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Stability Analysis for Time-delay Systems with Nonlinear Disturbances
via New Generalized Integral Inequalities
Bin Wu, Chang-Long Wang*, Yong-Jiang Hu, and Xiao-Lin Ma

Abstract: This paper represents a novel less conservative stability criterion for time-delay systems with nonlinear
disturbances. The main purpose is to obtain larger upper bound of the time-varying delay. A suitable Lyapunov-
Krasovskii functional (LKF) with triple integral terms is constructed. Then, two new generalized double integral
(GDI) inequalities are proposed which encompass Wirtinger-based double inequality as a special case. A simple
case of the proposed GDI inequality is utilized to estimate double integral terms in the time derivative of the
constructed LKF. Further, an improved delay-dependent stability criterion is derived in the form of linear matrix
inequalities (LMIs). Finally, some numerical examples are given to illustrate the improvement of the proposed
criteria.

Keywords: Generalized integral inequalities, Lyapunov-Krasovskii functional (LKF) method, nonlinear distur-
bances, stability analysis, time-delay systems.

1. INTRODUCTION

In the past few decades, time-delay systems have at-
tracted much attention because of their wide applica-
tions in various practical systems such as attitude stabi-
lization [1], neural networks [2, 3], infectious diseases
and epidemics system [4] and network control systems
[5]. However, time delay may lead to undesirable dy-
namic behaviour, poor performance and even instabil-
ity of a real system. So, stability analysis of time-
delay systems has become a hot issue [6–10]. Gener-
ally, delay-dependent stability criteria are less conserva-
tive than delay-independent ones. As is known to all,
Lyapunov-Krasovskii functional (LKF) method is an ef-
fective way to obtain delay-dependent criteria. Neverthe-
less, stability criteria obtained based on LKF method are
only sufficient [11–13]. Therefore, the main objective is
to get the delay range as large as possible.

Various useful techniques have been put forward and
many criteria with less conservatism have been derived,
such as augmented LKF method [14], reciprocally con-
vex combination approach [15, 16], delay-partitioning ap-
proach [17, 18], free-weighting-matrix (FWM) method
[19] and zero equality approach [20]. Recently, a new in-
sight to reduce conservatism is proposed in [21] by remov-
ing the restriants that all the matrices in the constructed
LKF must be positive, instead, relaxed LMIs are added.
In [22,23], delay-product-type Lyapunov functional is es-
tablished to obtain less conservative criteria.
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Among existing results, integral inequalities play an im-
portant role to reduce the conservatism. Jensen inequal-
ity has usually been adopted in many literatures [24–26].
But, it has some undesirable conservatism. Hence, many
efforts have been paid to derive improved inequalities.
The most well-known inequality is Wirtinger-based inte-
gral (WBI) inequality. Then, some meaningful stability
criteria are proposed based on single-integral or double-
integral WBI inequality [27–29]. In [30], a new double
integral inequality is proposed and applied to derive sta-
bility criterion of systems with state and distributed de-
lays. Recently, a FWM inequality is proposed in [31].
The less conservatism of FWM inequality owes to some
free matrices. However, it is pointed out in [32] that not
all free matrices in the FWM inequality make contribu-
tions to reduce conservatism. Then, a generalized free-
weighting-matrix (GFWM) inequality is proposed which
encompasses FWM inequality as a special case in [32].
Very recently, second-order Bessel-Legendre inequality is
used for stability analysis of time-varying delay systems
in [33]. [34] proposes a relaxed integral inequality to deal
with the sum of two single integral terms which are de-
pendent on time-varying delay. However, the less conser-
vatism inequalities in [31–34] can only handle single in-
tegral terms. In [35], a relaxed double integral inequality
approach is proposed, but it still has unexpected conser-
vatism.

Motivated by the above discussion, generalized double
integral (GDI) inequalities are put forward with the help
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of Schur complement lemma. The proposed GDI inequal-
ities are very flexible due to the free vectors and free ma-
trices in them. It is theoretically proved that Wirtinger-
based double integral inequality is a special case of the
proposed GDI inequality. Then, an appropriate LKF with
some triple terms is constructed. Two special cases of the
proposed GDI inequalities are employed to estimate dou-
ble integral terms in the derivative of the established LKF.
Further, a less conservative stability criterion is derived in
the form of LMIs. The effectiveness of the proposed crite-
rion is shown by numerical examples in comparison with
some recent results.

