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Observer-based Controller Design for A T-S Fuzzy System with Unknown
Premise Variables
Wen-Bo Xie* O , He Li, Zhen-Hua Wang, and Jian Zhang

Abstract: For the stabilization problem of T-S fuzzy system, a new observer-based controller design approach
is proposed when premise variables are not accessible. With a fuzzy observer, the estimated states error system is
described as two parts: unknown premise variable caused terms and observer error terms. Consider the property that
the norm of the unknown premise variable caused terms are under a Lipschitz condition constraint of observer error,
an observer and controller errors augmented system is obtained. Then based on the Lyapunov function method, a
series of linear matrix inequality conditions are proposed to asymptotically stabilize the system, the observer gain
matrices are used to overcome the uncertainties caused by UPVs. Finally a simulation example is used to illustrate
the effectiveness of the proposed method, comparisons with traditional method shows the conservatism reduction
effects.
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1. INTRODUCTION

For the complicated nonlinear system control prob-
lems, abundant methods are proposed to achieve a satis-
fied control performance such as sliding mode, backstep-
ping [1–3], adaptive fuzzy control [4] and some other ap-
proaches [5–7]. Since the T-S fuzzy modelling method is
proposed in [8], abundant linear system control theories
are adopted in nonliner system control for its systematic
design process as in [9–15].

For the control problem with unmeasurable system
states, observer-controller method is an effective approach
[16–22]. The stability conditions of T-S control systems
can be described as a series of linear matrix inequali-
ties (LMIs) [23], and thus the control gain matrices can
be obtained by solving these condition through a convex
optimization process. But for the observer-controller ap-
proach, the stability conditions are often given as bilinear
matrix inequalities (BMIs), and the BMIs could only be
solved by recursively calculation process which is called
two-step methods as in [24, 25]. In recent years, one-step
methods are proposed to further reduce the conservatism
caused by two-step methods: by using a similar transfor-
mation process, the BMI conditions are changed into LMI
conditions with quadratic Lyapunov function in [26] and
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fuzzy Lyapunov function in [27]. For the T-S fuzzy sys-
tem without external disturbance, the separation princi-
ple is satisfied: an individual observer and controller can
be combined together to form a stable control structure
[19, 28].

The T-S fuzzy observer-controller design problem can
be considered as two cases according to the property of
premise variables [29]: the first case refers to known
premise variables, one can see [9]; the second case is
that the premise variables are unknown and the member-
ship functions also depends on the estimated premise vari-
ables [30]. In real engineering applications, the assump-
tion that the premise variables are measurable is very re-
strictive, so the unknown premise variables (UPVs) case
is widely studied: if the UPVs are partly unknown, the
membership function estimated errors can be transformed
into linear functions of observer error, then the observer-
controller errors augmented system can be stabilized as in
[31, 32]. In recent years, to reduce the conservatism for
partly UPVs case, the known premise variables are suffi-
ciently used in the observer-controller synthesis approach
in [33, 34]. If the premise variables are all unaccessible,
the control problem becomes more complicated, some re-
sults give a robust control approach to handle the uncer-
tainties caused by UPVs as in [35]. In [36], the Lipschitz

c⃝ICROS, KIEE and Springer 2019

http://www.springer.com/12555
https://orcid.org/0000-0002-3325-2779


908 Wen-Bo Xie, He Li, Zhen-Hua Wang, and Jian Zhang

conditions with observer error are used to treat the un-
certainties caused by UPVs; the observer and controller
stability LMI conditions are designed separately based on
the Lipschitz hypothesis in [37], for further results of the
Lipschitz condition method, Guerra et.al proposed a dif-
ferential mean value method to describe the UPVs caused
uncertain terms in [38]. For other research results of the
UPVs case, one can find H∞ methods in [39,40], the UPVs
caused terms are treated as coupled terms in error aug-
mented systems, in the meanwhile, system disturbance is
attenuated based on the robust approach. To further reduce
the conservatism, a kind of polynomial control design ap-
proach based on SOS method is proposed for the UPVs
case [41]. Although the current researches have achieved
great results in this field, there is still certain conservatism
in stability analysis.

