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Finite-time Synchronization Control Relationship Analysis of Two Classes
of Markovian Switched Complex Networks
Xin Wang, Bin Yang*, Kun Gao, and Jian-an Fang

Abstract: In this paper, finite-time global synchronization control problem for a class of nonlinear coupling Marko-
vian switched complex networks (NCMSCNs) is investigated. Furthermore, according to differentiability of nonlin-
ear coupling function g(x,y), g(x,y) how to affect synchronization dynamics of the class of NCMSCNs is analyzed
by two viewpoints. The first is that if g(x,y) satisfies the Lipschitz condition and is derivable, the above question is
discussed by taking g(x,y) = L1x+L2y, g(x,y) =−L1x+L2y, g(x,y) = L1x−L2y and g(x,y) =−L1x−L2y, where
L1 > 0, L2 > 0. The second is that if nonlinear coupling function g(x,y) only satisfies the Lipschitz condition,
by analyzing the differences of synchronization control rules for the class of NCMSCNs and a class of linear cou-
pling Markovian switched complex networks (LCMSCNs), the problem is explored. Comparing the previous works
[12,21,22,26,33,34], the main improvement of this paper is that the works of this paper extend the existed analyzing
ideas of the finite-time global synchronization for nonlinear coupling complex networks, including NCMSCNs.
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1. INTRODUCTION

In the past few decades, because of the pioneering work
of Watts and Strogatz [1], complex networks which con-
sist of interacting dynamical states and interaction patterns
have been extensively studied [1, 2]. In various fields,
many applications of complex networks have been found.
For example, communication networks, social networks,
neural networks [3, 4]. Among the main research prob-
lems on complex networks, synchronization, as one of the
most important collective dynamical behavior properties
of the complex networks, has been aroused more and more
concern by many researcher [5–7]. Up till now, there are
a lot of different types of synchronization, for instance,
pin cluster synchronization, finite-time synchronization,
exponential synchronization and so on [8–10].

As is known to all, in a network environment, the dy-
namical behavior of each node may present randomly
switching phenomenon due to environmental variance,
component failures or repairs, and so on. If systems ex-
perience the above phenomena, they are usually called
Markovian switched systems [11]. Recently, many re-
sults of synchronization for Markovian switched complex
networks, which are one of Markovian switched systems,
have been derived [12–20]. For instance, Dong et al.
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[12] investigated the exponential synchronization problem
for a new array of nonlinearly and stochastically coupled
networks with Markovian switching via events-triggered
sampling. In [13], the authors proposed the issue of almost
sure cluster synchronization in nonlinearly coupled com-
plex networks with nonidentical nodes and time-varying
delay. Besides these, due to the limited speed of signals
traveling, processing speeds and the other environment el-
ements, these cause to produce time delays in Markovian
switched complex networks [21, 22].

In fact, the couplings which include the linear and non-
linear ones are important factors impacting the synchro-
nization [23]. Until now, some works of synchronization
for nonlinear coupling complex networks have been pro-
posed [23–29]. Based on the norm-bounded conditions,
an effective approach of solving nonlinear coupling one
is to linearize nonlinear coupling function [23–28]. It is
worth to mention that in [12, 23–25], although synchro-
nization problems for the addressed complex networks
with nonlinear coupling have been discussed, nonlinear-
ity of nonlinear coupling one how to affect synchroniza-
tion dynamics are still not analyzed. Until now, it is re-
grettable that extremely few publication [26] on the issue.
In [26], Liu et al. fixed the intermittent control as the
periodically intermittent control and chose three classes
-
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of nonlinear coupling functions to analyze dynamical be-
haviors of the synchronization for nonlinear coupled net-
works. Actually, from [23–25], it is not difficult to find
that nonlinear coupling function g(x) satisfies the Lips-
chitz condition, that is to say ∥g(x)− g(y)∥ ≤ L∥x− y∥,
where L > 0 and x,y ∈ Rn. According to ∥g(x)−g(y)∥ ≤
L∥x − y∥, we can get that limx→y

∥g(x)−g(y)∥
|x−y∥ ≤ L. Let

limx→y
∥g(x)−g(y)∥

|x−y∥ = L, then with increasing L, the nonlin-
earity of nonlinear coupling function g(x) will become
serious. That means L can be decided by g(x). Ac-
cording to [26], the nonlinearity of nonlinear coupling
function g(x) is closely related to synchronization dy-
namics of the addressed complex network. Therefore,
if limx→y

∥g(x)−g(y)∥
|x−y∥ = L, how to get L? The answer is

that we have to choose many different classes of nonlin-
ear coupling function g(x) to obtain many L values by
limx→y

∥g(x)−g(y)∥
|x−y∥ = L condition. It is easily seen that this

scheme is not practical and not flexible. If we directly
adjust L to study the above problem, the question will be-
come easy. If we use the viewpoint to solve the issue, how
to do. This is very interesting.

In practice, especially in some engineering fields, it is
desirable and more valuable that the convergence of a dy-
namical system is realized in finite-time rather than infi-
nite time [30]. Therefore, recently, some results on the
finite-time global synchronization problem for complex
networks have been proposed [31–34]. In [31], the au-
thors investigated the finite-time global synchronization
of drive-response inertial memristive neural networks with
time delay. Qiu et al. [32] proposed finite-time global syn-
chronization of multi-weighted complex dynamical net-
works with and without coupling delay. Note that until
now, about for finite-time global synchronization problem
of Markovian switched complex networks, there are still
a few publications [21, 22, 33, 34]. [21, 22] studied finite-
time global synchronization for two classes of Markovian
jump complex networks with partially unknown transi-
tion rates, respectively. In [33], the authors studied finite-
time global synchronization and identification of drive
complex network and response complex network with
Markovian jumping parameters, stochastic perturbations
and time delay. Liu et al. [34] investigated finite-time
global synchronization for a class of neutral complex dy-
namical networks with Markovian switching, partly un-
known transition rates and time-varying, mode- depen-
dent delays. Besides these, Huang et al. [14] proposed
finite-time H∞ sampled-data synchronization for Marko-
vian jump complex networks with time-varying delays.
The [35] was concerned with finite-time cluster synchro-
nization of Markovian switching complex networks with
stochastic perturbations. Combining the above analysis
of nonlinear coupling, Markovian switched complex net-
works and finite-time global synchronization, it is interest-
ing and necessary to study finite-time global synchroniza-

tion of nonlinear coupling Markovian switching complex
networks, especially, to analyze nonlinear coupling how to
impact synchronization dynamics for NCMSCNs in finite
time. To the best of our knowledge, there are no results to
be reported on the above topic.

Motivated by the above discussions, in this paper, we
will focus on the following two problems for a class of
NCMSCNs. Furthermore, in order to make nonlinear cou-
pling one become more general than that of [23–25], non-
linear coupling one is g(x,y), not g(x). The reason is that
g(x,y) is more general than that of g(x).

Problem 1 (The Effect of Nonlinear Coupling Function
For Finite-time Global Synchronization Of NCMSCNs):
According to the differentiability of g(x,y), we take two
ideas to discuss the problem 1.

(i) The first idea. If g(x,y) satisfies the Lips-
chitz condition and is derivable, there are ∥g(x1,y1)−
g(x2,y2)∥ ≤ L1∥x1 − x2∥ + L2∥y1 − y2∥, ∥g

′

x(x,y)∥ =

∥ limx→x1
g(x,y)−g(x1,y)

x−x1
∥ ≤ L1, ∥g

′

y(x,y)∥ = ∥ limy→y1

g(x,y)−g(x,y1)
y−y1

∥ ≤ L2, x1, x2, y1, y2 ∈ Rn. Let ∥g
′

x(x,y)∥= L1

and ∥g
′

y(x,y)∥= L2, then one obtains g(x,y)= L1x+L2y+
C, g(x,y) = −L1x+L2y+C, g(x,y) = L1x−L2y+C and
g(x,y) = −L1x − L2y +C, where C is constant. Thus,
according to the 3rd paragraph analysis, problem 1 can be
discussed by adjusting L1 and L2. Here, we make C = 0.
The reason is that problem 1 is only connected with L1

and L2. Problem 1 is analyzed by the following steps:
1) To get sufficient conditions of finite-time global syn-

chronization for the NCMSCNs and the LCMSCNs.
2) To build the relationship conditions of finite-time

global synchronization for the NCMSCNs and the LCM-
SCNs.