The remaining parts of the paper are organized as fol-
lows: Section 2 illustrates the problem description and
some useful lemmas. Section 3 gives the proposed gen-
eralized double integral inequalities. Then, based on GDI
inequality, an improved stability criterion for linear time-
delay systems with nonlinear disturbances are derived. In
Section 4, numerical examples are used to show the im-
provement of the proposed stability criterion. Conclusions
are demonstrated in Section 5.

Notations: Throughout this paper, Rn denotes the n-
dimensional Euclidean space. means that P is a symmet-
ric and positive definite matrix. The symmetric terms in
a symmetric matrix is donated by ∗. I donates a properly
dimensioned identity matrix. In addition, diag{...} repre-
sents block diagonal matrix, and sym{X}= X +XT .

2. PROBLEM DESCRIPTION AND
PRELIMINARIES

Consider the following linear time-delay system with
nonlinear disturbances:

ẋ(t) = Ax(t)+Adxd(t)+B f (x(t))+Bd f (xd(t)), (1)

where x(·) = [x1(·),x2(·), ...,xn(·)]T ∈ Rn is state vector
and xd(t) = x(t − d(t)). A, Ad , B, Bd are known sys-
tem matrices with appropriate dimensions. d(t) is time-
varying state delay and f (x(t)) and f (xd(t)) are nonlinear
disturbances satisfying

0 ≤ d(t)≤ dU , ḋ(t)≤ dD, (2)
f (x(·)) = [ f1(x1(·)), f2(x2(·)), ..., fn(xn(·))]T ∈ Rn,

0 ≤ fi(s2)− fi(s1)

s2 − s1
≤ hi, s1 ̸= s2, i = 1,2, . . . ,n,

fi(0) = 0, i = 1,2, . . . ,n,
(3)

where dU ,dD,hi are known constants, and hi > 0.

Remark 1: The nonlinear disturbance f (x(t)) contains
uncertain parts of system matrices A, Ad and unmodel dy-
namics of some practical systems.

Some helpful lemmas will be introduced, which are im-
portant to obtain the stability criteria.

Lemma 1: For given matrix R > 0 and differentiable
function x(t) , the following inequality holds∫ b

a
ẋT (s)Rẋ(s)ds

≥ 1
b−a

(
χT

1 Rχ1 +3χT
2 Rχ2 +5χT

3 Rχ3
)
, (4)

where

χ1 = x(b)− x(a), χ2 = x(b)+ x(a)− 2
b−a

∫ b

a
x(s)ds,

χ3 = x(b)− x(a)+
6

b−a

∫ b

a
x(s)ds

− 12

(b−a)2

∫ b

a

∫ b

u
x(s)dsdu.

Lemma 2: For given matrix R > 0 and any continu-
ously differentiable function x(t) , the following inequali-
ties hold∫ b

a

∫ b

u
ẋT (s)R1ẋ(s)dsdu ≥ 2χT

4 R1χ4 +4χT
5 R1χ5, (5)∫ b

a

∫ u

a
ẋT (s)R2ẋ(s)dsdu ≥ 2χT

6 R2χ6 +4χT
7 R2χ7, (6)

where

χ4 = x(b)− 1
b−a

∫ b

a
x(s)ds,

χ5 = x(b)+
2

b−a

∫ b

a
x(s)ds

− 6

(b−a)2

∫ b

a

∫ b

u
x(s)dsdu,

χ6 = x(a)− 1
b−a

∫ b

a
x(s)ds,

χ7 = x(a)− 4
b−a

∫ b

a
x(s)ds

+
6

(b−a)2

∫ b

a

∫ b

u
x(s)dsdu.