In this paper, a new observer-based controller design
approach is proposed when the premise variables are all
unaccessible. Compared with the design methods in the
existing literature, the predefined constants and the sys-
tem conservatism can be reduced. With uncommon sys-
tem output matrices, classical observer and controller are
designed. Assuming that the UPVs caused uncertain terms
are satisfied under a Lipschitz condition with the norm of
observer error, then a new one-step method is designed in
stability analysis process. It is shown that the observer
gain matrices will make the main contribution of over-
coming the membership functions uncertainties affections
caused by UPVs, and during the increasement of member-
ship functions partial derivatives with respect to premise
variables, a high gain observer will guarantee the system
stability. Finally, a simulation example is given to show
the effectiveness of proposed method, also, comparisons
with existing method are made to illustrate the conser-
vatism reduction effects.

The rest of the paper is organized as follows: Section
2 introduces the T-S fuzzy system and control problem.
Section 3 gives the observer-controller design procedure.
Section 4 presents the main results in stability analysis.
Section 5 illustrates the simulation example. Some closing
remarks are presented in conclusion.

Notations: Throughout the paper, Rn denotes the n-
dimensional Euclidean space. I is an identity matrix, and
0 denotes a zero matrix or a zero scalar without con-
fusion. For a matrix X , XT and X−1 denote its trans-
pose and inverse matrices, respectively, the Hermitian sec-
tion of X is denoted by He{X} = X +XT , || ∗ || =

√
∗T∗

is the Euclidean-norm of a vector, while ||X || = {X :∫ ∞
o ||X(t)||2dt < ∞} is an L2 norm. ∂∗

∂∗ denotes the par-
tial derivative. Without leading to confusion, f will be
used to denote a function or a variable f (∗). ⋆ denotes the
transpose of the corresponding block matrix.

2. PROBLEM STATEMENT

Consider a class of T-S fuzzy system:

Rule i : IF z1(t) is Mi1 ... and zp(t) is Mip THEN

ẋ(t) = Aix(t)+Biu(t),

y(t) =Cix(t), (1)

where Mi j are fuzzy sets; i = 1,2, ..., l with l denoting the
number of fuzzy rules; j = 1,2, ..., p with p denoting the
number of premise variables; z(t) = [z1(t) ... zp(t)]T ∈ Rp

is the premise variable; x(t)∈Rn is the system state; y(t)∈
Ro is the measured output; u(t) ∈ Rm is the control input;
Ai ∈ Rn×n, Bi ∈ Rn×m and Ci ∈ Ro×n are system parameter
matrices, where i = 1,2, ..., l. The system dynamics can
be defined as:

ẋ(t) =
l

∑
i=1

hi(z(t))[Aix(t)+Biu(t)],

y(t) = ∑l
i=1 hi(z(t))Cix(t), (2)

where
l

∑
i=1

hi(z(t)) = 1,

hi(z(t)) =
∏p

j=1 Mi j(z j(t))

∑l
i=1 ∏p

j=1 Mi j(z j(t))
≥ 0,

for all i, hi(z(t)) is the normalized grade of membership,
and Mi j(z j(t)) represents the grade of membership of z j(t)
corresponding to the fuzzy set Mi j, all the elements in
premise variable z are considered as unmeasurable. For
simplicity, hi = hi(z(t)) is used in the rest of the paper.

For the system (2), an observer-based controller for sta-
bilization control task will be designed in the consequent
sections.

