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Sampled-data Robust H∞ Control for T-S Fuzzy Time-delay Systems with
State Quantization
Xiaojing Han and Yuechao Ma*

Abstract: This paper investigates the sampled-data robust H∞ control for T-S fuzzy time-delay systems with state
quantization. Based on a modified Lyapunov-Krasovskii function(LKF), which is fully considered the characteris-
tics of sample-data and state quantization, a sample-data and state quantized controller is designed. By introducing
the free weighting matrices, some integral techniques and modified inequalities, the results in this paper are less
conservative than other existing results. At the end of the paper, two examples are given to show the effectiveness
and superiority of the proposed methods.
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1. INTRODUCTION

The Takagi-Sugeno (T-S) fuzzy model is an effective
modeling method for nonlinear systems [1]. It is described
by a set of fuzzy IF-THEN rules with fuzzy sets in the
antecedents and linear time-invariant dynamic systems in
the consequent, which works for many typical nonlinear
systems, and a lot of stability conditions are obtained [2–
6].

Network and information technology are gradually ap-
plied in many fields, more and more people are devoted to
the study of T-S fuzzy systems combined with sampled-
data [7–9]. The information data obtained at discrete time
intervals and it can be the digital data or simulated data.
The control signals of sampled-data systems will be held
constant between any two consecutive sampling instants
and only be changed at each sampling instant [10, 11].
The sampling period is an important issue as we solve the
stability problem of the system with a sampled-data con-
troller. It is clear that a longer sampling period will be
detrimental to the stability of the system. So, it is very
important to consider the control design problem with a
longer sampling period. In [12], the input delay approach
is first proposed, and it has the advantage that tk+1 − tk
does not need to be a fixed value. It combines with other
technologies and is widely used in many papers [13–16].

It should be noted that the previous research results only
assumed that all data transmissions can be performed with
infinite precision, while the data quantization is not take
into account in their papers. The first paper that men-
tions quantification is [17]. Before the transmission pro-
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Fig. 1. The process of signal transmission.

cess, the sampling signal usually needs to be quantized
to solve the problem of limited network transmission ca-
pacity due to the rapid development of the internet. The
concept of quantizer is first proposed to solve the channel
finite problem of the network control system [18]. Shan-
non proposed the concept of distortion rate [19], which
arouses the scholars’ interest in quantizer. Quantification
is mainly applied to the transformation from continuous
signal to digital signal, as shown in Fig. 1. According to
the structure, quantizer can be divided into linear quan-
tizer and logarithmic quantizer. According to different de-
sign techniques, quantizer can be divided into static quan-
tizer and dynamic quantizer [20]. [21] proved that the op-
timal quantizer in the discrete linear time invariant system
with single input and single output is logarithmic quan-
tizer, because of the small density. [22] uses the upward
bound method to confirm that the quantitative quantizer
is not only applicable to the system of single input single
output but also for multi-input and multi-output systems.
It is the first paper to study the stability of sampled data
systems with quantization. Inspired by [22], [23] stud-
ies the quantitative stability of discrete time invariant sys-
tems, the concept of state quantification is first proposed
and the sector bound approach for sampled-data systems
with a logarithmic quantizer is derived. Even if the stabil-
ity of the system controller is good, some random behav-
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iors may affect the stability of the system in the process
of quantification. So, the study of sampled-data systems
with the quantization has became an active research topic
[24–26]. Inspired by these works and [27–29], this paper
will develop the sampled-data robust H∞ control for T-S
fuzzy time-delay systems with state quantization.

Then, the problem of the sampled-data robust H∞ con-
trol for T-S fuzzy time-delay systems with state quantiza-
tion is considered in this paper. First, we construct a im-
proved LKF, which considered all available information
about the actual sampling and state quantization pattern,
some new stability conditions are obtained. Second, based
on these stability conditions, the sample-data and state
quantized controller is designed for T-S fuzzy time-delay
systems. Particularly, by introducing the free weighting
matrices, some integral techniques and modified inequali-
ties, the results obtained from this paper have a larger sam-
pling period and are less conservative than other existing
results. The improved inequality is inspired by XT AX ≥ 0.
In the end, a numerical example and a comparison exam-
ple are given to show the good effect of the results we
obtained.

Notation: In this paper, ∗ denotes the elements below
the main diagonal of a symmetric block matrix. Rn de-
notes the n dimensional Euclidean space. diag{· · ·} de-

notes the block-diagonal matrix, and diag

X , ...,X︸ ︷︷ ︸
4

 de-

notes diag(X ,X ,X ,X). For symmetric matrices A and B ,
the notation A > B means that the matrix A−B is positive
definite.

2. PREAMBLE FORMULATION

2.1. Fuzzy plant model
The i th rule of the system is expressed in the following

IF-THEN form, consider the following T-S fuzzy time-
delay systems:

Rule i : IF θ1(t) is ϖ i
1 and ... and θn(t) is ϖ i

n, THEN
ẋ(t) = Aix(t)+Adix(t − τ)+Biu(t)+Bwiω (t) .

y(t) =C1ix(t)+C2ix(t − τ)+D1iu(t)+D2iω (t) ,

x(t) = φ (t) , t ∈ [−max(τ,h) ,0] , i = 1,2, ...,r,
(1)

where θ1(t), ...,θn(t) are the premise variables, and ϖ i
j(i=

1,2, ...,r, j = 1,2, ...,r) is the fuzzy set, denote θ(t) =
[θ1(t), ...,θ1n(t)]

T and assume that θ(t) is already given
or a function of x(t) but doesn’t depend on r, scalar
r is the number of IF-THEN rules; x(t) ∈ Rn is the
state vector, u(t) ∈ Rm is the sampled-data input vector,
ω(t) ∈ ℓ2[0,∞) denotes exogenous input disturbance sig-
nal, y(t) ∈ Rp denotes system output, ϕ(t) is the initial
condition of this system state; τ is constant state delay;