Lemma 3: For any vectors ϑ1, ϑ2, matrices S, Wi >
0(i = 1,2,3,4) with proper dimensions satisfying[

W1 +W3 S
∗ W2 +W4

]
> 0, (7)

and real scalar 0 < ρ < 1 , the following inequality holds

ϑ T
1

(
1
ρ

W1 +
1−ρ

ρ
W3

)
ϑ1

+ϑ T
2

(
1

1−ρ
W2 +

ρ
1−ρ

W4

)
ϑ2

≥
[

ϑ1

ϑ2

]T [ W1 S
∗ W2

][
ϑ1

ϑ2

]
. (8)
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Lemma 4: Suppose α1 ≤ α(t) ≤ α2 satisfying α(·) :
R+ → R+ . For any known matrices Ξ,Ξ1,Ξ2 with appro-
priate dimensions, the following inequality holds

Ξ+(α(t)−α1)Ξ1 +(α2 −α(t))Ξ2 < 0, (9)

if and only if{
Ξ+(α2 −α1)Ξ1 < 0,

Ξ+(α2 −α1)Ξ2 < 0.
(10)

3. MAIN RESULTS

In this section, two generalized double integral(GDI)
inequalities are proposed. Then, a less conservative sta-
bility criterion is derived based on the proposed GDI in-
equalities.

3.1. The generalized double integral inequalities
Lemma 5: For positive definite symmetric matrix R1,

R2 and any vector x : [a,b] → Rn, two sets of non-zero
scalar functions p1i(s), p2i(s)(i = 1,2, ...,n) satisfying∫ b

a

∫ b

u
p1i(s)p1k(s)dsdu = 0,(i ̸= k), (11)∫ b

a

∫ u

a
p2i(s)p2k(s)dsdu = 0,(i ̸= k), (12)

then the following inequalities hold

−
∫ b

a

∫ b

u
xT (s)R1x(s)dsdu

≤ χT
0

n

∑
i=1

(
q1iSiR−1

1 ST
i

)
χ0 +2χT

0

n

∑
i=1

SiΩ1i, (13)

−
∫ b

a

∫ u

a
xT (s)R2x(s)dsdu

≤ χT
0

n

∑
i=1

(
q2iSiR−1

2 ST
i

)
χ0 +2χT

0

n

∑
i=1

SiΩ2i, (14)

where

q1i =
∫ b

a

∫ b

u
p2

1i(s)dsdu,Ω1i

=
∫ b

a

∫ b

u
p1i(s)x(s)dsdu, (15)

q2i =
∫ b

a

∫ u

a
p2

2i(s)dsdu,Ω2i

=
∫ b

a

∫ u

a
p2i(s)x(s)dsdu, (16)

and χ0, Si (i = 1 2, · · · , n) are any vector and matrices with
proper dimensions.

Proof: According to Schur complement lemma, the
following inequality is true with R1 > 0 and any matrices

Si (i = 1, 2, . . ., n):

Ω =


S1R−1

1 ST
1 S1R−1

1 ST
2 · · · S1R−1

1 ST
n S1

∗ S2R−1
1 ST

2 · · · S2R−1
1 ST

n S2

∗ ∗
. . .

...
...

∗ ∗ ∗ SnR−1
1 ST

n Sn

∗ ∗ ∗ ∗ R1


≥ 0, (17)

So, for any vector χ0 and a set of scalar functions p1i(i =
1,2, . . . ,n), it is obvious that

∫ b

a

∫ b

u


p11(s)χ0

...
p1n(s)χ0

x(s)


T

Ω


p11(s)χ0

...
p1n(s)χ0

x(s)

dsdu ≥ 0,

(18)

The above inequality (18) is equivalent to the following
inequality (19)

0 ≤
∫ b

a

∫ b

u
xT (s)R1x(s)dsdu

+2χT
0

n

∑
i=1

(
Si

∫ b

a

∫ b

u
p1i(s)x(s)dsdu

)
+χT

0

n

∑
i=1

(
SiR−1

1 ST
i

∫ b

a

∫ b

u
p2

1i(s)dsdu
)

χ0

+2χT
0

n

∑
i=1

n

∑
k=i+1

(
SiR−1

1 ST
k

∫ b

a

∫ b

u
p1i(s)p1k(s)dsdu

)
χ0,

(19)

From (11) and (15), inequality (19) is equivalent to (13).
Following a similar proof process, inequality (14) can be
obtained. This is the end of proof. □

