function can improve performance
of teleoperation systems and reduce unfavorable influence
of time-delays in teleoperation systems. The simulation
results demonstrated the effectiveness of this neoteric ap-
proach.
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