Ai,Adi,Bi,Bwi,C1i,C2i,D1i,D2i are constant real matrices
with appropriate dimensions;

By using a center-average defuzzifier, product inference
and singleton fuzzifier, the global dynamics of the T-S
fuzzy system (1) can be inferred as:

ẋ(t) =
r

∑
i=1

ηi (θ (t)) [Aix(t)+Adix(t − τ)+Biu(t)

+Bwiω (t)]

y(t) =
r

∑
i=1

ηi (θ (t)) [C1ix(t)+C2ix(t − τ)+D1iu(t)

+D2iω (t)]

x(t) =φ (t) , t ∈ [−max(τ,h)] , i = 1,2, ...,r,
(2)

where ηi = ηi(θ(t)) denotes the normalized membership
function satisfying:

ηi (θ (t)) =
ωi (θ (t))

∑r
i=1 ωi (θ (t))

,ωi (θ (t))

=
r

∏
j=1

Mi j (θ j (t)), (3)

where Mi j (θ j (t)) is the membership value of θ j(t) in Mi j.
It can be seen that ∀i ∈ {1,2, ...,r} , ηi (θ (t)) has the fol-
lowing condition:

ηi (θ (t))≥ 0,
r

∑
i=1

ηi (θ (t)) = 1. (4)

2.2. Sampled-data and state quantized controller
The parallel distributed compensation (PDC) is used to

design the controller and make the T-S fuzzy system (2)
stabilization. The sampled-data input u(t) = u j(t) , tk ≤
t < tk+1 with sampling instants tk(k = 0,1,2, ...) satisfying

0 = t0 < t1 < ... < lim
k→+∞

tk =+∞, (5)

and

0 < tk+1 − tk = h,∀k ≥ 0, (6)

where h ≥ 0 is the upper bound of sampled time.
The sampled-data and state quantized controller and the

i th rule of the controller is expressed in the following IF-
THEN form:

Rule j : IF θ1(tk) is ϖ j
1 and ... and θn(tk) is ϖ j

n , THEN

u(t) = K jq(x(tk)) , tk ≤ t < tk+1, (7)

where u j (t) is the input vector of rule j, K j is the gain
matrix of the state feedback with appropriate dimen-
sion, x(tk) is the state vector of subsystem at the instant
tk, which is a piecewise constant function by using a
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zero-order-holder(ZOH); The logarithmic quantizer is de-
scribed as:

q(·) = [q1 (·) ,q2 (·) , ...,qn (·)]T (8)

with the d th subquantizer q(·), which is symmetric:

qd (xd (tk)) =−qd (−xd (tk)) , (9)

and the set of its quantized levels is described by:{
±ϕ (i)

d

∣∣∣ϕ (i)
d = (ρd)

iϕ (0)
d ,d = 0,±1,±2, ...

}
∪{0} ,

0 < ρi < 1, ϕ (0)
d > 0,

(10)

where ρd and ϕ (0)
d denote the quantizer density and initial

quantization respectively. The definition of qd (xd (tk)) is
expressed as:

qd (xd (tk)) =


ϕ (i)

d , if
ϕ (i)

d

1+ ld
< xd (tk)⩽

ϕ (i)
d

1− ld
,

0, if xd (tk) = 0,

−qd (−xd (tk)) , if xd (tk)< 0,

(11)

where ld = 1−ρd
1+ρd

(d = 1,2, ...,n) is the quantizer parame-
ters. Then, we have the following inequality:

(1− lm)xd (tk)⩽ ϕ (i)
d ⩽ (1+ ld)xd (tk) ,

for xd (tk)⩾ 0,

(1+ lm)xd (tk)⩽ ϕ (i)
d ⩽ (1− ld)xd (tk) ,

for xd (tk)< 0.

(12)

Then, we can get the quantizer as follows:

q(x(tk)) = x(tk)+ f (x(tk)) , (13)

where

f (x(tk)) = [ f1 (x1 (tk)) , f2 (x2 (tk)) , ..., fn (xn (tk))]
T ,
(14)

with

−ld [xd (tk)]
2 ≤ xd (tk) fd (xd (tk))≤ ld [xd (tk)]

2. (15)

The defuzzified output of controller (7) is expressed as:

u(tk) =
r

∑
j=1

η j (θ (tk))K j [x(tk)+ f (x(tk))] . (16)

In this paper, the sampling distance does not need to be
a fixed value and between any two consecutive sampling
instants belongs to an interval and tk+1 − tk = hk ≤ h for
all k ≥ 0, where h > 0.

Substituting (16) into (2), the T-S fuzzy system with
sampled-data and state quantization is formulated as:

ẋ(t) =
r

∑
i=1

r

∑
j=1

ηi (θ (t))η j (θ (tk)) [Aix(t)

+Adix(t − τ)+BiK j (x(tk)+ f (x(tk)))

+Bwiω (t)] ,

y(t) =
r

∑
i=1

r

∑
j=1

ηi (θ (t))η j (θ (tk)) [C1ix(t)

+C2ix(t − τ)+D1iK j (x(tk)+ f (x(tk)))

+D2iω (t)]

x(t) =φ (t) , t ∈ [−max(τ,h)] , i = 1,2, ...,r,
(17)

Remark 1: The T-S fuzzy system with sampled-data
has been investigated in [10, 11, 13, 14, 16], but the quan-
tification is ignored in the study. In [17–22], they only
investigated the system with quantization, and few people
consider the combination of sampled-data and quantiza-
tion. Although the problem of sampled-data control with
quantization has been considered in [27], which cannot di-
rectly be employed to solving the H∞ control problems of
the system with time-delay, so, there are still some room to
be improved. So, the problem of the sampled-data robust
H∞ control for T-S fuzzy time-delay systems with state
quantization is considered in this paper.