Remark 2: To the extent of the authors’ knowledge,
the GDI inequalities in (13) and (14) have not proposed
in any existing literatures. Benefit from Schmidt orthogo-
nalization approach [38], a set of orthogonal polynomials
can be obtained conveniently. So, the inequalities in (13)
and (14) can be implemented conveniently. Further, GDI
inequalities are quite flexible and more general than some
existing double integral inequalities because of free vector
χ0 and matrices Si(i = 1,2, . . . ,n). Specifically,

1) By taking n = 3 and p11 = 1, p12 = s− 2b+a
3 , p13 =

s2− 2(3b+2a)s
5 + 3b2+a2+6ab

5 and χT
0 Si =−R1Ω1i

q1i
, the GDI

inequality in (13) reduces to the one in Lemma 2.3 of
[31].

2) By taking n = 2 and p21 = 1, p22 = s − b+2a
3 , and

χT
0 Si =−R2Ω2i

q2i
, the GDI inequality in (14) reduces to

inequality (6) in Lemma 2.

Therefore, the GDI inequalities are more general than
Wirtinger-based double integral inequality, and auxiliary
function-based double integral inequalities [31].
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From Lemma 5, the following lemma can be obtained
easily which will be employed to derive stability criteria
in the following parts.

Lemma 6: For a given symmetric matrix R > 0, any
vector χ0 and matrices S1, S2, S3, S4 with proper dimen-
sions, the following inequalities hold for any continuously
differentiable function x : [a,b]→ Rn

−
∫ b

a

∫ b

u
ẋT (s)R1ẋ(s)dsdu

≤ 2χT
0 (2S1γ1 +4S2γ2)

+χT
0

(
2S1R−1

1 ST
1 +4S2R−1

1 ST
2

)
χ0, (20)

−
∫ b

a

∫ u

a
ẋT (s)R2ẋ(s)dsdu

≤ 2χT
0 (2S3γ3 +4S4γ4)

+χT
0

(
2S3R−1

2 ST
3 +4S4R−1

2 ST
4

)
χ0, (21)

where

γ1 = χ4, γ2 = χ5, γ3 =−χ6, γ4 = χ7,

and χ4, χ5, χ6, χ7 are defined in Lemma 2.

Proof: The inequality (20) can be easily from lemma 5
by choosing n= 2 and p11 =

2
b−a , p12 =

12s−4(2b+a)
(b−a)2 in (13).

Also, selecting p21 = 2
b−a and p22 = 12s−4(b+2a)

(b−a)2 in (14),
(21) can be obtained. The detailed proof is omitted. □

3.2. Stability analysis
In this section, an less conservative stability criterion is

derived based on the generalized double integral inequali-
ties in lemma 6. Some notations are given to simplify the
representation of following parts:

xd(t) = x(t −d(t)), xu(t) = x(t −dU),

d2(t) = dU −d(t), φT (t) =
[

xT (t),
∫ t

t−dU

xT (s)ds
]
,

φT
1 (t,s) =

[
xT (t),xT (s)

]
, φT

2 (s) =
[
xT (s), f T (x(s))

]
,

ξ1(t) =
1

d(t)

∫ t

t−d(t)
x(s)ds,

ξ2(t) =
1

d2(t)

∫ t−d(t)

t−dU

x(s)ds,

ξ3(t) =
1

(d(t))2

∫ t

t−d(t)

∫ t

u
x(s)dsdu,

ξ4(t) =
1

(d2(t))
2

∫ t−d(t)

t−dU

∫ t−d(t)

u
x(s)dsdu,

ξ T (t) =
[
xT (t),xT

d (t),x
T
u (t), ẋ

T (t),ξ T
1 (t),ξ T

2 (t),ξ T
3 (t),

ξ T
4 (t), f T (x(t)), f T (xd(t)), f T (xu(t))

]
.