3) The effect of nonlinear coupling function for finite-
time global synchronization of NCMSCNs is testified by
adjusting L1 and L2.

(ii) The second idea. If nonlinear coupling function
g(x,y) only satisfies the Lipschitz condition, the first idea
is not used. In this situation, how to study problem 1?
In this paper, we adopt a new idea to investigate problem
1. The idea is to compare the differences of synchroniza-
tion control rules for the NCMSCNs and the LCMSCNs.
According to the differences, problem 1 can be explored.
The steps are as follows: 1) Sufficient conditions of finite-
time global synchronization for the NCMSCNs and the
LCMSCNs are derived. 2) The difference relationship of
synchronization control rules for the NCMSCNs and the
LCMSCNs is built. 3) To analyze the relationship between
the differences and problem 1. 4) To testify the results of
3).

Problem 2 (Finite-time Global Synchronization Condi-
tions For LCMSCNs and NCMSCNs): In order to solve
problem 1, a class of LCMSCNs and a class of NCMSCNs
are considered. By using feedback control technique, suf-
ficient conditions of finite-time global synchronization for
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the two classes of Markovian switching complex networks
are derived. The proposed schemes are testified by Chua’s
circuit networks.

Comparing with previous works [12, 21, 22, 26, 33, 34],
combining the above analysis and problem 1, the main dif-
ficulties and the main improvements of this paper are as
follows.

(i) The main difficulties of this paper are that how to
solve problem 1 and how to analyze the conservatism
of the proposed results based on problem 1. In [12],
from the addressed model aspect, although the authors
considered a class of nonlinearly and stochastically cou-
pled networks with Markovian switching, they focused
on sufficient conditions for the exponential synchroniza-
tion of the addressed model via events-triggered sampling
by self-adaptive learning. In [21, 22, 33, 34], the authors
mainly concentrated on sufficient conditions for the expo-
nential synchronization of finite-time global synchroniza-
tion of the addressed LCMSCNs, instead of problems 1-2
of this paper. Despite Liu et al. [26] investigated the effect
of nonlinear coupling function for global synchroniza-
tion and synchronization conditions for nonlinear coupled
complex network, there are three differences between [26]
and this paper. The first is the addressed synchronization
problem aspect. Global synchronization was considered
in [26]. In this paper, we study finite-time global synchro-
nization. The second is the addressed model aspect. In the
model of this paper, there is Markovian switching. In the
model of [26], there was not Markovian switching. The
third is that viewpoints of analyzing problem 1 in the two
papers are quite different. From the above analysis, it is
observed that until now, there is no literatures of problem 1
based on the above two ideas. Therefore, to use the above
viewpoints to study problem 1 is a great challenge.

(ii) The main improvement of this paper is that the
works of this paper can extend the existed analyzing ideas
of the finite-time global synchronization for nonlinear
coupling complex networks, including NCMSCNs.

The main contributions of this paper is the above main
improvement of this paper.

The rest of this paper is organized as follows: Model
and preliminaries are presented in Section 2. In Section
3, the sufficient conditions of finite-time synchronization
based on Problems 1 and 2 are given. Chua’s circuit net-
work simulations of the proposed results and the analysis
of Problem 1 are provided in Section 4. The conclusions
are made in Section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this section, problem formulation and preliminaries
are briefly introduced.

Let {r(t), t ≥ 0} be a right-continuous Markovian chain
on the probability space (Ω,F ,{Ft}t≥0,P) taking values

in a finite state space S = {1,2, · · ·,s} with a generator
Π = (δi j)s×s (i, j ∈ S) given by

P{r(t +∆t) = j|r(t) = i}

=

{
δi j∆t +o(∆t), i f (i ̸= j),
1+δi j∆t +o(∆t), i f (i = j),

where ∆t > 0, lim∆t→0(o(∆t)/∆t) =0, δi j >0 (∀i ̸= j)
is the transition rate from mode i to mode j and δii =
−∑i̸= j δi j < 0.

In this paper, we consider a class of NCMSCNs with
time delay and a class of LCMSCNs with time delay, re-
spectively. They are as follows:

ẋi(t) =c(r(t))
N

∑
j=1

ai j(r(t))Γ(r(t))g(x j(t),x j(t − τ))

+B(r(t)) f (xi(t))+ui(t,r(t)), (1)

ẋi(t) =c(r(t))
N

∑
j=1

ai j(r(t))Γ(r(t))(x j(t)+ x j(t − τ))

+B(r(t)) f (xi(t))+ui(t,r(t)), (2)

where i = 1, 2, . . ., N, c(r(t)) represents the coupling
strength in mode r(t) and c(r(t)) > 0, Γ(r(t)) = (γi j) ∈
Rn×n (γii > 0) is inner-coupling matrix in mode r(t),
A(r(t)) = (ai j(r(t)))N×N is outer-coupling matrix, τ > 0
is coupling node time delay, f (·) : Rn → Rn which stands
for the activity of ith node is a vector-value function, g(·, ·)
denotes nonlinear coupling function and g(·, ·) : Rn → Rn,
ui(t,r(t)) denotes the control input of ith node in mode
r(t).

Remark 1: Comparing the nonlinear coupling one,
nonlinear coupling function in the network (1) of this
paper is more general than that of [5, 23–28, 36]. The
reason is that nonlinear coupling function was g(x(t)) in
[5, 23–28, 36]. We can see that g(x(t)) is one special case
of g(x(t),x(t − τ)). Beside this, in [21, 22, 33, 34], the
authors addressed LCMSCNs. Therefore, from coupling
function aspect, the network (1) of this paper extends the
models of [21, 22, 33, 34].

Let s(t) be the synchronization state of the networks (1)-
(2), then s(t) satisfies

ṡ(t) =B(r(t)) f (s(t)). (3)

According to some literatures of finite-time synchro-
nization for complex networks [21, 22, 31–34], and com-
bining the networks (1)-(2), the controller is as follow:

ui(t,r(t)) =− εi(r(t))Γ(r(t))ei(t)

− ki(r(t))
ρ(r(t))

sign(ei(t))|ei(t)|β , (4)

where εi(r(t)) > 0, ki(r(t)) > 0, ρ(r(t)) > 0, |ei(t)|β =
(|ei1(t)|β , |ei2(t)|β , . . . , |ein(t)|β )T , sign(·) is the sign func-
tion and sign(ei(t)) = (sign(ei1(t)),sign(ei2(t)), . . . ,sign
(ein(t)))T , β satisfies 0 < β < 1 and β ∈ R.
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For notation simplicity, we denote B(r(t)), Γ(r(t)),
c(r(t)), ai j(r(t)), εi(r(t)), ki(r(t)), and ρ(r(t)) as Br, Γr,
cr, ar

i j, εir, kirand ρr, respectively.
Remark 2: Comparing the network models (1) and (2),

there is no difference except coupling functions. Why we
discuss them? The reason is closely related to problem 1
based on the second idea. According to the steps of the
second idea, in order to analyze problem 1, firstly, finite-
time synchronization conditions of the networks (1) and
(2) need to be derived. Secondly, by using the obtained
results, ε (1)

ir and k(1)ir of the controller (4) for finite-time
synchronization of the network (1) are designed. Similar
to the above method, ε (2)

ir and k(2)ir of the controller (4) for
finite-time synchronization of the network (2) can also be
designed. Thus, under the above two obtained controller
(4), the networks (1) and (2) can achieve finite-time syn-
chronization, respectively. Furthermore, it is not difficult
to find the differences between ε (1)

ir and ε (2)
ir , k(1)ir and k(1)ir .