The purpose of this paper is to design a robust H∞ con-
troller (16) for the T-S fuzzy system (1). In the following,
we give some definition and lemmas which are useful in
deriving the stability criteria.

Definition 1 [28]: For all admissible uncertainties, the
system (17) is said to be robustly asymptotically stable
with an norm H∞ bound γ , if the following hold:

1) With ω (t)≡ 0, the trivial solution (equilibrium point)
is asymptotically stable if lim

t→∞
|x(t)|= 0 holds.

2) Under the assumption of zero initial condition x(t) =
0, ∀t ∈ [−max(τd ,h) ,0], the controlled output y(t)
satisfies ∥y(t)∥2 ≤ γ∥ω (t)∥2 for any nonzero ω (t) ∈
ℓ2 [0,∞), where γ is a attenuation index.

Lemma 1 (Jensen’s inequality [30]): For any constant
matrix S = ST > 0 and vector η > 0, function ω : [0,η ]→
ℜn such that the integrations concerned are well defined,
then

−η
∫ η

0
ω̇T (s)Sω̇ (s)ds

≤−
[∫ η

0
ω̇ (s)ds

]T

S
[∫ η

0
ω̇ (s)ds

]
.

Lemma 2 (Wirtinger’s inequality [31]): Consider a
given matrix R > 0. Then, for all continuous function ω
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in [a,b]→ Rn, the following inequality holds:∫ b

a
ẋT (s)Rẋ(s)ds

⩽ 1
b−a

[x(b)− x(a)]T R [x(b)− x(a)]

+
3

b−a
ΠT RΠ,

where Π = x(b)+ x(a)− 2
b−a

∫ b
a x(s)ds.

Lemma 3 (Linear convex combination [28]): For any
matrices Wi(i = 1,2,3) with appropriate dimensions, and
0 ≤ t − tk < h, the condition of

W1 +(t − tk)W2 +(h− (t − tk))W2 < 0

holds if and only if{
W1 +hW2 < 0,

W1 +hW3 < 0.

3. MAIN RESULTS

This section aims to develop some stability criteria for
the system described by (17), and the asymptotic sta-
bility and stabilization conditions of the T-S fuzzy with
sampled-data and state quantization are derived in terms
of linear matrix inequalities (LMIs).

It is assumed that the feedback gain matrices K j have
been well designed for ensuring the asymptotically stable
of the system (17) with an H∞ norm bound γ . The cor-
responding results are summarized in the following theo-
rem.

For the sake of simplicity of matrix and vector repre-
sentation, the notations are defined as

ξ T (t) =
[
xT (t) ,xT (tk) ,xT (t − τ) ,xT (t −h) ,

f T (x(tk)) , ẋT (t) ,
1
τ

∫ t

t−τ
xT (s)ds,

1
t − tk

∫ t

tk
xT (s)ds,

1
h

∫ t

t−h
xT (s)ds,ωT (t)

]
,

Φ1 = [I,−I,0,0,0,0,0,0,0,0] ,
Φ2 = [I,−I,0,0,0,0,0,−2I,0,0] .

3.1. Stability analysis with an H∞ norm bound γ
This subsection provide some stability conditions to

guarantee that the system (17) is robustly asymptotically
stable with an H∞ norm bound γ .

Theorem 1: For some given positive constants τ,λ
and h, diagonal matrix L, and gain matrices K j of the sub-
system controllers (7), the system (17) is robustly asymp-
totically stable with an H∞ norm bound γ , if there exist

symmetric positive matrices P =

 P1 P2 P3

∗ P4 P5

∗ ∗ P6

 ,M = M1 M2 M3

∗ M4 M5

∗ ∗ M6

 ,R1,R2,N1,N2,Q1,Q2, positive diago-

nal matrix G, and any matrices Y1i j = [Y11i j,Y12i j, ...,Y110i j],
Y2i j = [Y21i j,Y22i j, ...,Y210i j] with appropriate dimen-
sions, such that the following inequalities hold for
i, j = 1,2, ...,r:


Ω1 +hΩ2 Γ1 hY T

1i j 3hY T
2i j

∗ −I 0 0
∗ ∗ −hM−1 0
∗ ∗ ∗ −3hM−1

< 0, (18)

[
Ω1 +hΩ3 Γ1

∗ −I

]
< 0, (19)

where

Ω1 =


Ω1

11 Ω1
12 Ω1

13 ... Ω1
110

∗ Ω1
22 Ω1

23 ... Ω1
210

∗ ∗ Ω1
33 ... Ω1

310
...

...
...

. . .
...

∗ ∗ ∗ ... Ω1
1010

 ,

Ω2 =


Ω2

11 Ω2
12 Ω2

13 ... Ω2
110

∗ Ω2
22 Ω2

23 ... Ω2
210

∗ ∗ Ω2
33 ... Ω2

310
...

...
...

. . .
...

∗ ∗ ∗ ... Ω2
1010

 ,

Ω3 =


Ω3

11 Ω3
12 Ω3

13 ... Ω3
110

∗ Ω3
22 Ω3

23 ... Ω3
210

∗ ∗ Ω3
33 ... Ω3

310
...

...
...

. . .
...