3. OBSERVER-BASED CONTROLLER

3.1. Observer design
An observer for system (2) with UPVs is designed as:

˙̂x =
l

∑
i=1

hi(ẑ)[Aix̂+Biu+Li(y− ŷ)],

ŷ =
l

∑
i=1

hi(ẑ)Cix̂, (3)

where x̂ ∈ Rn is the estimated system state, ŷ ∈ Ro is the
estimated system output, Li ∈ Rn×o are observer gain ma-
trices. Define observer error e(t) = x(t)− x̂(t), and based
on system (2) and observer (3), h, ĥ are used to denote
h(z), h(ẑ) respectively in the consequent sections, the ob-
server error dynamics can be described as:

ė =
l

∑
i=1

hi[Aix+Biu]−
l

∑
i=1

ĥi[Aix̂+Biu+Li(y− ŷ)]
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=
l

∑
i=1

(hi − ĥi)(Aix+Biu)+
l

∑
i=1

l

∑
j=1

ĥiĥ j(Ai −LiC j)e

+
l

∑
i=1

ĥiLi

l

∑
j=1

(ĥ j −h j)C jx. (4)

Proposition 1: For system (2) whose premise variables
are unknown, there exists a constant µ > 0, with which the
following Lipschitz condition holds:

||∆|| ≤ µ||e||,

where

∆ =
l

∑
i=1

(hi − ĥi)(Aix+Biu)+
l

∑
i=1

ĥiLi

l

∑
j=1

(ĥ j −h j)C jx.

Proof: Based on Theorem 4.5 in [31], the UPVs caused
term which is related to system state and control input can
be constrained as:

||
l

∑
i=1

(hi − ĥi)(Aix+Biu)|| ≤ µ1||e||,

where constant scalar µ1 > 0. Similar with the above re-
sults, the system output uncertain term is satisfied with the
following condition:

||
l

∑
j=1

(ĥ j −h j)C jx|| ≤ µ2||e||,

where constant scalar µ2 > 0. Then the norm of uncertain
term ∆ is:

||∆|| ≤ µ1||e||+ ||
l

∑
i=1

ĥiLi

l

∑
j=1

(ĥ j −h j)C jx||

≤ µ1||e||+
l

∑
i=1

||ĥiLi|| · ||
l

∑
j=1

(ĥ j −h j)C jx||

≤ µ1||e||+µ2

l

∑
i=1

||ĥiLi|| · ||e||. (5)

Given the fact that the membership functions and observer
gain matrices are both upper limited, so there exists µ3 > 0
making ∑l

i=1 ||ĥiLi|| ≤ µ3 holds, and thus the above in-
equality is transformed into:

||∆|| ≤ (µ1 +µ2µ3)||e||= µ||e||, (6)

where µ = µ1 +µ2µ3 > 0. This completes the proof. □
Remark 1: With the conclusion in [31], as long as the

membership functions are smooth and the variables are
defined on a compact set, the constant µ can be obtained
from:

µ = ||∂∆/∂e||max. (7)

Then the observer error system can be transformed
into:

ė = ∆+
l

∑
i=1

l

∑
j=1

ĥiĥ j(Ai −LiC j)e. (8)

3.2. Estimated states feedback controller design
The controller is designed as:

u =
l

∑
i=1

ĥiKix̂, (9)

where Ki ∈ Rm×n are control gain matrices, substituting u
into system (2), one has

ẋ =
l

∑
i=1

l

∑
j=1

hiĥ j(Aix+BiK j x̂)

=
l

∑
i=1

l

∑
j=1

hiĥ j(Ai +BiK j)x−
l

∑
i=1

l

∑
j=1

hiĥ jBiK je. (10)

Considering (8) and (10), the augmented system of ob-
server and controller errors can be written in contact form:

˙̄x =
l

∑
i=1

l

∑
j=1

l

∑
k=1

hiĥ jĥk(Āi jkx̄+D), (11)

where

Āi jk =

[
Ai +BiK j −BiK j

0 A j −L jCk

]
∈ R2n×2n,

D =

[
0
∆

]
∈ R2n, x̄ =

[
x
e

]
∈ R2n.