Because the networks (1) and (2) are quite same except
coupling functions g(x j(t),x j(t−τ)) and x j(t)+x j(t−τ),
the differences of the control rules of ε (1)

ir , ε (2)
ir , k(1)ir and

k(1)ir are originated from the coupling functions of the net-
works (1) and (2). Therefore, by adopting the viewpoint,
the problem 1 is discussed.

Subtracting (3) from (1) and (2), we can obtain the fol-
lowing error system of the networks (1) and (2), respec-
tively.

ėi(t) =BrF(ei(t))+ cr

N

∑
j=1

ar
i jΓrG(e j(t),e j(t − τ))

− εirΓrei(t)−
kir

ρr
sign(ei(t))|ei(t)|β , (5)

ėi(t) =BrF(ei(t))+ cr

N

∑
j=1

ar
i j(e j(t)+ e j(t − τ))

− εirΓrei(t)−
kir

ρr
sign(ei(t))|ei(t)|β , (6)

where i = 1,2, . . . ,N, F(ei(t)) = f (xi(t)) − f (s(t)),
G(e j(t),e j(t − τ)) = g(x j(t),x j(t − τ))−g(s(t),s(t − τ)).

Remark 3: As is known to all, traditional finite-time
control techniques are based on sliding mode controllers,
which utilize sign function and give rise to the phe-
nomenon of chattering. How to avoid this phenomenon in
(4). From [28,37,39], chatting will occur when the control
in the addressed system adopts switching function. Un-
til now, some methods for attenuating chatting have been
proposed [28, 37, 39]. In [37], although the sign function
in the switching control term was used, the switching con-
trol term can be softened to be a smooth signal by us-
ing low-pass filter technique. Tang addressed that some
"smooth" function must be used instead of the sign func-
tion in order to eliminate chatting of sliding mode con-
trol system [38]. Despite there is the sign function in the
controller (4) of this paper, the phenomenon of chatting

can not be happened because the switching control term
( εir

ρ(r(t)) |ei(t)|β )sign(ei(t)) is smooth function when ei(t)>
0 and ei(t) < 0. The analysis is as follows. Assuming
that ei(t) satisfies ∥ lim△→0 ei(t+ △)− ei(t)∥ = Ci, where
Ci > 0, one obtains ∥ėi(t)∥ = ∥ lim△→0

ei(t+△)−ei(t)
△ ∥ =

∥ lim△→0
Ci
△ ∥ → +∞. Because the functions F(ei(t)) and

G(e j(t),e j(t − τ)) satisfy assumption 1, the two func-
tions are bounded. Thus, combining (5) and (6), we
have ∥(−εirΓrei(t)− εir

ρr
sign(ei(t))|ei(t)|β )∥ → +∞. That

means ∥ei(t)∥ → +∞ and ∥ |ei(t)|β ∥→ +∞. It is clear
that the result is wrong. In order to make ∥ėi(t)∥ bounded,
we have ∥ėi(t)∥ = ∥ lim△→0

Ci
△ ∥ ≤ χ < +∞. Thus, we get

∥ lim△→0(ei(t+ △)− ei(t))∥ → 0. This shows that ei(t) is
smooth function. Therefore, eβ

i (t) (ei(t)> 0, sign(ei(t))=
1) and (−ei(t))β (ei(t)< 0, sign(ei(t)) =−1) are smooth
function. We can draw that ( εir

ρ(r(t)) |ei(t)|β )sign(ei(t)) is
smooth function when ei(t)> 0 and ei(t)< 0.

In order to obtain the main results, the following defini-
tion, assumptions and lemmas are needed.

Definition 1: The networks (1) and (2) are said to
achieve global synchronization in finite-time t∗, if there
exists a constant t∗ > 0 depends on the initial state vector
value x(t), for any t ≥ t∗, such that

E∥xi(t)− s(t)∥= 0,as t → t∗

holds for any i ∈ {1,2, . . . ,N}, where x(t) = (xT
1 (0), . . . ,

xT
N(0))

T , s(t) = (s1(t), . . . ,sn(t))T ∈ Rn is the synchroniza-
tion state of the the networks (1) and (2).

Assumption 1: The functions f (·) and g(·, ·) satisfy
the Lipschitz condition. That means there exist constants
L > 0, L1 > 0 and L2 > 0 such that

∥ f (x)− f (y)∥ ≤ L∥x− y∥,∀x,y ∈ Rn.

∥g(x1,y1)−g(x2,y2)∥ ≤ L1∥x1 − x2∥+L2∥y1 − y2∥,
∀x1,x2,y1,y2 ∈ Rn.

Remark 4: To deal with nonlinear coupling, there are
some methods existed. According to the existed literatures
[5, 23–28, 36], which were about to investigate synchro-
nization problems for nonlinear coupling complex net-
works, some methods of solving nonlinear coupling in-
clude:

1) Nonlinear coupling function g(x) is processed by
Lipschitz condition. This can be seen in [23, 24].

2) g(x)− αx is solved by Lipschitz condition, where
α > 0. The [5, 25, 36] showed the method.

3) Nonlinear coupling function is bounded. The scheme
was used in [27].

4) Nonlinear coupling function satisfies Lipschitz con-
dition and is bounded. This method was adopted in [28].

5) Nonlinear coupling function satisfies the local Lip-
schitz condition and cooperative property of the nonlin-
ear protocol. This was shown in [26]. Actually, from
the above existed methods, in order to obtain proposed
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results, nonlinear coupling functions need to satisfy norm-
bounded condition. Furthermore, comparing nonlinear
coupling methods of [5,23–28,36] and this paper, one ob-
tains that the following results:

1) In [23, 24], g(x) satisfies ∥g(x)− g(y)∥ ≤ L∥x− y∥,
where L > 0. It is clear that ∥g(x)− g(y)∥ ≤ L∥x− y∥ is
one special case of ∥g(x1,y1)−g(x2,y2)∥ ≤ L1∥x1−x2∥+
L2∥y1 − y2∥, where L1 > 0 and L2 > 0.

2) In [5, 25, 36], g(x) satisfies |(g(x)− g(y))−α(x−
y)| ≤ β |x−y|, where α > 0, β > 0, | · | means the absolute
value. Let ∥(g(x)−g(y))−α(x− y)∥ ≤ β∥x− y∥. If g(x)
satisfies Lipschitz condition, one obtains that ∥(g(x)−
g(y))−α(x−y)∥≤ ∥(g(x)−g(y))∥+α∥(x−y)∥≤ γ∥x−
y∥+α∥(x− y)∥ = (γ +α)∥(x− y)∥ = L∥(x− y)∥, where
L = γ +α , γ > 0 and α > 0. That means under the above
condition, the method of solving g(x) in [5, 25, 36] is one
special case of assumption 1 in this paper.

3) In [27], g(x) satisfies ∥g(x)∥ ≤ ζ , where ζ > 0.
If ζ = L∥x − y∥, ∥g(x)∥ ≤ ζ is one special case of
∥g(x1,y1)−g(x2,y2)∥ ≤ L1∥x1 − x2∥+L2∥y1 − y2∥.

4) In [28], g(x,y) satisfies ∥(g(x,y)−g(x,y))∥ ≤ ϑ∥x−
y∥+θ(y), where ϑ > 0 and θ(y)≥ 0. Let θ(y) = L2∥y2−
y1∥, then the method of [28] and this paper is same.

5) In [26], g(x,y) satisfies three conditions: (i) g(x,y)
is a continuous mapping and satisfies the local Lipschitz
condition. (ii) g(x,y) satisfies (x−y)g(y,x)≤−α(x−y)2,
where ∀x ̸= y, α > 0. (iii) g(x,y) =−g(y,x). In Assump-
tion 1 of this paper, if g(x,y) satisfies the local Lipschitz
condition, the conservatism of the method which dealt to
nonlinear coupling function g(x,y) in [26] is higher than
that of Assumption 1 in this paper.

Assumption 2: Time delay in the networks (1)-(2) sat-
isfies 0 ≤ τ ≤ τM.