∗ ∗ ∗ ... Ω3
1010

 ,

Ω1
11 = P2 +PT

2 +P3 +PT
3 +R1 +R2 −4Q1 −4Q2 +Z1Ai +

Ai
T Z1

T − Y T
11i j − Y11i j − 3Y T

21i j − 3Y21i j, Ω1
12 = −MT

2 +

Z1BiK j +Y T
11i j −Y12i j −3Y T

21i j −3Y22i j, Ω1
13 =−P2−2Q1+

Z1Adi −Y13i j − 3Y23i j, Ω1
14 = −2Q1 −Y14i j − 3Y24i j,Ω1

15 =
−MT

3 + Z1BiK j −Y15i j − 3Y25i j, Ω1
16 = P1 − Z1 +AT

i ZT
2 −

Y16i j − 3Y26i j,Ω1
17 = τP4 + τPT

5 + 6Q1 − Y17i j − 3Y27i j,
Ω1

18 = 6Y T
21i j −Y18i j − 3Y28i j, Ω1

19 = 6Q2 −Y19i j − 3Y29i j,
Ω1

110 = Z1Bωi − Y110i j − 3Y210i j, Ω1
22 = M2 + MT

2 +
2LT GL+Y T

12i j +Y12i j −3Y T
22i j −3Y22i j, Ω1

23 =Y13i j −3Y23i j,
Ω1

24 = Y14i j − 3Y24i j, Ω1
25 = MT

3 − 2LG + Y15i j − 3Y25i j,
Ω1

26 = KT
j BT

i ZT
2 + Y16i j − 3Y26i j, Ω1

27 = Y17i j − 3Y27i j,
Ω1

28 = 6Y T
22i j + Y18i j − 3Y28i j, Ω1

29 = Y19i j − 3Y29i j,
Ω1

210 = Y110i j − 3Y210i j, Ω1
33 = −R1 − 4Q1, Ω1

36 = AT
diZ

T
2 ,

Ω1
37 = −τP4 + 6Q1, Ω1

38 = 6Y T
23i j, Ω1

44 = −R2 − 4Q2,



50 Xiaojing Han and Yuechao Ma

Ω1
48 = 6Y T

24i j, Ω1
55 = −2G, Ω1

56 = KT
j BT

i ZT
2 , Ω1

58 = 6Y T
25i j,

Ω1
66 =−ZT

2 −Z2+τ2Q1+h2Q2, Ω1
67 = τPT

2 , Ω1
68 = 6Y T

26i j,
Ω1

610 = Z2Bωi, Ω1
77 = −12Q1, Ω1

78 = 6Y T
27i j, Ω1

88 =

6Y T
28i j+6Y28i j, Ω1

89 = 6Y29i j, Ω1
810 = 6Y210i j, Ω1

99 =−12Q2,
Ω1

1010 = −γ2I, Ω2
18 = P5 + P6, Ω2

22 = −M4 −N1, Ω2
25 =

−M5, Ω2
38 = −P5, Ω2

55 = −M6 − N2, Ω2
68 = P3, Ω3

22 =
M4+N1, Ω3

25 =M5, Ω3
26 =MT

2 , Ω3
55 =M6+N2, Ω3

56 =MT
3 ,

Ω3
66 = M1, ΓT

1 =
(
CT

1i,K
T
j DT

1i,C
T
2i,0,K

T
j DT

1i,0,0,0,0,D
T
2i

)
,

Γ2 =
(
Ai,BiK j,AdiX ,0,BiK j,−X ,0,0,0,BωiX

)
.

Proof: Construct a LKF candidate as

V (t) =
5

∑
i=1

Vi (t), t ∈ [tk, tk+1) , (20)

where

V1 (t) =

 x(t)∫ t
t−τ x(s)ds∫ t
tk x(s)ds

T

P

 x(t)∫ t
t−τ x(s)ds∫ t
tk x(s)ds

 ,

V2 (t) =
∫ t

t−τ
xT (s)R1x(s)ds+

∫ t

t−h
xT (s)R2x(s)ds,

V3 (t) = (h− (t − tk))

×
∫ t

tk

 ẋ(s)
x(tk)

f (x(tk))

T

M

 ẋ(s)
x(tk)

f (x(tk))

ds,

V4 (t) = (tk+1 − t)(t − tk)
[
xT (tk)N1x(tk)

+ f T (x(tk))N2 f (x(tk))
]
,

V5 (t) = τ
∫ t

t−τ

∫ t

θ
ẋT (s)Q1ẋ(s)dsdθ

+h
∫ t

t−h

∫ t

θ
ẋT (s)Q2ẋ(s)dsdθ .

Taking the time derivative of V (t) for the system (17), we
have

V̇1 (t) =2

 x(t)∫ t
t−τ x(s)ds∫ t
tk x(s)ds

T

P

 ẋ(t)
x(t)− x(t − τ)

x(t)


=2xT (t)P1ẋ(t)+2xT (t)P2 [x(t)− x(t − τ)]

+2xT (t)P3x(t) +2
∫ t

t−τ
xT (s)PT

2 ẋ(t)ds

+2
∫ t

t−τ
xT (s)P4 [x(t)− x(t − τ)]ds

+2
∫ t

t−τ
xT (s)P5x(t)ds+2

∫ t

tk
xT (s)PT

3 ẋ(t)ds

+2
∫ t

tk
xT (s)PT

4 [x(t)− x(t − τ)]ds

+2
∫ t

tk
xT (s)P6x(t)ds, (21)

V̇2 (t) =xT (t)R1x(t)− xT (t − τ)R1x(t − τ)
+ xT (t)R2x(t)− xT (t −h)R2x(t −h) , (22)

V̇3 (t) =−
∫ t

tk

 ẋ(s)
x(tk)

f (x(tk))

T

M

 ẋ(s)
x(tk)

f (x(tk))

ds

+(h− (t − tk))

 ẋ(t)
x(tk)

f (x(tk))

T

M

 ẋ(t)
x(tk)

f (x(tk))


=−

∫ t

tk
ẋT (s)M1ẋ(s)ds−2[x(t)− x(t − τ)]T

×M2x(tk)−2[x(t)− x(t − τ)]T M3 f (x(tk))