Theorem 1: For given scalars dU > 0, dD, and positive
diagonal matrix HU = diag{h1,h2, . . . ,hn}, the system (1)
is asymptotically stable, if there exist symmetric matrices

P, R2 > 0, Qi > 0 (i = 1, 2, 3, 4), Zi > 0 (i = 1, 2), positive
diagonal matrices Λi = diag{λi1,λi2, . . . ,λin} ,(i = 1,2),
Hi = diag{hi1,hi2, . . . ,hin}, (i = 1, 2, 3, 4, 5) and any ma-
trices Si, Ti (i = 1, 2, 3), Yi (i = 1, · · · , 8) with appropri-
ate dimensions, such that the following LMIs in (22)-(23)
hold:[

(2i−1)(R2 +Z1) Si

∗ (2i−1)(R2 +Z2)

]
< 0,

(i = 1,2,3), (22)[
Φ+dU Πi Y

∗ −Z

]
< 0, (i = 1,2), (23)

where

Φ = ∑5
i=1 Φi +Ξ1 +Ξ2 +Ξ3 −Θ1 −Θ2 −ΘS,

P =

[
P11 P12

PT
12 P22

]
, Q1 =

[
Q11 Q12

QT
12 Q13

]
,

Φ1 = sym
{

eT
1 P11e4 + eT

1 P12e1 − eT
1 P12e3

}
,

Φ2 =

[
e1

e1

]T

(Q1 +Q2)

[
e1

e1

]
−
[

e1

e3

]T

Q1

[
e1

e3

]
+ sym

{
dU eT

1 Q11e4
}

− (1−dD)

[
e1

e2

]T

Q2

[
e1

e2

]
,

Φ3 =

[
e1

e9

]T

(Q3 +Q4)

[
e1

e9

]
−
[

e3

e11

]T

Q3

[
e3

e11

]
− (1−dD)

[
e2

e10

]T

Q4

[
e2

e10

]
,

Φ4 = sym
{

eT
4 Λ1e9 + eT

1 HU Λ2e4 − eT
4 Λ2e9

}
,

Φ5 = eT
4

(
d2

U R2 +
1
2 d2

U (Z1 +Z2)
)

e4

+ sym

{
8

∑
i=1

(
3+(−1)i

)
Yiυi

}
,

Θ1 = γT
1 R2γ1 +3γT

2 R2γ2 +5γT
3 R2γ3,

Θ2 = γT
4 R2γ4 +3γT

5 R2γ5 +5γT
6 R2γ6,

ΘS = sym
{

γT
1 S1γ4 + γT

2 S2γ5 + γT
3 S3γ6

}
,

Ξ1 = sym
{

eT
9 H1 (HU e1 − e9)+ eT

10H2 (HU e2 − e10)

+eT
11H3 (HU e3 − e11)

}
,

Ξ2 = sym
{
(e9 − e10)

T H4 (HU e1 −HU e2 − e9 + e10)

+(e10 − e11)
T H5 (HU e2 −HU e3 − e10 + e11)

}
,

Ξ3 = sym
{
(eT

1 T1 + eT
2 T2 + eT

4 T3)(Ae1

+Ade2 +Be9 +Bde10 − e4)} ,
Π1 = sym

{
eT

1 Q21e4 + eT
1 P22e5 − eT

3 P22e5

+eT
4 (P12 +Q12 +Q22)e5

}
,
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Π2 = sym
{

eT
1 P22e6 − eT

3 P22e6 + eT
4 (P12 +Q12)e6

}
,

Y = 2 [Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8] ,

Z = diag{2Z1,Z1,2Z1,Z1,2Z2,Z2,2Z2,Z2} ,
γ1 = e1 − e2, γ2 = e1 + e2 −2e5,

γ3 = e1 − e2 +6e5 −12e7, γ4 = e2 − e3,

γ5 = e2 + e3 −2e6, γ6 = e2 − e3 +6e6 −12e8,

υ1 = e1 − e5, υ2 = e1 +2e5 −6e7, υ3 = e2 − e6,

υ4 = e2 +2e6 −6e8, υ5 = e5 − e2,

υ6 = e2 −4e5 +6e7,

υ7 = e6 − e3, υ8 = e3 −4e6 +6e8,

ei =
[
0n×(i−1)n, In×n,0n×(11−i)n

]
(i = 1 ,2, . . . , 11).

