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Consensus of Second-order Multi-agent Systems with Directed Networks
Using Relative Position Measurements Only
Shan Cheng*, Han Dong, Li Yu, Dongmei Zhang, and Jinchen Ji

Abstract: This brief paper studies the consensus problem of second-order multi-agent systems when the agents’ ve-
locity measurements are unavailable. Firstly, two simple consensus protocols which do not need velocity measure-
ments of the agents are derived to guarantee that the multi-agent systems achieve consensus in directed networks.
Secondly, a key constant which is determined by the complex eigenvalue of the nonsymmetric Laplacian matrix and
an explicit expression of the consensus state are respectively developed based on matrix theory. The obtained re-
sults show that all the agents can reach consensus if the feedback parameter is bigger than the key constant. Thirdly,
the theoretical analysis shows that the followers can track the position and velocity of the leader provided that the
leader has a directed path to all other followers and the feedback parameter is bigger enough. Finally, numerical
simulations are given to illustrate the effectiveness of the proposed protocols.
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1. INTRODUCTION

As one of the most typical collective behaviors of multi-
agent systems, the consensus of multi-agent systems has
recently received considerable research attention due to
its extensive applications in the cooperative control of au-
tonomous mobile robots, the design of distributed sensor
networks, unmanned aerial vehicles (UAVs), congestion
control in communication networks, and in many other
areas [1–9]. For a multi-agent system, leaderless con-
sensus means that each agent updates its state based on
the local information of its neighbors such that the agents
eventually reach an agreement on a common value, while
leader-following consensus means that there exists a vir-
tual leader which specifies an objective for all the other
agents to follow.

It is noted that the velocity measurements of the agents
are usually unavailable in practical applications [10–21].
Without velocity measurements, the protocols proposed in
[9] are no longer applicable, and it is thus necessary to
design new protocols for a multi-agent system to reach
consensus. By applying the linear matrix inequality tech-
nique and the common Lyapunov function approach, suf-
ficient conditions for velocity-free consensus of multiple
second-order agents were given in [10]. By introducing
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an auxiliary system, the consensus protocol and conver-
gence conditions for multi-agent systems without velocity
measurements were derived in [11]. A measurement out-
put feedback controller with a dynamic observer for the
unmeasurable states was proposed in [12], and the veloc-
ity consensus was achieved when only the position infor-
mation was available for the feedback based on the pro-
posed controller. By considering measurement noises, a
measurement-based distributed protocol was designed and
the convergence properties of the protocol were analyzed
by using the stochastic analysis and algebraic graph theory
in [13]. In [14], the sufficient conditions that character-
ized the relationship of formability, connectivity topology,
formation properties and agent dynamics were obtained
by using the matrix analysis and algebraic graph theory.
Various control algorithms have also been proposed for
velocity-free consensus of multi-agent systems [22–25],
but the control methods applying only to the undirected
networks.

In order to optimize convergence time, finite-time con-
trol techniques were presented in [26–28]. By com-
puting the value of the Lyapunov function at the initial
point, the finite settling time was theoretically estimated
for the second-order multi-agent systems [27]. A novel
finite-time discontinuous observer was proposed for the
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leader-following multi-agent systems [28]. Furthermore,
the method given in [28] has also been used to analyze
the consensus of networked mobile systems and linear
multi-agent systems [29–34], networked Euler-Lagrange
systems [35–38], and so on.

Most of the above works investigated the consensus
problems of multi-agent systems, or networked mechan-
ical systems in undirected networks. There is little re-
search in the velocity-free consensus protocols and con-
vergence conditions for multi-agent systems in directed
networks. It is a common phenomenon that the infor-
mation exchange topology between agents is directed in
practical applications. For example, some agents may
have transceivers, while the other less capable team mem-
bers only have receivers in heterogeneous teams. It was
shown that the second-order multi-agent systems might
not achieve consensus even if the directed graph has a di-
rected spanning tree [38]. Although some sufficient con-
ditions for velocity-free consensus of multi-agent systems
have been derived in undirected networks [11, 12], it is
still necessary to derive the corresponding conditions in
directed networks.

1.1. Motivations of this studies
Motivated by the recent work [11] and [12], we study

the velocity-free consensus for multi-agent systems in di-
rected networks. Firstly, in some specific environments,
agents’ velocity measurements are unavailable. For exam-
ple, in order to save cost, space and weight, some agents
are not equipped with velocity sensors or other agents may
miss velocity measurements [39]. In other cases, the ve-
locity may be unmeasurable or may not be precisely mea-
sured because of technology limitations or environment
disturbances. Secondly, it is common that agents don’t
receive velocity measurements in directed networks. The
lack of velocity measurements and the directed network
topology render the design of consensus protocol and
the analysis of consensus problems challenging. Hence,
this paper focuses on the stationary consensus problem of
multi-agent systems in directed networks and presents the
protocol which only using agents’ relative position mea-
surements.