Assumption 3 (Yin et al. [40]): Let 0 < β < 1 and λ >
0, there exists a continuous function g : [0,∞) → [0,∞)
with g(0)> 0, for any 0 ≤ u ≤ t, such that

g(t)−g(u)≤−λ
∫ t

u
(g(s))β ds.

Assumption 4: Suppose that the initial condition of
the networks (1) and (2) are given by xi(z) = φi(z) ∈
C([−τ,0],Rn), i = 1,2, . . . ,N, where C([−τ,0],Rn) de-
notes the set of continuous functions mapping the interval
[−τ,0] into Rn.

Lemma 1 (Bhat et al. [41]): Suppose that function
V (t) : [0,∞) → [0,∞) is differentiable (the derivative of
V(t) at 0 is in fact its right derivative) and

dV (t)
dt

≤−ηV α(t),

where η > 0 and 0 < α < 1. Then V(t) will reach zero
at finite time t∗ ≤ V 1−α(t)/(η(1−α)) and V(t)=0 for all
t ≥ t∗.

Lemma 2 (Boyd et al. [42]): For any vector x,y ∈ Rn

and one positive definite matrix Q > 0, the following in-
equality holds

2xT y ≤ xT Q−1x+ yT Qy.

Lemma 3 (Mei et al. [43]): Let x1,x2, . . . ,xn ∈ Rn are
any vectors and 0 < q < 2 is a real number satisfying

∥x1∥q + · · ·+∥xn∥q ≥ (∥x1∥2 + · · ·+∥xn∥2)q/2.

Lemma 4 (Wang and Xiao [44]): If a1,a2, · · · ,an ≥ 0
and 0 < p ≤ 1, then

(
n

∑
i=1

ai)
p ≤

n

∑
i=1

ap
i .

Lemma 5: If one positive definite matrix Q =
(qi j)n×n ∈ Rn×n and Q > 0, then the following statements
are equivalent:
1) qii > 0.
2) Every real eigenvalue of Q is positive.

Lemma 6: If g(x,y) is derivable and g(x,y) satisfies
the Lipschitz condition, there exist constants L1 > 0 and
L2 > 0 such that ∥g

′

x(x,y)∥ ≤ L1, ∥g
′

y(x,y)∥ ≤ L2, where
g

′

x(x,y) and g
′

y(x,y) are the partial derivatives of g(x,y)
with respect to independent variables x and y, respectively.

Proof: Because g(x,y) is derivable and g(x,y) satisfies
the Lipschitz condition, that means there are

∥g
′

x(x,y)∥= ∥ lim
x→x1

g(x,y)−g(x1,y)
x− x1

∥ ≤ L1.

∥g
′

y(x,y)∥= ∥ lim
y→y1

g(x,y)−g(x,y1)

y− y1
∥ ≤ L2.

Remark 5: In this paper, according to assumption
1, lemma 6, and combining the first idea, one obtains
g(x,y) = L1x+L2y, g(x,y) = L1x−L2y, g(x,y) =−L1x+
L2y and g(x,y) =−L1x−L2y, where L1 > 0, L2 > 0. It is
observed that g(x,y) = L1x−L2y and g(x,y) =−L1x+L2y
are not strictly increasing. In [26], in order to avoid non-
linear coupling function g(x,y) to increase strictly, and
make g(x,y) become more general, g(x,y) satisfies the
local Lipschitz condition and cooperative property of the
nonlinear protocol. From strict increase aspect, the tech-
niques of this paper and [26], which are to process g(x,y),
are very similar. But for problem 1, the method of this
paper is more practical and more flexible than that of [26].
The reason is that the scheme of this paper is based on ad-
justing L1 and L2. The way of [26] was built on choosing
different classes of nonlinear functions g(x,y) according
to (x− y)g(y,x)≤−α(x− y)2.

Remark 6: Although g(x,y) = L1x−L2y and g(x,y) =
−L1x + L2y are not strictly increasing, nonlinearity of
g(x,y) will become more and more serious if L1 and L2

are increased. The reason is that in the first idea of prob-
lem 1, there are ∥g

′

x(x,y)∥ = ∥ limx→x1
g(x,y)−g(x1,y)

x−x1
∥ = L1

and ∥g
′

y(x,y)∥= ∥ limy→y1
g(x,y)−g(x,y1)

y−y1
∥= L2.
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3. MAIN RESULTS

In this section, finite-time synchronization of the net-
works (1)-(2) are studied. Furthermore, in order to analyze
problem 1, Theorems 2-3 and Corollaries 1-3 are derived,
respectively.

3.1. Finite-time Global Synchronization Condition
For The Network (1).

Theorem 1: Let Assumptions 1-4 hold, then the net-
work (1) is global synchronization under the set of con-
troller (4) in finite time t∗ if the following conditions are
satisfied:

1) If p ̸= r, qpρp − ar ≤ 0, otherwise, if p = r, qpρp −
ar ≥ 0, where r, p ∈ S.

2) The following LMI holds:

Φr ≤ 0, (7)

where

Φr =

[
Φ(1)

r 0
⋆ Φ(2)

r

]
≤ 0,

Φ(1)
r = θrIN ⊗ In + IN ⊗BrQ−1

r BT
r

+2L2
1cr∥Qr(1)∥IN ⊗ In

+ cr(Ar ⊗Γr)Q−1
r(1)(Ar ⊗Γr)

T −2Ξr ⊗Γr,

Φ(2)
r = (2L2

2cr∥Qr(1)∥−ρr +υ)IN ⊗ In,

θr = ρr +L2∥Qr∥+
s

∑
p=1

δrpqp

qr
−υ ,

Ξr = diag{ε1r, . . . ,εNr}.

3) t∗ is estimated by t∗ ≤ τ + ρ
1+β

2 V (0,r(0))1− 1+β
2

ν(1− 1+β
2 )

,

k = minr∈S
i∈{1,2,...,N}{kir}, λ > 0, 0 < β < 1, υ > 0,

ν = min{λυ ,2k}, ρ = maxr∈S{ρr}, V (0,r(0)) =
qr(0) ∑N

i=1 eT
i (0)ei(0), ei(0)(i = 1,2, . . . ,N) is the initial

condition.
Proof: Construct a Lyapunov-Krasovskii functional

candidate as

V (e(t), t,r(t)) =qr[
N

∑
i=1

eT
i (t)ei(t)

+ρr

N

∑
i=1

∫ t

t−τ
eT

i (s)ei(s)ds], (8)

where qr ≥ ρr > 0,r ∈ S.
Computing LV (e(t), t,r) along the trajectory of error sys-
tem (5), one can obtain that

LV (e(t), t,r)

=Vt(e(t), t,r)+Ve(e(t), t,r)

× [BrF(ei(t))+ cr

N

∑
j=1

ar
i jΓrG(e j(t),e j(t − τ))

− εirΓrei(t)−
kir

ρr
sign(ei(t))|ei(t)|β ]

+
s

∑
p=1

δrpV (e(t), t, p)

= qrρr

N

∑
i=1

[eT
i (t)ei(t)− eT

i (t − τ)ei(t − τ)]

+2qr

N

∑
i=1

eT
i (t)[BrF(ei(t))

+ cr

N

∑
j=1

ar
i jΓrG(e j(t),e j(t − τ))

− εirΓrei(t)−
kir

ρr
sign(ei(t))|ei(t)|β ]

+
s

∑
p=1

δrpV (e(t), t, p). (9)

From Assumption 1 and Lemma 2, we have

2qr

N

∑
i=1

eT
i (t)BrF(ei(t))

≤ qr

N

∑
i=1

[eT
i (t)BrQ−1

r BT
r ei(t)+L2∥Qr∥eT

i (t)ei(t)],

(10)

2qr

N

∑
i=1

eT
i (t)cr

N

∑
j=1

ar
i jΓrG(e j(t),e j(t − τ))