+(t − tk)
[
xT(tk)M4x(tk)+2xT (tk)M5 f (x(tk))

+ f T(x(tk))M6 f (x(tk))
]
+(h−(t−tk))

[
ẋT(t)

×M1ẋ(t)+ẋT (tk)M2x(tk)+ẋT(tk)M3 f (x(tk))

+ xT (tk)M4x(tk)+ xT (tk)M5 f (x(tk))

+ f T (x(tk))M6 f (x(tk))
]
, (23)

V̇4 (t) =(tk+1 − t) [xT (tk)N1x(tk)

+ f T (x(tk))N2 f (x(tk))]

− (t − tk) [xT (tk)N1x(tk)

+ f T (x(tk))N2 f (x(tk))]

=(hk − (t − tk)) [xT (tk)N1x(tk)

+ f T (x(tk))N2 f (x(tk))]

− (t − tk) [xT (tk)N1x(tk)

+ f T (x(tk))N2 f (x(tk))], (24)

V̇5 (t) =τ2ẋT (t)Q1ẋ(t)− τ
∫ t

t−τ
ẋT (s)Q1ẋ(s)ds

+h2ẋT (t)Q1ẋ(t)−h
∫ t

t−h
ẋT (s)Q2ẋ(s)ds.

(25)

Using Lemma 1 to deal with the integral term in (23),

−
∫ t

tk
ẋT (s)M1x(t)ds ⩽

− 1
t − tk

ξ T (t)
[
ΦT

1 M1Φ1 +3ΦT
2 M1Φ2

]
ξ (t) .

(26)

With the matrices Y1i j and Y2i j, we can see that

1
(t − tk)

[M1Φ1 − (t − tk)Y1i j]
T M−1

1

× [M1Φ1 − (t − tk)Y1i j] ,

1
(t − tk)

[M1Φ2 − (t − tk)Y2i j]
T M−1

1

× [M1Φ2 − (t − tk)Y2i j]

are nonnegative. So, the following inequalities holds:

− 1
(t − tk)

ΦT
1 M1Φ1

⩽−Y T
1i jΦ1 −ΦT

1 Y1i j +(t − tk)Y T
1i jM

−1
1 Y1i j, (27)

− 1
(t − tk)

ΦT
2 M1Φ2



Sampled-data Robust H∞ Control for T-S Fuzzy Time-delay Systems with State Quantization 51

⩽−Y T
2i jΦ2 −ΦT

2 Y2i j +(t − tk)Y T
2i jM

−1
1 Y2i j. (28)

Using Lemma 2 to deal with the integral terms in (25),

− τ
∫ t

t−τ
ẋT (s)Q1ẋ(s)ds

⩽−[x(t)− x(t − τ)]T R [x(t)− x(t − τ)] , (29)

−h
∫ t

t−h
ẋT (s)Q1ẋ(s)ds

⩽−[x(t)− x(t −h)]T R [x(t)− x(t −h)] . (30)

Based on the system (17), it is easy to know that

2
[
xT (t)Z1 + ẋT (t)Z2

]
×{−ẋ(t)

+
r

∑
i=1

r

∑
j=1

ηi (θ (t))η j (θ (tk)) [Aix(t)+Adix(t − τ)

+BiK j (x(tk)+ f (x(tk)))+Bwiω (t)]}= 0, (31)

that is

2
[
xT (t)Z1 + ẋT (t)Z2

]
×Γ2ξ (t) = 0. (32)

From (15), for a diagonal matrix G > 0, we can obtain

−2[ f (x(tk))+Lx(tk)]
T G [ f (x(tk))−Lx(tk)]≥ 0. (33)

From (21)-(35), we have

V̇ (t)+ yT (t)y(t)− γ2ωT (t)ω (t)

⩽
r

∑
i=1

r

∑
j=1

ηi (θ (t))η j (θ (tk))ξ T (t)Ωξ (t), (34)

where Ω =
(
Ω1 −ΓT I Γ

)
+(t − tk)

(
Ω2 +Y T

1i jM
−1
1 Y1i j

+3Y T
2i jM

−1
1 Y2i j

)
+(h− (t − tk))Ω3.

Using Lemma 3, we know Ω < 0 if and only if(
Ω1 −ΓT I Γ

)
+h

(
Ω2 +Y T

1i jM
−1
1 Y1i j +3Y T

2i jM
−1
1 Y2i j

)
< 0, (35)(
Ω1 −ΓT I Γ

)
+hΩ3 < 0. (36)

Based on the Schur Complement [32], (37) is equivalent
to (18) and (38) is equivalent to (19). Therefore, it follows
from (36) that

V̇ (t)≤−yT (t)y(t)+ γ2ωT (t)ω (t) . (37)

Under zero initial condition, integrating both sides of (39)
from t0 to t → ∞, we have∫ ∞

t0
yT (s)y(s)ds ≤

∫ ∞

t0
γ2ωT (s)ω (s)ds, (38)

which implies that ∥y(t)∥2 ≤ γ∥ω (t)∥2.
Next, when ω (t) ≡ 0, we can get V̇ (t) < 0, obviously.

According to Definition 1, the result is established. This
completes the proof. □

Remark 2: In constructed LKF (20), the characteris-
tic of sampling and state quantization is fully considered.
Particularly, the item of V3 (t) and V4 (t) in (20) plays a
key role to prove the stability of the system. The items
(h− (t − tk)) in V3 (t) and the items (tk+1 − t)(t − tk) in
V4 (t), which can fully use the linear convex combination
(Lemma 3) in the derivation to replace h with (t − tk) and
(h− (t − tk)). It is more easy to obtain the stability condi-
tions of the system.