Proof: Consider a LKF for system (1) as follows

V (t) =V1(t)+V2(t)+V3(t)+V4(t)+V5(t)+V6(t),
(24)

where

V1(t) = φT (t)Pφ(t),

V2(t) =
∫ t

t−dU

φT
1 (t,s)Q1φ1(t,s)ds

+
∫ t

t−d(t)
φT

1 (t,s)Q2φ1(t,s)ds,

V3(t) =
∫ t

t−dU

φT
2 (s)Q3φ2(s)ds

+
∫ t

t−d(t)
φT

2 (s)Q4φ2(s)ds,

V4(t) = 2
n

∑
i=1

(
λ1i

∫ xi(t)

0
fi(s)ds

+λ2i

∫ xi(t)

0
(his− fi(s))ds

)
,

V5(t) = dU

∫ t

t−dU

∫ t

u
ẋT (s)R2ẋ(s)dsdu,

V6(t) =
∫ 0

−dU

∫ 0

v

∫ t

t+u
ẋT (s)Z1ẋ(s)dsdudv

+
∫ 0

−dU

∫ v

−dU

∫ t

t+u
ẋT (s)Z2ẋ(s)dsdudv.

The time derivatives of Vi(t)(i = 1, . . . ,6) along the trajec-
tory of (1) are

V̇1(t) = ξ T (t)(Φ1 +d(t)Π11 +d2(t)Π21)ξ (t), (25)

V̇2(t)≤ ξ T (t)(Φ2 +d(t)(Π12 +Π13)

+d2(t)Π22)ξ (t), (26)

V̇3(t)≤ ξ T (t)Φ3ξ (t), (27)

V̇4(t) = ξ T (t)Φ4ξ (t), (28)

V̇5(t) = d2
U ẋT (t)R2ẋ(t)+X1 +X2, (29)

V̇6(t) =
d2

U
2 ẋT (t)(Z1 +Z2) ẋ(t)+∑8

i=3 Xi, (30)

where

Π11 = sym
{

eT
1 P22e5 − eT

3 P22e5 + eT
4 P12e5

}
,

Π21 = sym
{

eT
1 P22e6 − eT

3 P22e6 + eT
4 P12e6

}
,

Π12 = sym
{

eT
4 Q12e5

}
,Π22 = sym

{
eT

4 Q12e6
}
,

Π13 = sym
{

eT
1 Q21e4 + eT

4 Q22e5
}
,

X1 =−dU

∫ t

t−d(t)
ẋT (s)R2ẋ(s)ds,

X2 =−dU

∫ t−d(t)

t−dU

ẋT (s)R2ẋ(s)ds,

X3 =−d2(t)
∫ t

t−d(t)
ẋT (s)Z1ẋ(s)ds,

X4 =−d(t)
∫ t−d(t)

t−dU

ẋT (s)Z2ẋ(s)ds,

X5 =−
∫ t

t−d(t)

∫ t

u
ẋT (s)Z1ẋ(s)dsdu,

X6 =−
∫ t−d(t)

t−dU

∫ t−d(t)

u
ẋT (s)Z1ẋ(s)dsdu,

X7 =−
∫ t

t−d(t)

∫ u

t−d(t)
ẋT (s)Z2ẋ(s)dsdu,

X8 =−
∫ t−d(t)

t−dU

∫ u

t−dU

ẋT (s)Z2ẋ(s)dsdu.

According to Lemma 1 and Lemma 3 and inequality (22),
for any matrices Si(i = 1,2,3) with proper dimensions,
one can obtain

∑4
i=1 Xi ≤−ξ T (t)

[
dU

d(t)
Θ1 +

dU

d2(t)
Θ2 +

d2(t)
d(t)

Θ3

+
d(t)
d2(t)

Θ4

]
ξ (t)

≤−ξ T (t)(Θ1 +Θ2 +ΘS)ξ (t), (31)

From Lemma 6, for any matrices Yi(i = 1, ...,8) with
proper dimensions and letting χ0 = ξ (t) in (20)-(21), we
have

∑8
i=5 Xi

= ξ T (t)

[
ΦZ + sym

{
8

∑
i=1

(3+(−1)i)(Yiυi)