1.2. Contributions of this paper
Based on network control theory, the velocity-free con-

sensus protocols are presented for the multi-agent systems
with directed networks. A key constant depending on the
complex eigenvalues of the nonsymmetric Laplacian ma-
trix, and the exact expression of the final consensus state,
is analytically developed based on matrix theory. The
key constant indicates that the real and imaginary parts
of all eigenvalue of Laplacian matrix play an important
role in achieving consensus. The convergence conditions
for multi-agent systems to reach consensus in directed net-
works are also derived.

It is worth pointing out that different from [9] and
[11], here the network topology is directed, and thus, the
method used in [11] is not suitable to the consensus analy-
sis. Also, unlike the existing results in [39], where partial
agents’ velocity measurements are needed, the obtained
protocols do not need any velocity information.

1.3. Notations and organization
Some standard mathematical notations will be used in

this paper. Let R define a set of real numbers; Rm be the
m-dimensional real vector; Rn×n be the set of n× n real
matrices; n̄ = {1,2, · · · ,n} be an index set; and ∥x∥ be
the Euclidean norm of vector x. Let In and 0n denote the
identity and zero matrix, respectively.

The rest of the paper is organized as follows: Section 2
presents the model of multi-agent systems and some fun-
damental math knowledge. Section 3 gives the main con-
sensus results of multi-agent systems including the lead-
less and leader-follower consensus in directed networks.
Furthermore, two consensus protocols which need rel-
ative position measurements only, and the convergence
conditions for multi-agents systems to achieve consensus,
are respectively presented. Two simulation examples are
given to show the effectiveness of the proposed consensus
protocols in Section 4. Finally, Section 5 presents a brief
conclusion to this paper.

2. PROBLEM FORMULATIONS

The dynamics of multi-agents systems composed of n
second-order agents is described by{

ẋi = vi,

v̇i = ui,
i ∈ n̄, (1)

where xi = (xi1, · · · ,xim)
⊤ ∈ Rm, vi = (vi1, · · · ,vim)

⊤ ∈ Rm

are the position and velocity states of the agent i, respec-
tively. ui ∈ Rm is a control input for the agent i. Moreover,
xil and vil , l = 1,2, · · · ,m, denote the l-th component of the
vector xi and vi, respectively. The main aim of the paper
is to determine ui for all agents in (1) to achieve stationary
consensus, which means lim

t→∞
∥xi − x j∥ = 0, i, j ∈ n̄, and

the velocity of all agents in (1) converge to 0m, namely,
lim
t→∞

∥vi∥= 0, i ∈ n̄.

In the analysis of the convergence conditions for multi-
agent systems, the directed graph of order n, G= {V,E ,C}
with the node set V = {1,2, · · · ,n} will be used to model
the interaction among n agents. A set of directed edges
E = {(i, j) ∈ V ×V|i ∼ j} containing the pairs of nodes
represents communication connections. A weighted adja-
cency matrix C = (ci j) ∈ Rn×n is defined such that ci j > 0
if ei j ∈ E , which means agent i can receive information
from agent j, while ci j = 0 if ei j /∈ E , which means there
is no information exchange from agents i to j. Moreover,
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cii is defined as cii =−
n
∑

j=1, j ̸=i
ci j, i= 1,2, · · · ,n. A directed

path of G is a sequence of edges of the form (i1, i2), (i2, i3),
· · · , where i j ∈ V . A directed graph has a directed span-
ning tree if there exists at least one node having a directed
path to all the other nodes.

The following lemmas will be needed.
Lemma 1 [40]: Let L be the nonsymmetric Laplacian

matrix associated with G. Then L has a simple zero eigen-
value and all the other eigenvalues have positive real parts
if and only if G has a directed spanning tree.

Lemma 2 [41]: Consider the cubic polynomial F(λ ) =
λ 3 + cλ 2 +(a1 +b1i)λ +(a2 +b2i), where i =

√
−1, and

a1, a2, c, b1 and b2 are real. Then all three roots of F(λ ) =
0 have negative real parts if and only if c > 0, c2a1−ca2−
b2

1 > 0 and a2(a2 −ca1)
2 −b2

1(a1a2 +b1b2)+cb1b2(ca1 −
3a2)− c3b2

2 > 0.