4. STABILITY ANALYSIS

Before illustrating the main results for stability analysis,
some useful Lemmas are given below:

Lemma 1: For matrices X and Y with appropriate di-
mensions, a positive constant ε > 0, and a matrix F which
satisfies FT F ≤ I, the following inequality holds [42]:

XT FY +Y T FX ≤ εXT X + ε−1Y TY. (12)

Lemma 2: For a matrix Ω < 0 and a matrix X with
appropriate dimension will make the XT ΩX ≤ 0 satisfied,
and there will exist a scalar α which makes the following
inequality holds [43]:

XT ΩX ≤−α(XT +X)−α2Ω−1. (13)

With the above Lemmas, the main results are given in
Theorem 1:

Theorem 1: For ∀ i, j,k = 1,2, ..., l, α > 0 is prede-
fined scalar, if there exists ε ∈ R, N1 = NT

1 > 0 ∈ Rn×n,
X2 =XT

2 > 0∈Rn×n, Yi ∈Rm×n, Zi ∈Rm×o which make the
linear matrix inequalities (14) hold, system (11) is asymp-
totically stable.
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He{AiN1 +BiYj} −BiYj N1

⋆

{
εµ2I+

He{P2A j −Z jCk}

}
0

⋆ ⋆ −εI
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

0 0 0 0
P2 αI 0 0
0 0 αI 0

−εI 0 0 αI
⋆ −2αN1 0 0
⋆ ⋆ −2αN1 0
⋆ ⋆ ⋆ −2αN1


< 0. (14)

Proof: Given P = diag[P1 P2] > 0, then define a Lya-
punov function V = x̄T Px̄ ≥ 0, based on Lemma 1 and
Proposition 1, the derivative of V is:

V̇ =
l

∑
i=1

l

∑
j=1

l

∑
k=1

hiĥ jĥk[x̄T (ĀT
i jkP+PĀi jk)x̄

+DT Px̄+ x̄T PD]

≤
l

∑
i=1

l

∑
j=1

l

∑
k=1

hiĥ jĥk[x̄T (ĀT
i jkP+PĀi jk)x̄

+ εDT D+ ε−1x̄T P2x̄]

≤
l

∑
i=1

l

∑
j=1

l

∑
k=1

hiĥ jĥk[x̄T (ĀT
i jkP+PĀi jk)x̄

+ εµ2eT e+ ε−1x̄T P2x̄]

≤
l

∑
i=1

l

∑
j=1

l

∑
k=1

hiĥ jĥk[x̄T (ĀT
i jkP+PĀi jk

+ εµ2T+ ε−1P2)x̄],

where T =

[
0 0
0 I

]
. If the following condition holds, V̇ <

0 will be satisfied:

ĀT
i jkP+PĀi jk + εµ2T+ ε−1P2 < 0, (15)

the above inequalities are in the form of nonlinear ma-
trix inequalities, and with schur complement property, the
equivalent inequalities are obtained as:[

ĀT
i jkP+PĀi jk + εµ2T P

⋆ −εI

]
< 0, (16)

and condition (16) can be expanded as:
He{P1Ai +P1BiK j} −P1BiK j

⋆

{
εµ2I+

He{P2A j −P2L jCk}

}
⋆ ⋆
⋆ ⋆

P1 0
0 P2

−εI 0
⋆ −εI

< 0. (17)

Define Z j = P2L j, N1 = P−1
1 and Yj = K jN1, pre- and

post-multiply matrix diag[N1 N1 N1 N1] with the above in-
equalities, we get:

He{AiN1 +BiYj} −BiYj

⋆

{
εµ2N1N1+

He{N1(P2A j −Z jCk)N1}

}
⋆ ⋆
⋆ ⋆

N1 0
0 N1P2N1

−εN1N1 0
⋆ −εN1N1

< 0, (18)

based on Lemma 2, the right-bottom block matrix in (18)
is rewritten as inequalities:

{
εµ2N1N1+

He{N1(P2A j −Z jCk)N1}

}
⋆
⋆

0 N1P2N1

−εN1N1 0
⋆ −εN1N1



= F


{

εµ2I+
He{P2A j −Z jCk}

}
0 P2

⋆ −εI 0
⋆ ⋆ −εI

F

≤−2αF −α2




εµ2I+
He{P2A j

−Z jCk}

 0 P2

⋆ −εI 0
⋆ ⋆ −εI


−1

,

(19)

where F = diag[N1 N1 N1]. With schur complement prop-
erty, it is easy to obtain condition (14), and this completes
the proof. □

Remark 2: If one wants to reduce the conservatism
caused by the quadratic fuzzy Lyapunov function V =
x̄T Px̄, many membership functions dependent research re-
sults can be used in most cases, such as the method of
bounding the time derivatives of the membership func-
tion in [40], and linear piecewise function approximation
methods in [44, 45].