Remark 3: There are some constructed inequalities
and some lemmas to deal with the integral items. By using
the combination of the constructed inequality (27-30) and
lemma 2, less delay-dependent integral items are arbitrar-
ily ignored. So, the results obtained form this paper are
less conservative than other paper.

3.2. Sampled-data and state quantized controller de-
sign

In this subsection, the sampled-data and state quantized
controller is design for the T-S fuzzy system (17).

Theorem 2: For given some positive constants h,ε ,
and a diagonal matrix L, the system (17) is robustly
asymptotically stable with an H∞ norm bound γ and
feedback gain matrices K j = J jX

−T if there exist sym-

metric positive matrices P̃ =

 P̃1 P̃2 P̃3

∗ P̃4 P̃5

∗ ∗ P̃6

 ,M̃ = M̃1 M̃2 M̃3

∗ M̃4 M̃5

∗ ∗ M̃6

 , R̃1, R̃2, Ñ1, Ñ2, Q̃1, Q̃2, positive diag-

onal matrix G̃, and any matrices Ỹ1i j,Ỹ2i j, Z̃1, Z̃2 with ap-
propriate dimensions,such that the following LMIs hold
for i, j = 1,2, ...,r :

Ω̃1 +hΩ̃2 Γ̃1 hỸ T
1i j 3hỸ T

2i j
∗ −I 0 0
∗ ∗ −hM̃−1 0
∗ ∗ ∗ −3hM̃−1

< 0,

(39)[
Ω̃1 +hΩ̃3 Γ̃1

∗ −I

]
< 0, (40)

where

Ω1 =


Ω̃1

11 Ω̃1
12 Ω̃1

13 ... Ω̃1
110

∗ Ω̃1
22 Ω̃1

23 ... Ω̃1
210

∗ ∗ Ω̃1
33 ... Ω̃1

310
...

...
...

. . .
...

∗ ∗ ∗ ... Ω̃1
1010

 ,

Ω2 =


Ω̃2

11 Ω̃2
12 Ω̃2

13 ... Ω̃2
110

∗ Ω̃2
22 Ω̃2

23 ... Ω̃2
210

∗ ∗ Ω̃2
33 ... Ω̃2

310
...

...
...

. . .
...

∗ ∗ ∗ ... Ω̃2
1010

 ,
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Ω3 =


Ω̃3

11 Ω̃3
12 Ω̃3

13 ... Ω̃3
110

∗ Ω̃3
22 Ω̃3

23 ... Ω̃3
210

∗ ∗ Ω̃3
33 ... Ω̃3

310
...

...
...

. . .
...