}]
ξ (t),

(32)

where

ΦZ =
4

∑
i=1

(
3+(−1)i

)
YiZ−1

1 Y T
i

+
8

∑
i=5

(
3+(−1)i

)
YiZ−1

2 Y T
i .

In addition, it follows from (3) that for any positive diago-
nal matrices Hi = diag{hi1,hi2, . . . ,hin}(i = 1, . . . ,5), the
following inequalities hold:

0 ≤2
n

∑
i=1

fi(xi(t))h1i [hixi(t)− fi(xi(t))]
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+2
n

∑
i=1

fi(xi(t −dU))h3i
[
hixi(t −dU)

− fi(xi(t −dU))
]

+2
n

∑
i=1

fi(xi(t −d(t)))h2ibig[hixi(t −d(t))

− fi(xi(t −d(t)))
]

=ξ T (t)Ξ1ξ (t), (33)

0 ≤2
n

∑
i=1

[ fi(xi(t))− fi(xi(t −d(t)))]h4i [hixi(t)

−hixi(t −d(t))− fi(xi(t))+ fi(xi(t −d(t)))]

+2
n

∑
i=1

[ fi(xi(t −d(t)))− fi(xi(t −dU))]h5i

×
[
hixi(t −d(t))−hixi(t −dU)− fi(xi(t −d(t)))

]
.

(34)

Furthermore, from (1), the following zero equality is al-
ways true for any matrices Ti(i = 1,2,3) with proper di-
mensions,

0 =2
(
xT (t)T1 + xT

d (t)T2 + ẋT (t)T3
)
(Ax(t)

+Adxd(t)+B f (x(t))+Bd f (xd(t))− ẋ(t))

=ξ T (t)Ξ3ξ (t). (35)

Hence, from (24)-(35), we can get

V̇ (t)≤ ξ T (t)(Φ+ΦZ +d(t)Π1 +d2(t)Π2)ξ (t).
(36)

So, if the following inequality (37) holds, then the system
(1) is asymptotically stable.

Φ+ΦZ +d(t)Π1 +d2(t)Π2 < 0. (37)

By Lemma 4, (37) is equivalent to (38),

Φ+ΦZ +dU Πi < 0,(i = 1,2). (38)

By Schur complement lemma, (38) is equivalent to (23).
This is the end of proof. □

Remark 3: The proposed GDI inequalities are utilized
to estimate double integral terms X5, X6, X7, X8 in (30).
In order to show the improvement of the proposed GDI
inequalities, Wirtinger-based double integral inequality is
employed to estimate the same terms X5, X6, X7, X8. Then,
the following criterion can be obtained.

Theorem 2: For given scalars dU > 0, dD, and positive
diagonal matrix HU = diag{h1,h2, . . . ,hn}, the system (1)
is asymptotically stable, if there exist symmetric matrices
P, R2 > 0, Qi > 0 (i = 1, 2, 3, 4), Zi > 0 (i = 1, 2), positive
diagonal matrices Λi = diag{λi1,λi2, . . . ,λin} ,(i = 1,2),
Hi = diag{hi1,hi2, . . . ,hin}, (i = 1, 2, 3, 4, 5) and any ma-
trices Si, Ti (i = 1, 2, 3) with appropriate dimensions, such
that the following LMIs in (39)-(40) hold:[

(2i−1)(R2 +Z1) Si

∗ (2i−1)(R2 +Z2)

]
< 0,

(i = 1,2,3), (39)

Φ̄+dU Πi < 0, (i = 1,2), (40)

where

Φ̄ = ∑4
i=1 Φi + Φ̄5 + Φ̄Z +Ξ1 +Ξ2 +Ξ3

−Θ1 −Θ2 −ΘS,

Φ̄Z =−
4

∑
i=1

(
3+(−1)i

)
υT

i Z1υi

−
8

∑
i=5

(
3+(−1)i

)
υT

i Z2υi,

Φ̄5 = eT
4

(
d2

U R2 +
1
2

d2
U (Z1 +Z2)

)
e4,

and Φi,Ξ1,Ξ2,Ξ3,Θ1,Θ2,ΘS,e4,υk (i = 1, 2, 3, 4; k = 1,
..., 8) are defined in Theorem 1.