Remark 3: From the stability conditions (14), one can
clearly find that a positive constant matrix εµ2I, µ is a
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Table 1. Number of predefined constants comparison.

Number of predefined constants
Theorem 1 from [37] 3
Theorem 1 from [37] 5

Theorem 1 of this paper 2

predefined constant, when the value of µ increases, the
term He{P2A j −Z jCk} must be a negative definite matrix
with negative eigenvalues so as to overcome the impacts
of εµ2I. In other words, the eigenvalues of He{Z jCk} will
drastically decrease as µ increasing, so a high gain ob-
server could be obtained when µ is large.

Remark 4: Compared with the results in [37], Theo-
rem 1 in this paper has some improvements. As observed
from Theorem 1 and 2 in [37], the LMI conditions contain
many constants which must be predefined, and may lead
to considerable conservativeness. In Theorem 1 of this
paper, however, there are only two predefined constants,
that may give less conservatism, Table 1 is given below to
show the comparisons.

Remark 5: The Theorem 2 of [37] restricts the con-
trol input u in order to limit the items caused by UPVs,
however, the limit of the control input will make the up-
per bound of x1 smaller, and the stability region is also
restricted, so it will lead to a certain conservatism. In the
following simulation examples, by calculating the upper
bound of x1, the conservatism comparisons between [37]
and this paper for upper bound of x1 are presented.

5. SIMULATION EXAMPLE

The simulation example in [37] is adopted here, the pa-
rameter matrices of the simulation model are:

A1 =

[
1 0
−1 −1

]
, A2 =

[
2.5 0
−2.3 −1

]
,

B1 = B2 =
[
1 0

]T
, C1 =C2 =

[
10 2

]
,

and membership functions are given as follows:{
h1(x2) = 0.5+ arctan(x2)/π,
h2(x2) = 1−h1(x2),

the system has common output matrix C and common con-
trol input matrix B, so the UPVs caused uncertain term is
described as:

2

∑
i=1

(hi − ĥi)Aix =
1
π
(arctan(x2)− arctan(x̂2))∆Ax

≤ µ||e||, (20)

where ∆A =

[
−1.5 0
1.3 0

]
, and :

µ =|| 1
π

∂ (arctan(x2)− arctan(x̂2))∆Ax/∂e||max

Table 2. Comparison of obtained x1max.

x1max

Theorem 1 from [37] 1.139
Theorem 1 from [37] 1.0572×10−6

Theorem 1 of this paper 3.1496×104

=|| 1
π

∆Ax
1+(x2 − e(2))2 ||max

=max{ 3.94x2
1

π2[1+(x2 − e(2))2]
}0.5

=max{1.9849|x1max|
π

},

where x1max denotes the upper bound of x1. Using (20),
x1max in Theorem 1 of this paper and [37] can be ob-
tained. For Theorem 2 in [37], by using feasible func-
tion of MATLAB R2016b, the norm upper limit of con-
trol law is η = 0.55, control gain matrices are K1 = K2 =[
255077 −50916

]
, consider the state feedback control

law as:

∥u∥= ∥
2

∑
i=1

hiKix∥= 5.2022×105|x1max| ≤ η .

x1max obtained from Theorem 1 of this paper and Theo-
rems 1-2 in [37] are listed in Table 2. It is easy to see that
x1max indicates the region of stability, which also shows
the conservatism. In the simulation process, α = 1 is cho-
sen. As shown in (20), the value of µ is dependent on sys-
tem state x1, so the greater value of µ is obtained from the
LMI condition in Theorem 1, the larger stability area of x1

can be obtained, and it is obvious that there is no limitation
for state x2. µmax = 1.99×104 can be got by a recursively
calculation procedure of the conditions in Theorem 1, the
corresponding x1max = 3.1496×104. The conditions (14)
in Theorem 1 can be solved by linear matrix inequalities
toolbox in MATLAB R2016b, then the matrix variables
N1,P2,Yi,Zi can be obtained. Therefore, the observer and
controller gains can be calculated as:

L1 =

[
3234.1
−2172.0

]
, L2 =

[
3311.4

22224.0

]
,

K1 =
[
−3.739 0.119

]
, K2 =

[
−3.550 0.161

]
.