= 2qrcreT (t)(Ar ⊗Γr)G(e(t),e(t − τ))
≤ qrcr[eT (t)(Ar ⊗Γr)Q−1

r(1)(Ar ⊗Γr)
T e(t)

+GT (e(t),e(t − τ))Qr(1)G(e(t),e(t − τ))]
≤ qrcr[eT (t)(Ar ⊗Γr)Q−1

r(1)(Ar ⊗Γr)
T e(t)

+2L2
1∥Qr(1)∥eT (t)e(t)

+2L2
2∥Qr(1)∥eT (t − τ)e(t − τ)]. (11)

Because of ∑r,p∈S δrp = 0, for ∀ar > 0(r ∈ S), we can get

∑
r,p∈S

δrpar = 0. (12)

Thus,
s

∑
p=1

δrpV (e(t), t, p)

=
s

∑
p=1

δrpqp

[ N

∑
i=1

eT
i (t)ei(t)c+ρp

N

∑
i=1

∫ t

t−τ
eT

i (s)ei(s)ds
]

=
s

∑
p=1

δrpqp

N

∑
i=1

eT
i (t)ei(t)

+ ∑
r,p∈S

δrp(qpρp −ar)
N

∑
i=1

∫ t

t−τ
eT

i (s)ei(s)ds, (13)

Denoting Ξr = diag{ε1r, . . . ,εNr}, k = minr∈S
i∈{1,2,...,N}{kir},

and substituting (10)-(13) into (9), then taking the expec-
tation on both sides of (9), according to the condition (1)
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in Theorem 1, we have

E[LV (e(t), t,r)]

≤ E{qr[eT (t)Φ(1)
r e(t)+ eT (t − τ)Φ(2)

r e(t − τ)]

+qrυ [
N

∑
i=1

eT
i (t)ei(t)−

N

∑
i=1

eT
i (t − τ)ei(t − τ)]

− 2qrk
ρr

N

∑
i=1

n

∑
l=1

|eil(t)|1+β , (14)

where

Φ(1)
r = θrIN ⊗ In + IN ⊗BrQ−1BT

r +2L2
1cr∥Qr1∥IN ⊗ In

+ cr(Ar ⊗Γr)Q−1
r(1)(Ar ⊗Γr)

T −2Ξr ⊗Γr,

Φ(2)
r = (2L2

2cr∥Qr1∥−ρr +υ)IN ⊗ In,

θr = ρr +L2∥Qr∥+
s

∑
p=1

δrpqp

qr
−υ .

By Lemma 4, we get

− 2qrk
ρr

N

∑
i=1

n

∑
l=1

|eil(t)|1+β =−2qrk
ρr

N

∑
i=1

(eT
i (t)ei(t))

1+β
2

≤−2k(
qr

ρr

N

∑
i=1

eT
i (t)ei(t))

1+β
2 , (15)

where qr ≥ ρr > 0.
Let λ > 0 and υ > 0, then combining Assumption 3 and
Lemma 4, we obtain

qrυ [
N

∑
i=1

eT
i (t)ei(t)−

N

∑
i=1

eT
i (t − τ)ei(t − τ)]

≤−λυ
N

∑
i=1

∫ t

t−τ
(qreT

i (s)ei(s))
1+β

2 ds

≤−λυ(qr

N

∑
i=1

∫ t

t−τ
eT

i (s)ei(s)ds)
1+β

2 . (16)

Thus, substituting (15)-(16) into (14), we have

E[LV (e(t), t,r(t))]

≤ E{qr[eT (t)Φ(1)
r e(t)eT (t − τ)Φ(2)

r e(t − τ)]

−
[

2k(
qr

ρr

N

∑
i=1

eT
i (t)ei(t))

1+β
2

+λυ(qr

N

∑
i=1

∫ t

t−τ
eT

i (s)ei(s)ds)
1+β

2

]
}. (17)

Let ν = min{λυ ,2k}, then by Lemmas 3-4, and the con-
dition (2) in Theorem 1, we get

E[LV (e(t), t,r(t))]

≤−2εE{((qr

ρr

N

∑
i=1

eT
i (t)ei(t))

1+β
2

+(qr

N

∑
i=1

∫ t

t−τ
eT

i (s)ei(s)ds)
1+β

2 )}

≤−2εE{(( 1
ρr

(qr

N

∑
i=1

eT
i (t)ei(t)

+qrρr

N

∑
i=1

∫ t

t−τ
eT

i (s)ei(s)ds)
1+β

2 )}

≤− 2ε
ρ

1+β
2

E[V
1+β

2 (e(t), t,r(t))], (18)

where ρ = maxr∈S{ρr}.
For any t0 ≥ τ > 0, we have E[V

1+β
2 (t0)] = (E[V (t0)])

1+β
2 .

Therefore, we can obtain

E[LV (e(t), t,r)]≤− ν
ρ

1+β
2

(E[V (t)])
1+β

2 . (19)

According to Lemma 1, E[V (t)]) converges to zero in fi-
nite time and finite time is estimated by

t∗ ≤ τ +
ρ

1+β
2 V (0,r(0))1− 1+β

2

ν(1− 1+β
2 )

. (20)

This shows that V (e(t), t,r) = 0 if t ≥ t∗. That means
ei(t) = 0 if t ≥ t∗. By Definition 1, if t ≥ t∗, we have
E∥xi(t)− s(t)∥ = 0. Hence, the network (1) will achieve
finite-time global synchronization under the controller (4)
within finite time t∗. This completes the proof. □

Remark 7: Under Theorem 1, the network (1) with the
controller (4) can achieve synchronization with finite-time
t∗. If problem 1 is analyzed by Theorem 1, the follow-
ing steps are needed: Step 1: Nonlinear coupling func-
tion g(1)(x(t),x(t − τ)) is chosen. Step 2: According to
Assumption 1, L(1)

1 and L(1)
2 are decided. Step 3: By

Theorem 1, ε (1)
ir and k(1)ir for finite-time synchronization

of the network (1) are designed, where i = 1,2, ...,N and
r = 1,2, ...,s. Step 4: By simulation, problem 1 is testified.
Step 5: The ε (1)

ir and k(1)ir are fixed. Step 6: A new nonlin-
ear coupling function g(2)(x(t),x(t−τ)) is chosen. Step 7:
A new L(2)

1 and L(2)
2 are decided by Assumption 1. Step 8:

Substituting L(2)
1 , L(2)

2 , ε (1)
ir into the condition (2) of The-

orem 1, if the condition (2) of Theorem 1 is held, return
step 4, otherwise, continue step 9. Step 9: By Theorem 1,
ε (2)

ir and k(2)ir for finite-time synchronization of the network
(1) are designed. Step 10: Let ε1

ir := ε2
ir and k(1)ir := k(2)ir ,

then return step 4. From steps 1-2 and 6-7, it is observed
that in order to testify problem 1, it is necessary to get L1

and L2 by choosing different classes of g(x(t),x(t−τ)). It
is clear that this method is not practical. In [26], the steps
of the problem 1 is very similar to that of the above steps.

3.2. The Effect of Nonlinear Coupling Function For
Finite-time Global Synchronization Of The Net-
work (1)

The proof of Theorems 2-4 is similar to that of Theorem 1,
we only give the results.
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3.2.1 The first idea
Case 1: In the network (1), let g(x(t),x(t − τ)) =

L̂x(t)+L2x(t−τ), where L̂ = L1 or L̂ =−L1, L1 > 0,L2 >
0.

1) To get sufficient conditions of finite-time global syn-
chronization for the network (1) in case 1.

Theorem 2: Let Assumptions 1-4 hold, then the net-
work (1) in case 1 is global synchronization under the set
of controller (4) in finite time t∗ if the following conditions
are satisfied:

Φ̃(1)
r =θrIN ⊗ In + IN ⊗BrQ−1

r BT
r +2crL̂(Ar ⊗Γr)

+ crL2(Ar ⊗Γr)Q̃−1
r(1)(Ar ⊗Γr)

T −2Ξr ⊗Γr,

Φ̃(2)
r =(crL2∥Q̃r(1)∥−ρr +υ)IN ⊗ In.