3. CONSENSUS OF MULTI-AGENT SYSTEMS

In this section, the leaderless and leader-follower
velocity-free consensus of multi-agent systems in directed
networks will be investigated, respectively. Two consen-
sus protocols, which only need relative position measure-
ments of the agents, will be given.

3.1. Leaderless velocity-free consensus of multi-
agent systems

The control inputs and the convergence conditions for
system (1) to achieve consensus are respectively derived
based on matrix theory.

The protocol ui in (1) is designed as
ui =

n

∑
j=1

ci j(x j − xi)+a(yi − xi),

ẏi = xi − yi,

i ∈ n̄, (2)

where a > 0 is the feedback parameter, yi = (yi1, · · · ,yim)
⊤

∈ Rm is the auxiliary system. Let ξ = (ξ1, · · · ,ξn)
⊤ ∈ Rn

be the left eigenvectors of C =(ci j)∈Rn×n associated with
eigenvalue zero.

Theorem 1: Consider system (1) with the protocol (2)
and assume that r = αi +βi i, where i =

√
−1, is an eigen-

value of C. Suppose that the following conditions hold.
1) The graph G has a directed spanning tree.
2) Feedback parameter a satisfies

a > θ =
(α +1)β 2 −|β (α −1)|

√
β 2 −4α

2α
,

where β = max
i∈n̄

{|βi|}, ᾱ = max
i∈n̄

{αi} and α = min
i∈n̄

{αi}.

Then, xi →
n
∑

i=1
ξi
(
vi(0) + ayi(0)

)
and vi → 0 as t → ∞,

where
n
∑

i=1
ξi = 1/a, i ∈ n̄.

Proof: The process of the proof is divided into the fol-
lowing three steps. In step 1, the multi-agent system will
be written in matrix form, and the left and right eigenvec-
tor of system matrix, which will be defined later, associ-
ated with eigenvalue zero will be given, respectively. In
step 2, the conditions that all nonzero eigenvalues of sys-
tem matrix have negative real parts are derived. Finally,
an explicit expression of the consensus state is developed
based on matrix theory.

Step 1: Let X = (x⊤1 , · · · , x⊤n )
⊤ ∈ Rnm, V = (v⊤1 , · · · ,

v⊤n )
⊤ ∈ Rnm, Y = (y⊤1 , · · · ,y⊤n )⊤ ∈ Rnm and H = C − aI.

Then, system (1) with protocol (2) can be written as Ẋ
V̇
Ẏ

= D⊗ Im

 X
V
Y

 , (3)

where D =

 0n In 0n

H 0n aI
I 0n −I

 is the system matrix.

Let ηr = [x⊤r ,v
⊤
r ,y

⊤
r ]

⊤ be the right eigenvector of matrix
D associated with eigenvalue zero. Then, 0n In 0n

H 0n aI
I 0n −I

 xr

vr

yr

=

 0n×1

0n×1

0n×1

 . (4)

It follows from (4) that
vr = 0n×1,

Cxr = 0n×1,

yr = xr.

(5)

It can be obtained from (5) that ηr = [1, · · · ,1,0, · · · ,0,1,
· · · ,1]⊤. Similarly, let ηl = [x⊤l ,v

⊤
l ,y

⊤
l ]

⊤ be the left eigen-
vector of matrix D associated with eigenvalue zero. Then,

[x⊤l ,v
⊤
l ,y

⊤
l ]

 0n In 0n

H 0n aI
I 0n −I

= [01×n,01×n,01×n].

(6)

Expansion of (6) results in
v⊤l C = 01×n,

x⊤l = 01×n,

y⊤l = av⊤l .

(7)

Analysis of the above equation (7) indicates that ηl =
[0, · · · ,0,ξ1, · · · ,ξn,aξ1, · · · ,aξn]

⊤.
Step 2: Let λ , r = α +β i be an eigenvalue of D and C,

respectively. Then, 0n In 0n

H 0n aI
I 0n −I

 x
v
y

= λ

 x
v
y

 . (8)



88 Shan Cheng, Han Dong, Li Yu, Dongmei Zhang, and Jinchen Ji

It follows from (8) that
v = λx,

Cx = ax−ay+λv,

x = y+λy.

(9)

Then, it gives that λ 3 +λ 2 +(a− r)λ − r = 0 from (9).
If r = 0, we obtain that λ1 = 0, λ2 =

−1−
√

1−4a
2 and λ3 =

−1+
√

1−4a
2 .