Obviously, the observer gain matrices are considerable
high so as to overcome the effects of term εµ2I. The sys-
tem initial state is set as x0 =

[
3.1496×104 1×105

]T ,
where x1 = 3.1496× 104 is x1max, x2 = 1× 105 is a great
enough arbitrary chosen value, and these are used as initial
values in simulation as a tough case to test the proposed
method. From Fig.1, high gain observer and controller
could make the system stable. But for most cases, the op-
erating area of x1 will only be limited in a small zone, for
example |x1| ≤ 100, and the corresponding µ = 63.183,
this will greatly release the requirement of observer gain,
the calculated observer and controller matrices are given
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Table 3. Comparison of obtained x1max.

x1max

The quadratic Lyapunov function method 3.1496×104

The fuzzy Lyapunov function method 2.6925×104

Table 4. Comparison of convergent time t for 5% error rel-
ative tolerance.

t(s)
Theorem 1 from [37] x1: 3.2, x2: 4.5
Theorem 2 from [37] x1: 2.6, x2: 4.3
Theorem 2 from [43] x1: 2.9, x2: 4.7

Theorem 1 of this paper x1: 2.5, x2: 4.1

as follows:

L1 =

[
0.535
−0.274

]
, L2 =

[
0.687
−0.397

]
K1 =

[
−4.924 0.740

]
, K2 =

[
−5.001 0.611

]
.

In order to compare with the simulation in [37], in
this paper, the simulation initial condition is set as x =[
100 100

]T . From Fig.2, it is shown that the low gain
observer-based controller can accomplish the stabilization
control task when the value of µ is relatively small, so one
can adjust the value of µ according to the specific system
properties and control task.

Remark 6: Aim at reducing the conservatism caused
by the quadratic fuzzy Lyapunov function V = x̄T Px̄, the
fuzzy Lyapunov function V = x̄T ∑l

i=1 hiPix̄ according to
reference [46] is used in Theorem 1. However, with the
same simulation example in this paper, the results of the
fuzzy Lyapunov function method have increased the con-
servatism to some extent. Because the boundary val-
ues of the membership function derivatives |ḣi(ẑ(t))| =
| ∂hi

∂ ẑ
∂ ẑ
∂ x̂

˙̂x(t)| ≤ |ϕ | involve certain conservatism. Table 3
is given to show the comparisons, therefore the quadratic
Lyapunov function is chosen to be used in Theorem 1 of
this paper.

Remark 7: Fig. 2 clearly show that the state variables
under control law (9) rapidly converge to zero with the
initial conditions x =

[
100 100

]T . In addition, with the
proposed method, the state variables converge faster than
that in [37, 43]. Table 4 is given below to show the com-
parisons.

6. CONCLUSION

The stabilization problem of observer-based controller
design for a class of UPVs T-S fuzzy system has been
addressed. The terms caused by the unknown premise
variables in observer error equations are restricted by the

Fig. 1. Observer and controller performance and control
input u with x10 = 3.1496×104, x20 = 1×105.

Fig. 2. Observer and controller performance and control
input u with x10 = 100, x20 = 100.
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Lipschitz conditions. Then a new method for transform-
ing the BMI conditions into LMI form is proposed, the
observer gain matrices mainly contributes to overcome
the unknown premise variables caused uncertainties, and
it has been proved that the observer-controller error sys-
tem is asymptotically stable. A simulation example has
been used to demonstrate the effectiveness of the designed
method, the observer gain matrices can be calculated ac-
cording to the specific control task or system properties,
and compared with the design methods in the existing lit-
erature, the system conservatism can be reduced.
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