The other parameters of Theorems 1 and 2 are quite same.
2) To build the relationship conditions of Theorems 1

and 2.
Corollary 1: Let M(1)

r = Φ̃(1)
r − Φ(1)

r = 2cr(L̂(Ar ⊗
Γr)−L2

1∥Qr1∥IN ⊗ In)+ cr(L2(Ar ⊗Γr)Q̃−1
r(1)(Ar ⊗Γr)

T −
(Ar ⊗ Γr)Q−1

r(1)(Ar ⊗ Γr)
T ), and M(2)

r = Φ̃(2)
r − Φ(2)

r =

crL2(∥Q̃r(1)∥−2L2∥Qr(1)∥)IN ⊗ In. If M(1)
r ≤ 0 and M(2)

r ≤
0, under Theorem 2, the network (1) of case 1 with the
controller (4) must satisfy Theorem 1.

Proof: According to Theorems 1-2, we have

M(1)
r =Φ̃(1)

r −Φ(1)
r = 2cr(L̂(Ar ⊗Γr)−L2

1∥Qr1∥IN ⊗ In)

+ cr(L2(Ar ⊗Γr)Q̃−1
r(1)(Ar ⊗Γr)

T

− (Ar ⊗Γr)Q−1
r(1)(Ar ⊗Γr)

T ), (21)

M(2)
r =Φ̃(2)

r −Φ(2)
r

=crL2(∥Q̃r(1)∥−2L2∥Qr(1)∥)IN ⊗ In. (22)

Under Theorem 1, we have Φ(1)
r ≤ 0, Φ(2)

r ≤ 0. Thus, if
M(1)

r ≤ 0 and M(2)
r ≤ 0, one obtains that Φ̃(1)

r ≤ 0, Φ̃(2)
r ≤ 0.

This completes the proof. □
Case 2: In the network (1), let g(x(t),x(t − τ)) =

L̂x(t)−L2x(t−τ), where L̂ = L1 or L̂ =−L1, L1 > 0,L2 >
0.

1) To get sufficient conditions of finite-time global syn-
chronization for the network (1) in case 2.

Theorem 3: Let Assumptions 1-4 hold, then the net-
work (1) in case 2 is global synchronization under the set
of controller (4) in finite time t∗ if the following conditions
are satisfied:

Φ̂r =

[
Φ̂(1)

r −crL2(Ar ⊗Γr)

⋆ Φ̂(2)
r

]
≤ 0,

Φ̂(1)
r =θrIN ⊗ In + IN ⊗BrQ−1

r BT
r +2crL̂(Ar ⊗Γr)

−2Ξr ⊗Γr,

Φ̂(2)
r =(−ρr +υ)IN ⊗ In.

The other parameters of Theorems 1 and 3 are quite same.

2) To build the relationship conditions of Theorems 1
and 3.

Corollary 2: If

Φ̂r =

[
M̂(1)

r −crL2(Ar ⊗Γr)

⋆ M̂(2)
r

]
≤ 0

holds, under Theorem 3, the network (1) of case 2 with
the controller (4) must satisfy Theorem 1, where M̂(1)

r =
cr(2L̂(Ar ⊗ Γr)− 2L2

1∥Qr1∥IN ⊗ In − Ar ⊗ Γr)Q−1
r(1)(Ar ⊗

Γr)
T ), and M̂(2)

r =−2L2
2cr∥Qr(1)∥IN ⊗ In.

Proof: The proof is similar to that of Corollary 1. □
Remark 8: Under Corollaries 1-2, the network (1) in

cases 1-2 must satisfy Theorem 1. Thus, combining the
first idea and Corollaries 1-2, problem 1 can be analyzed.
The steps is as follows:

Step 1: To choose L(1)
1 and L(1)

2 .
Step 2: According to Corollaries 1-2, ε (1)

ir and k(1)ir for
finite-time synchronization of the network (1) in Cases 1-2
are designed, where i = 1, 2, ..., N and r = 1, 2, ..., s.

Step 3: By simulation, problem 1 is testified.
Step 4: The ε (1)

ir and k(1)ir are fixed.
Step 5: A new L(2)

1 and L(2)
2 are chosen.

Step 6: To substitute L(2)
1 , L(2)

2 , ε (1)
ir and k(1)ir into Corol-

laries 1-2. If Corollaries 1-2 are held, return step 3, other-
wise, continue Step 7.

Step 7: Under Corollaries 1-2, ε (2)
ir and k(2)ir for finite-

time synchronization of the network (1) in Cases 1-2 are
designed.

Step 8: Let ε (1)
ir := ε (2)

ir and k(1)ir := k(2)ir then return
Step 3. Comparing steps of Remarks 7 and 8, it is seen
that the scheme of Remark 8 for Problem 1 are more prac-
tical and more simple than that of Remark 7. Comparing
[26], the merits in Remark 8 are more useful than that of
[26]. It is pity that if nonlinear coupling function g(x,y) is
not derivable, the above scheme for Problem 1 in Remark
8 can not be applied.

Remark 9: Theorem 1 and Corollaries 1-2 are based on
Assumption 1 without Lemma 6 and Assumption 1 or with
Lemma 6, respectively. The disadvantages of Corollaries
1-2 is that the conservatism of Corollaries 1-2 is higher
than that of Theorem 1. This can be seen from the process
of proving Theorem 1 and Corollaries 1-2. The advan-
tages of Corollaries 1-2 is that for problem 1, the method
based on Corollaries 1-2 is more practical than that of The-
orem 1. This can be observed from Remarks 7 and 8.

3.2.2 The second idea
Theorem 4: Let Assumptions 1-4 hold, then the net-

work (2) is global synchronization under the set of con-
troller (4) in finite time t∗ if the following conditions are
satisfied:

Φ̌(1)
r =θrIN ⊗ In + IN ⊗BrQ−1

r BT
r +2cr(Ar ⊗Γr)
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+ cr(Ar ⊗Γr)Q̃−1
r(1)(Ar ⊗Γr)

T −2Ξr ⊗Γr,

Φ̌(2)
r =(cr∥Q̃r(1)∥−ρr +υ)IN ⊗ In.

The other parameters of Theorems 1 and 4 are quite same.
Corollary 3: Let M̌(1)

r = Φ̌(1)
r − Φ(1)

r = 2cr((Ar ⊗
Γr)− L2

1∥Qr(1)∥IN ⊗ In) + cr((Ar ⊗ Γr)Q̃−1
r(1)(Ar ⊗ Γr)

T −
(Ar ⊗ Γr)Q−1

r(1)(Ar ⊗ Γr)
T ), and M̌(2)

r = Φ̌(2)
r − Φ(2)

r =

cr(∥Q̃r(1)∥−2L2
2∥Qr(1)∥)IN ⊗ In. If M̌(1)

r ≤ 0 and M̌(2)
r ≤ 0,

under Theorem 1, the network (1) with the controller (4)
must satisfy Theorem 4.

Proof: The proof is similar to that of Corollary 1.
Next, in order to make variables in Theorem 4 and

Corollary 3 understand easily, here, Φ̌(1)T 4
r , Φ̌(1)C3

r , ρT 4,
ρC3, ΞT 4

r , ΞC3
r , εT 4

ir , εC3
ir , kT 4, kC3, t∗T 4 and t∗C3 stand for

Φ̌(1)
r , ρ , Ξr, εir, k and t∗ of Theorem 4 and Corollary 3,

respectively.
Corollary 4: In Corollary 3, if Φ̌(1)C3

r ≤ M̌(1)
r <

Φ̌(1)T 4
r ≤ 0, ρT 4 = ρC3 and kT 4 = kC3, for finite-time global

synchronization of the network (2), the control rule under
Corollary 3 is better than that of Theorem 4.