∗ ∗ ∗ ... Ω̃3
1010

 ,

Ω̃1
11 = P̃2+ P̃T

2 + P̃3+ P̃T
3 + R̃1+ R̃2−4Q̃1−4Q̃2+AiXT +

XAi
T −Ỹ T

11i j −Ỹ11i j −3Ỹ T
21i j −3Ỹ21i j, Ω̃1

12 =−M̃T
2 +BiJ j +

Ỹ T
11i j − Ỹ12i j −3Ỹ T

21i j −3Ỹ22i j, Ω1
13 =−P̃2 −2Q̃1 +AdiXT −

Ỹ13i j −3Ỹ23i j, Ω̃1
14 =−2Q̃1 − Ỹ14i j −3Ỹ24i j, Ω1

15 =−M̃T
3 +

BiJ j − Ỹ15i j − 3Ỹ25i j, Ω̃1
16 = P̃1 − XT + εXAT

i − Ỹ16i j −
3Ỹ26i j, Ω̃1

17 = τP̃4 + τP̃T
5 + 6Q̃1 − Ỹ17i j − 3Ỹ27i j, Ω̃1

18 =
6Ỹ T

21i j − Ỹ18i j − 3Ỹ28i j, Ω̃1
19 = 6Q̃2 − Ỹ19i j − 3Ỹ29i j,Ω̃1

110 =

Bωi − Ỹ110i j − 3Ỹ210i j, Ω̃1
22 = M̃2 + M̃T

2 + 2LT G̃L+ Ỹ T
12i j +

Ỹ12i j − 3Ỹ T
22i j − 3Ỹ22i j, Ω̃1

23 = Ỹ13i j − 3Ỹ23i j, Ω̃1
24 = Ỹ14i j −

3Ỹ24i j, Ω̃1
25 = M̃T

3 − 2LG̃+ Ỹ15i j − 3Ỹ25i j, Ω̃1
26 = εJT

j BT
i +

Ỹ16i j − 3Ỹ26i j, Ω̃1
27 = Ỹ17i j − 3Ỹ27i j, Ω̃1

28 = 6Ỹ T
22i j + Ỹ18i j −

3Ỹ28i j, Ω̃1
29 = Ỹ19i j − 3Ỹ29i j, Ω̃1

210 = Ỹ110i j − 3Ỹ210i j, Ω̃1
33 =

−R̃1 − 4Q̃1, Ω̃1
36 = εXAT

di, Ω̃1
37 = −τP̃4 + 6Q̃1, Ω̃1

38 =
6Ỹ T

23i j, Ω̃1
44 = −R̃2 − 4Q̃2, Ω̃1

48 = 6Ỹ T
24i j, Ω̃1

55 = −2G̃,
Ω̃1

56 = εJT
j BT

i , Ω̃1
58 = 6Ỹ T

25i j, Ω̃1
66 = −Z̃T

2 − Z̃2 + τ2Q̃1 +

h2Q̃2, Ω̃1
67 = τP̃T

2 , Ω̃1
68 = 6Ỹ T

26i j, Ω̃1
610 = εBωi, Ω̃1

77 =

−12Q̃1, Ω̃1
78 = 6Ỹ T

27i j, Ω̃1
88 = 6Ỹ T

28i j + 6Ỹ28i j, Ω̃1
89 = 6Ỹ29i j,

Ω̃1
89 = 6Ỹ29i j, Ω1

99 = −12Q̃2, Ω1
1010 = −γ2I, Ω̃2

18 = P̃5 +
P̃6, Ω̃2

22 = −M̃4 − Ñ1, Ω̃2
25 = −M̃5, Ω̃2

38 = −P̃5, Ω̃2
55 =

−M̃6 − Ñ2, Ω̃2
55 = −M̃6 − Ñ2, Ω̃3

22 = M̃4 + Ñ1, Ω̃3
25 =

M̃5, Ω̃3
26 = M̃T

2 , Ω̃3
55 = M̃6 + Ñ2, Ω̃3

56 = M̃T
3 , Ω̃3

66 = M̃1,
Γ̃T

1 =
(
XCT

1i,J
T
j DT

1i,XCT
2i,0,J

T
j DT

1i,0,0,0,0,XDT
2i

)
, Γ̃2 =(

AiXT ,BiJ j,AdiXT ,0,BiJ j,−XT ,0,0,0,BωiXT
)
.

Proof: First, pre-multiply and post-multiply both sides

of (18) with diag

X , ...,X︸ ︷︷ ︸
9

, I, I,X ,X

 and its trans-

pose, and (19) with diag

X , ...,X︸ ︷︷ ︸
9

, I, I

 and its trans-

pose, respectively, and define Z1 = X−1, Z2 = εX−1,
J j = K jXT , P̃ = diag{X ,X ,X}Pdiag

{
XT ,XT ,XT

}
, M̃ =

diag{X ,X ,X}Mdiag
{

XT ,XT ,XT
}

, G̃ = XGXT , R̃1 =
XR1XT , R̃2 = XR2XT , Ñ1 = XN1XT , Ñ2 = XN2XT , Q̃1 =

XQ1XT , Q̃2 = XQ2XT , Ỹ1i j = XY1i jdiag

X , ...,X︸ ︷︷ ︸
9

, I

,

Ỹ2i j =XY2i jdiag

X , ...,X︸ ︷︷ ︸
9

, I

, Ỹ3i j =XY3i jdiag

X , ...,X︸ ︷︷ ︸
9

, I

.

Then, we can obtain (41) and (42). This completes the
proof. □

Remark 4: Unlike the proposed method in [10, 11,
13, 14, 16], we attempt to analyze quantization effect of
sampled-data fuzzy systems. The introduction of quan-
tizer can effectively reduce the burden of communication

channel in the signal transmission of network control sys-
tems, and also reduce the influence of network fixed band-
width on the system. The results obtained from this paper
have a larger sampling period h and a smaller attenuation
interference index γ than other existing results, this will
be demonstrated later through Example 1 and Example 2.
So, the sampled-data and state quantized controller we ob-
tained is more conducive to the stability of the system.

4. EXAMPLES

This section provides two examples to verify the valid-
ity and superiority of the proposed methods. To prepare
for the appropriate examples, we also study T-S fuzzy sys-
tems with sampled-data or state quantized controller in-
vestigated in the recent literature [33–38].

Example 1: Consider the following fuzzy system. The
T-S fuzzy model of this fuzzy system is the following
form:

ẋ(t) =
r

∑
i=1

r

∑
j=1

ηi (θ (t))η j (θ (t)) [Aix(t)+Adix(t − τ)

+BiK j (x(tk)+ f (x(tk)))+Bwiω (t)] ,

where

A1 =

 −2 2 0
1 −1 −1
0 −1 −1

 , A2 =

 −1 1 0
0 −2 1
1 0 −2

 ,

Ad1 = Ad2 =

 −0.5 1 0
0 −1 0
0 1 −0.5

 ,

Bω1 =

 1 −2 0
0 −2 0
0 0 −1

 , Bω2 =

 −1 0 0
0 −1 0
0 0 −1

 ,

B1 =

 −1
−2
0.5

 ,C11 =

 0.1 0.1 0
0 −0.5 0
0 0 −0.1

 ,

B2 =

 −1
−1
2

 , C12 =

 −0.1 0.1 0
0 −0.5 0
0 0 −0.1

 ,

C21 =C22 =

 −0.2 0 0
0 −0.3 0
0 0 −0.1

 ,

D11 =

 1
0

0.5

 , D12 =

 0.1
0.5
1

 ,

D21 = D22 =

 −1 −1 0
0 1 0
0 0 0.4

 .

Consider the quantizer densities

ρ1 =
1
2
, ρ2 =

1
3
, ρ3 =

1
6
,
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Table 1. Upper bounds sampling period h and controller
feedback gains for γ = 2 and different values of
state delay τ .

τ 0.1 0.3 0.5
h 0.88 0.74 0.65

so we have the quantizer parameters are

l1 =
1−ρ1

1+ρ1
=

1
3
, l2 =

1−ρ2

1+ρ2
=

1
2
, l3 =

1−ρ3

1+ρ3
=

5
7
,

then we have content matrices

L =

 l1 0 0
∗ l2 0
∗ ∗ l3

=

 1
3 0 0
∗ 1

2 0
∗ ∗ 5

7

 .

Employ the following membership function:η1 (xi (t)) =
1

1+ exp(0.5(xi (t)+1))
,

η2 (xi (t)) = 1− f1 (xi (t)) ,

and the disturbance input is assumed to be ω (t) =
sin(−3t)exp(−t) , and given ε = 0.9.

Then, by using Theorem 2 with LMIs, we obtain the
results of some feasible solutions K1,K2 and the upper
bounds of sampling period h under different levels of state
constant delay τ , which can guarantee the asymptotic sta-
bility of the system (17) with H∞ performance level γ = 2.
The corresponding results is shown in Table 1.