Proof: Selecting the same LKF as (24). In a similar
way to the proof of Theorem 1, Theorem 2 can be obtained
easily. So, it is omitted. □

Remark 4: For some special cases of system (1), for
instance, time derivative of the delay ḋ(t) is unknown or
f (x(t)) ≡ 0, stability criteria can be derived easily by re-
moving relevant terms in the constructed LKF in (24).

4. NUMERICAL EXAMPLES

In this section, two well-known numerical examples
will be given to illustrate the improvement of the proposed
criteria in this paper.

Example 1: For system (1) with the following system
matrices:

A = diag{−1.2769,−0.6231,−0.9230,−0.4480} ,
Ad = diag{0,0,0,0} ,

B =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

 ,

Bd =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

 ,

h1=0.1137, h2=0.1279, h3=0.7994, h4=0.2368.

The maximum upper bounds of delay(MUBD) that
guarantee the asymptotical stability of system (1) with dif-
ferent dD are listed in Table 1. For comparison, the results
obtained in [3, 33, 35] are also given in Table 1. From Ta-
ble 1, the MUBD derived by the proposed criteria in The-
orems 1 are larger than some exiting results. Therefore,
our method is less conservative.
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Table 1. MUBD of dU with various dD in Example 1.

Methods dD = 0.1 dD = 0.5 dD = 0.9 NoDV
[33] 4.2778 3.2152 2.9361 73n2 +13n
[35] 4.370 3.187 2.907 34.5n2 +20.5n
[3] 4.4530 3.4929 3.0726 119n2 +21n

Theorem 2 5.101 3.822 3.210 17.5n2 +13.5n
Theorem 1 5.135 3.836 3.228 81.5n2 +13.5n
∗ NoDV represents the number of the decision variables.

Table 2. MUBD of dU with various dD in Example 2.

Methods dD = 0.4 dD = 0.45 dD = 0.5 dD = 0.55
[33] 8.3489 7.3817 7.0219 6.8156
[35] 9.211 7.187 6.807 6.498
[3] 10.4317 9.1910 8.6957 8.3806

Theorem 2 11.618 10.473 9.932 9.102
Theorem 1 11.986 10.825 10.213 9.515

When dD ≤ 0.5, setting d(t) = 3.336 + 0.5sin(t) ≤
3.836, x(0) = [1,−1,−1,1]T , and f (x(t)) = [0.1137tanh
(x1(t)), 0.1279tanh(x2(t)),0.7994tanh(x3(t)),0.2368tanh
(x4(t))]

T , the state responses of system (1) in Example 1
are shown in Fig. 1.

Example 2: Consider the time-delay system (1) with
matrix parameters:

A =

[
−1.5 0

0 −0.7

]
, Ad =

[
0 0
0 0

]
,

B =

[
0.0505 0.0454
0.0987 0.2075

]
, Bd =

[
0.2381 0.9320
0.0388 0.5062

]
,

h1 = 0.3, h2 = 0.8.

The allowable maximum upper bounds of de-
lay(MUBD) dU for various dD are given in Table 2. It
is clear that Theorem 1 gets better results than some re-
cent results [3, 33, 35], which shows the improvement of
the proposed GDI inequality in reducing conservatism.

The trajectories of system (1) in Example 2 are shown
in Fig. 2 by setting d(t)= 8.965+0.55sin(t)≤ 9.515 with
dD ≤ 0.55, f (x(t)) = [0.3tanh(x1(t)),0.8tanh(x2(t))]T

and x(0) = [1,−1]T .

5. CONCLUSION

In this paper, stability analysis for linear time-delay sys-
tems with nonlinear disturbances has been investigated.
In order to decrease the conservatism of stability criteria,
two improved generalized double integral inequalities are
proposed to reduce estimation gap of the time derivative
of the constructed LKF . It has been proved that the pro-
posed GDI inequalities encompass well-known Wirtinger-
based double integral inequality. Stability criteria with the
framework of LMIs are obtained with the proposed GDI

Fig. 1. State trajectories of the system in Example 1.

Fig. 2. State trajectories of the system in Example 2.

inequalities and Wirtinger-based double integral inequal-
ity, respectively. Finally, two well-known numerical ex-
amples are given to demonstrate the less conservatism of
stability criteria derived from the proposed GDI inequali-
ties.
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