Proof: According to Corollary 3, one obtains that
M̌(1)

r = Φ̌(1)C3
r − Φ(1)

r ≤ 0, Φ(1)
r ≤ 0. Thus, we have

Φ̌(1)C3
r ≤ M̌(1)

r ≤ 0. From Theorem 4, we get Φ̌(1)T 4
r ≤

0. If M̌(1)
r < Φ̌(1)T 4

r ≤ 0, there is Φ̌(1)C3
r ≤ M̌(1)

r <
Φ̌(1)T 4

r ≤ 0. Thus, one has ΞC3
r > ΞT 4

r > 0. That
means εC3

ir > εT 4
ir > 0. From the inequality (14) of

Theorem 1, one obtains that △E[LV (e(t), t,r(t))] =
{E[LVC3(e(t), t,r(t))] − E[LV T 4(e(t), t,r(t))]} ≤
E{qr[eT (t)(ΞC3

r − ΞT 4
r )e(t)] < 0. Under Theorem 4,

one has E[LV T 4(e(t), t,r(t))] ≤ 0. Thus, there is
E[LVC3(e(t), t,r(t))] < E[LV T 4(e(t), t,r(t))] ≤ 0. That
means if Φ̌(1)C3

r ≤ M̌(1)
r < Φ̌(1)T 4

r ≤ 0, ρT 4 = ρC3 and
kT 4 = kC3, global synchronization dynamics of the net-
work (2) under Corollary 3 is better than that of the net-
work (2) under Theorem 4. The proof is completed. □

Remark 10: According to Corollary 4, two synchro-
nization control rules can be designed. The first is based
on M̌(1)

r < Φ̌(1)T 4
r ≤ 0. The second is built on Φ̌(1)C3

r ≤
M̌(1)

r < Φ̌(1)T 4
r ≤ 0. Therefore, there is εC3

ir > εT 4
ir . Further-

more, if L(2)
1 > L(1)

1 > 0, combining Corollary 4, there is
Φ̌(1)C3(2)

r < Φ̌(1)C3(1)
r ≤ M̌(1)

r < Φ̌(1)T 4
r ≤ 0. This shows that

εC3(2)
ir > εC3(1)

ir > εT 4
ir > 0. Therefore, under Corollary 4,

with increasing L1, the difference of the two synchroniza-
tion control rules for the network (2) becomes more and
more significant. The above analysis shows that the syn-
chronization control rules based on Corollary 4 is only re-
lated to L1. From assumption 1, g(x(t),x(t−τ)) is closely
connected with L1 and L2. Therefore, if nonlinearity of
g(x(t),x(t−τ)) is caused by x(t−τ), the above technique
built on Corollary 4 for problem 1 is invalid. In the future,
the issue will be considered.

Remark 11: From Corollary 3, two conclusions can be
obtained as follows. (i) If M̌(1)

r ≤ 0 and L2 ≥
√

2
2 , under

Theorem 1, the network (1) with the controller (4) must
satisfy Theorem 4. In Corollary 3, let Q̃r(1) = Qr(1), then
M̌(1)

r = Φ̌(1)
r − Φ(1)

r = 2cr((Ar ⊗ Γr)− L2
1∥Qr(1)∥IN ⊗ In),

and M̌(2)
r = Φ̌(2)

r − Φ(2)
r = cr∥Q̃r(1)∥(1 − 2L2

2)IN ⊗ In. If
L2 ≥

√
2

2 , there is M̌(2)
r ≤ 0. (ii) Let M̌(1)

r = (mr
i j)(N∗n)∗(N∗n).

If M̌(1)
r > 0 and 0 < L2 <

√
2

2 , under Theorem 4, the net-
work (2) with the controller (4) must satisfy Theorem 1.
Actually, the result is not held. The reason is that in
M̌(1)

r , there is L2
1∥Qr(1)∥ ≥ 0 and Ar ⊗Γr < 0. This shows

mr
i j < 0. By Lemma 5, if M̌(1)

r > 0, there is mr
i j > 0.

4. SIMULATIONS

In this section, three examples are given to illustrate
the effectiveness of the derived results. The initial con-
ditions of the numerical simulations are taken as: x1(0) =
(1,2,3)T , x2(0) = (3,1,1)T , x3(0) = (1,2,3)T . The total
error and the synchronization total error of the network are
defined as e(t) = ∑3

i=1 ∑3
l=1 |eil(t)|. For given rate transi-

tion matrix, a Markov chain can be generated. We con-
sider the following rate transition matrix:

Π =

[
−2 2
5 −5

]
. (23)

A network composed of three Chua’s circuits [45–47] is
considered. A single Chua’s circuit is illustrated in Fig. 1.

In the circuit, there are two linear capacitors C1 and C2,
a nonlinear resistor NR, a linear resistor R and a linear
inductor L. Let C1 = C1, C2 = C2, i1 = iL, v1 = v1 and
v2 = v2, then the circuit equations are as follows:

C1v̇1 =
1
R
(v2 − v1)− f̃ (v1),

C2v̇2 =
1
R
(v1 − v2)+ iL,

Li̇L =−v2,

where f̃ (v1) is that

f̃ (v1) = Gb1v1 +0.5(Ga1 −Gb1)(|v1 +1|− |v1 −1|).

Fig. 1. A single Chua’s circuit model.
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Let v̇1 = ẋi1, v̇2 = ẋi2, i̇L = ẋi3, hc =
1

RC1
, pc =

1
C1

, qc =
1

RC2
,

rc =
1

C2
and zc =

1
L , then the above Chua’s circuit equations

can be expressed byẋi1

ẋi2

ẋi3

=

−hc hc 0
qc −qc rc

0 −zc 0

xi1

xi2

xi3

+

−pc f̃ (xi1)
0
0

 .

(24)

Then, combining (24), the networks (1) and (2) with
controller (4) can be described by

ẋi(t) =cr

3

∑
j=1

ar
i jΓrg(x j(t),x j(t − τ))

+Br f (xi(t))+ui(t,r), (25)

ẋi(t) =cr

3

∑
j=1

ar
i jΓr(x j(t)+ x j(t − τ))

+Br f (xi(t))+ui(t,r), (26)

and f (xi(t)) is that f1(xi1(t))
f2(xi2(t))
f3(xi3(t))

=

−hc hc 0
qc −qc rc

0 −zc 0

xi1

xi2

xi3

+
−pc f̃ (xi1)

0
0

 ,

where r = 1,2, i = 1,2,3, L1 > 0 and L2 > 0, x j(t) =
[x j1(t),x j2(t),x j3(t)]T , x j(t − τ) = [x j1(t − τ),x j2(t −
τ),x j3(t − τ)]T .

In the networks (25) and (26), let c1 = 1, c2 = 1, τ = 0.3,
hc = pc = 0.2, qc = rr = 0.3, zc = 0.5, Gb1 = −0.0714
and Ga1 = −0.219, Γ1 = Γ2 = diag{1,1,1}, B1 = B2 =
diag{1,1,1}, and the other parameters are as follows:

A1 =

2.2 1 1
1 1.1 0
1 0 1.2

 , A2 =

1.2 0 1
0 1.2 1

0.5 1 1.5

 .

Example 1: In case 1, according to L̂ = L1 or L̂ =−L1,
one obtains g(x j(t),x j(t −τ)) = L1x j(t)+L2x j(t −τ) and
g(x j(t),x j(t − τ)) =−L1x j(t)+L2x j(t − τ).

Firstly, let g(x j(t),x j(t − τ)) = L1x j(t) + L2x j(t − τ),
L1 = L2 = 0.2 and L= 0.6. Under Corollary 1, one obtains
that a1 = a2 = 4, λ = 4, υ = 1, β = 0.5, q1 = q2 = 1, ρ1 =
ρ2 = 4, V (0) = 39, Ξr = diag{3.5,2.5,3.5}, kir = 2.5,
t∗ ≤ 7.37. Then, we fix Ξr, kir and let L1 = L2 = 0.9,1.3.
Simulation results are shown in Fig. 2.