From Table 1, we can seen that the upper bounds of
sampling period is h = 0.88 when τ = 0.1. The similar
conclusions can be obtained with different τ .
With τ=0.1, h=0.88, K1=[−0.0252 −0.0831 −0.0051],
K2 = [−0.0365 −0.0773 −0.0014], the state responses
x(t) of the system (17) is shown in Fig. 2 and the con-
trol input u(t) is shown in Fig. 3 under an initial condition
x(0) = [0,0,0]T .

Remark 5: By using the results of Theorem 2 and
combining with the method of linear matrix inequalities,
we obtained many sets of data. However, due to space
constraints, this paper only shows three sets of better data.
In the process of calculation, we find that the larger γ ,
the smaller h, and they are inversely proportional to each
other. After repeated calculation and comparison, we find
that γ = 2 can get better results. From Table 1 , it can
be seen that the method of this paper can obtain a larger
sampling period h = 0.88 when τ = 0.1.

Remark 6: From Fig. 1 and Fig. 2, it can be seen that
the state responses of the system state and controller input
tend to be stable from 4s. This proved the feasibility of
the method proposed in this paper.

Fig. 2. The state responses of the system (17).

Fig. 3. The control input of the system (17).

Example 2: Consider the problem of balancing and
swing-up of an inverted pendulum on a cart. The equa-
tions of the pendulum motion are given by [35]

ẋ1 (t) = x2 (t) ,

ẋ2 (t)

=
gsin(x1 (t))−amlx2

2 (t)
sin(2x1(t))

2 −acos(x1 (t))u(t)
4l
3 −amlcos2 (x1 (t))

+ω (t) ,

z(t) = x2 (t) ,

where x1 (t) is the angle (in radians) of the pendulum from
the vertical, x2 (t) is the angular velocity, and u(t) is the
force applied to the cart (in newtons), and ω (t) is the
disturbance. g is the gravity constant, m is the mass of
the pendulum, M is the mass of the cart, 2l is the length



54 Xiaojing Han and Yuechao Ma

Table 2. The upper bounds of sampling period h obtained
by various methods.

Methods [36] [37] [38] [35] Theorem 2
h 14ms 16ms 24ms 42ms 112ms

of the pendulum. As the same as in [35], the parame-
ters are given by m = 2.0kg,M = 8.0kg,2l = 1.0m,g =
9.8m/s2,a = 1/(m+M) . The control objective here is to
balance the inverted pendulum for the approximate range
x1 (t) ∈

(
−π

/
2,π

/
2
)

and x2 (t) ∈ (−π,π) via a sampled-
data control approach.

The system (41) in this example can be represented by
a two-rule T-S fuzzy model:
Rule 1: IF x1 (t) is about 0, THEN{

ẋ(t) = A1x(t)+B1u(t)+Bw1ω (t) ,

z(t) =C11x(t) .

Rule 2: IF x1 (t) is about ± π
2 , THEN{

ẋ(t) = A2x(t)+B2u(t)+Bw2ω (t) ,

z(t) =C12x(t) ,

where

A1 =

[
0 1
2g

4l/3−aml 0

]
, A2 =

[
0 1
2g

π(4l/3−amlβ 2) 0

]
,

B1 =

[
0

− a
4l/3−aml

]
, B2 =

[
0

− aβ
4l/3−amlβ 2

]
,

E1 = E2 = [0,1]T ,C1 =C2 = [0,1] ,β = cos(88◦) .

The membership function are defined as

η1 (x1 (t)) =


1− 2

π
x1 (t) , i f 0 ⩽ x1 (t)<

π
2
,

1+
2
π

x1 (t) , i f − π
2
< x1 (t)< 0,

and η2 (x1 (t)) = 1−η1 (x1 (t)) .
By using Matlab LMI tool box to solve the LMIs ob-

tained in Theorem 2, we can obtain the upper bounds of
sampling period h = 112ms. In order to verify the supe-
riority of our methods, the comparison results with other
papers are presented in Table 2.

When h = 30ms, the minimal H∞ performance index γ
is obtained as 0.0133 by Theorem 2, and the correspond-
ing controller gains are as

K1 = [6.5666,−0.3832] ,K2 = [10.2418,−0.2755] .

By using the above results, the state responses x(t) of the
fuzzy system are shown in Fig. 4 and corresponding con-
trol input u(t) is shown in Fig. 5 under the initial state
x(0) = [π

/
3,0]T .

Fig. 4. The state responses of the system (41).

Fig. 5. The control input of the system (41).

Table 3. The comparison results of γ .

Methods [35] Theorem 2
γ 0.6062 0.0133

Remark 7: It can be seen from Table 2 that the upper
bounds of sampling period h obtained by Theorem 2 is
larger than others. Moreover, the comparison results of
the minimum attenuation interference index γ is shown
in Table 3. From Table 3, we know that the minimum
attenuation interference index γ obtained by Theorem 2 is
smaller than others. All these results prove the superiority
of our method.
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5. CONCLUSIONS

In this paper, the problem of sampled-data robust H∞
control for the T-S fuzzy time-delay system with state
quantization has been investigated. We constructed a im-
proved LKF, which is fully considered the characteristics
of sample-data and state quantization, and by introduc-
ing the free weighting matrices, some integral techniques
and modified inequalities, the results obtained in this pa-
per are less conservative than other existing results. Based
on the obtained stability conditions, the sample-data and
state quantized controller has been designed for the ro-
bustly asymptotically stable of the T-S fuzzy time-delay
system. Finally, a larger sampling period h and a smaller
attenuation interference index γ obtained in the two exam-
ples have been proved the effectiveness and superiority of
the proposed methods.
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