Secondly, let g(x j(t),x j(t − τ)) = −L1x j(t)+L2x j(t −
τ). Similar to the above process, under Corollary 1, we
get Ξr = diag{3.6,2.7,3.6}, kir = 2.5, t∗ ≤ 7.37. Let L1 =
L2 = 0.2,0.9,1.3, then Ξr = diag{3.6,2.7,3.6} and kir =
2.5 are fixed. Fig. 3 gives the simulation results.

Example 2: In case 2, there is g(x j(t),x j(t − τ)) =
L1x j(t)−L2x j(t − τ) and g(x j(t),x j(t − τ)) =−L1x j(t)−
L2x j(t − τ).
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Fig. 2. Synchronization total error trajectories for the first
case of Example 1.
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Fig. 3. Synchronization total error trajectories for the sec-
ond case of Example 1.

Similar to example 1, let g(x j(t),x j(t −τ)) = L1x j(t)−
L2x j(t − τ), L1 = L2 = 0.2 and L = 0.6, respectively. Un-
der Corollary 2, we have a1 = a2 = 4, λ = 4, υ = 1,
β = 0.5, q1 = q2 = 1, ρ1 = ρ2 = 4, V (0) = 39, Ξr =
diag{3.7,2.6,3.7}, kir = 2.5, t∗ ≤ 7.37. Let L1 = L2 = 0.8
and 1.3, then Ξr and kir are fixed. The simulation results
are in Fig. 4.

If g(x j(t),x j(t − τ)) = −L1x j(t)− L2x j(t − τ), L1 =
L2 = 0.2 and L = 0.6, under Corollary 2, one has Ξr =
diag{3.8,2.8,3.8}, kir = 2.5, t∗ ≤ 7.37. Choosing L1 =
L2 = 0.6, 1.3, and fixing Ξr and kir, the simulation results
of Fig. 5 of are obtained.

Example 3: This example shows the results of Corol-
lary 4.

Firstly, let

g(xi(t),xi(t −0.3))
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Fig. 4. Synchronization total error trajectories for the first
case of Example 2.
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Fig. 5. Synchronization total error trajectories for the sec-
ond case of Example 2.

=

0.5tanh(xi1(t))+0.5tanh(xi1(t −0.3))
0.5tanh(xi2(t))+0.5tanh(xi2(t −0.3))
0.5tanh(xi2(t))+0.5tanh(xi3(t −0.3))

 .

(27)

From g(xi(t),xi(t−0.3)), we have L1 = 0.5, L2 = 0.5. Let
a1 = a2 = 4, λ = 4, υ = 1, β = 0.5, q1 = q2 = 1, ρ1 =
ρ2 = 4, L = 1, we obtain V (0) = 39, kir = 2.5, r = 1,2,
i = 1,2,3. According to Corollary 4, there are Φ̌(1)C3

r ≤
M̌(1)

r < Φ̌(1)T 4
r ≤ 0, ρT 4 = ρC3 and kT 4 = kC3. Thus, under

Corollary 4, one obtains ΞT 4
r = diag{2.8,2.5,2.5}, ΞC3

r1 =
diag{3.8,3,3.8}, t∗ ≤ 7.37.

Secondly, let

g(xi(t),xi(t −0.3))

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

Time(s)

S
y
n

c
h

ro
n

iz
a

ti
o

n
 T

o
ta

l 
E

rr
o

r 
e

(t
)

 

 

L1=L2=0.5

L1=L2=1.2

Fig. 6. Synchronization total error trajectories for Exam-
ple 3.

=

1.2tanh(xi1(t))+1.2tanh(xi1(t −0.3))
1.2tanh(xi2(t))+1.2tanh(xi2(t −0.3))
1.2tanh(xi2(t))+1.2tanh(xi3(t −0.3))

 .

(28)

Similar to the above process, we get L1 = 1.2,
L2 = 1.2, kir = 2.5, ΞT 4

r = diag{2.8,2.5,2.5}, ΞC3
r =

diag{5.2,4.3,5.2}, t∗ ≤ 7.37. Fig. 6 shows the simulation
results.

Remark 12: Examples 1-2 show that under Corollar-
ies 1-2, the network (25) with controller (4), in which
g(x j(t),x j(t−0.3)) = L̂1x j(t)+ L̂2x j(t−τ), L̂1 = L1, L̂1 =
−L1, L̂2 =−L2, L̂2 = L2, L1 > 0 and L2 > 0, must achieve
synchronization within finite-time t∗. Furthermore, from
simulation results of Examples 1-2, it is seen that dynam-
ics of the above network (25) from the initial state to syn-
chronization state is closely related to L1 and L2. From
example 3, it is observed that under Corollary 4, the lin-
ear coupling network (26) can realize finite-time synchro-
nization. Meanwhile, when L1 is increased, the synchro-
nization dynamics of the network (26) is improved. This
reflects that the analysis of remark 10 is reasonable.

Remark 13: From Examples 1-3, it can be ob-
tained that the smaller nonlinearity of nonlinear coupling
f (x(t),x(t − τ)) is, the better its synchronization effect
is. In fact, for problem 1, the conclusions of this paper
and [26] are not conflictive. That is to say, the results
of this paper and [26] are harmonious. In [26], in order
to analyze problem 1, the authors chose nonlinear cou-
pling functions g1(x,y), g2(x,y), g3(x,y) and made (x−
y)g1(y,x) < (x− y)g2(y,x) < (x− y)g3(y,x) < 0 accord-
ing to (x− y)g(y,x) ≤ −α(x− y)2 and α > 0. Thus, the
simulation results showed that the smaller (x− y)g(y,x)
was, the better the synchronization dynamics of the ad-
dressed networks was. The reason is analyzed as follows.
From [26], we can see that in order to obtain the pro-
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posed results, nonlinear term ∑N
j=1 ∑N

k=1 a jkg(xk(t),x j(t))
needed to be processed. For example, in the process
of proving Theorem 1, a Lyapunov function V1(t) was
defined and V̇1(t) = T1 + T2 + T3 was computed. In
V̇1(t), T2 was closely related to (x− y)g(y,x) and 2T2 =
2∑N

j=1 ∑N
k=1 a jkq j[x j(t)− xk(t)]g(xk(t),x j(t)), where q j >

0. Combining (x− y)g(y,x) ≤ −α(x− y)2, one obtained
2T2 ≤−α ∑N

j=1 ∑N
k=1 a jkq j[x j(t)−xk(t)]2. It was clear that

−α[x j(t)−xk(t)]2 ≤ 0. Therefore, if α[x j(t)−xk(t)]2 was
increased, T2 must be decreased. Thus, under V̇1(t) ≤
0, V̇1(t) became smaller. This showed that under (x −
y)g(y,x) ≤ −α(x− y)2, if (x− y)g(y,x) was smaller, the
dynamics of the addressed network was better. In this pa-
per, combining inequality (14) and E[LV (e(t), t,r)] ≤ 0,
E[LV (e(t), t,r)] will decrease if L1 and L2 is decreased.
This shows that synchronization dynamics of the network
(1) is closely related to L1 and L2.

5. CONCLUSIONS

In this paper, two problems are explored. The first
problem is that nonlinear coupling one how to affect the
synchronization dynamics of the NCMSCNs is discussed.
The second problem is that finite-time synchronization
control problem with feedback control and nonlinear cou-
pling one is investigated. Firstly, sufficient conditions of
finite-time global synchronization of the NCMSCNs and
the LCMSCNs are given. Secondly, the relationship con-
ditions of finite-time global synchronization for the NCM-
SCNs and the LCMSCNs are built. Thirdly, the relation-
ship of synchronization control rules for the NCMSCNs
and the LCMSCNs is analyzed. At last, by Chua’s cir-
cuit network simulations, the above questions are further
testified. The conclusions are as follows. (i) Under the
proposed Theorems and Corollaries, the addressed net-
works with controller can achieve synchronization within
finite-time t∗. (ii) The nonlinearity of nonlinear coupling
g(x(t),x(t − τ)) is closely related to the network (1) with
nonlinear coupling g(x(t),x(t − τ)).
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