If r = α +β i, then all nonzero eigenvalues of matrix D

have negative real parts when a >
(α+1)β 2−|β (α−1)|

√
β 2−4α

2α
from Lemma 2.

Step 3: From the Jordan decomposition theorem
[40], the matrix D can be written in Jordan canonical

form as D = PJP−1 = P
[

0 01×(3n−1)
0(3n−1)×1 Ĵ

]
P−1 =

[µ1, · · · ,µ3n][
0 01×(3n−1)

0(3n−1)×1 Ĵ

] ϕ⊤
1
...

ϕ⊤
3n

, where µi ∈ R3n and

ϕi ∈ R3n, i = 1,2, · · · ,3n, can be chosen to be the right
and left eigenvectors or generalized eigenvectors of D, re-
spectively, and Ĵ is the Jordan upper diagonal block matrix
corresponding to eigenvalues λi, i = 2,3, · · · ,3n. Given
that P−1P = I, µi and ϕi must satisfy that ϕ⊤

i µi = 1 and
ϕ⊤

i µk = 0, where i ̸= k. It is easy to note that µ1 = ηr,
ϕ1 = ηl .

The solution of equation (3) is given by X
V
Y

= (PeJtP−1)⊗ Im

 X(0)
V (0)
Y (0)

 .

Using the result in step 2 that all nonzero eigenvalues of D

have negative real parts when a >
(α+1)β 2−|β (α−1)|

√
β 2−4α

2α ,
we have that lim

t→∞
eĴt = 0(3n−1)×(3n−1) and

lim
t→∞

X
V
Y

= [ηr, · · · ,µ3n]M

η⊤
l
...

ϕ⊤
3n

⊗ Im

x1(0)
...

yn(0)

 .

where M =

[
1 01×(3n−1)
0(3n−1)×1 0(3n−1)×(3n−1)

]
.

So, it gives that

xi →
n

∑
i=1

ξi
(
vi(0)+ayi(0)

)
, vi → 0, i ∈ n̄,

as t → ∞, xi(0), vi(0) and yi(0) are the initial states. This
completes the proof. □

Remark 1: Different from previous works, Theorem 1
presents the key constant θ , which is determined by the
real and imaginary parts of all complex eigenvalue of the

nonsymmetric Laplacian matrix and affects the velocity-
free consensus process of multi-agent systems. Moreover,
the final consensus state where all agents converge is de-
rived.

Theorem 1 shows that system (1) with protocol (2) can
achieve consensus even if all agents do not measure veloc-
ity measurements.

3.2. Leader-follower velocity-free consensus of
multi-agent systems

In this section, the case when the network of n agents is
regulated to a leader’s state is considered. The velocity of
the leader which is labeled as 0 is unavailable and satisfies
the following equation{

ẋ0 = v0,

v̇0 =−b(x0 −ψ0),
(10)

where b is strictly positive scalar gain. The vectors ψ0 is
given by ψ̇0 = x0 −ψ0 ∈ Rm. In order to guarantee that all
agents in (1) converge to the leader’s state, the protocol ui

in (1) is designed as
ui =

n

∑
j=1

ci j(x j − xi)+b(ψi − xi)+ ci0(x0 − xi),

ψ̇i = xi −ψi, i ∈ n̄,

(11)

where ψi is the auxiliary system. Here, ci0 is the com-
munication connection between the agent i and the leader,
and ci0 > 0 denotes that agent i knows the position x0 di-
rectly; otherwise, ci0 = 0.

Corollary 1: Consider system (1) with the protocol
(11) and assume that α∗

i +β ∗
i i is an eigenvalue of C̄. Sup-

pose that the following conditions hold.
1) The leader has a directed path to all the other agents.
2) Feedback parameter b satisfies

b > η

=
(α∗+1)(β ∗)2 −|β ∗(α∗−1)|

√
(β ∗)2 −4α∗

2α∗ ,

where β ∗ = max
i∈n̄

{|β ∗
i |}, ᾱ∗ = max

i∈n̄
{α∗

i }, α∗ = min
i∈n̄

{α∗
i .

Then, xi → x0, vi → v0 as t → ∞, i ∈ n̄.
Proof: Let ei1 = xi − x0, ei2 = vi − v0, zi = ψi − ψ0,

E1 = (e⊤11, · · · ,e⊤n1)
⊤ ∈Rnm, E2 = (e⊤12, · · · ,e⊤n2)

⊤ ∈Rnm and
Z = (z⊤1 , · · · ,z⊤n )⊤ ∈ Rnm. Then, system (1) with protocol
(11) can be written in matrix form as Ė1

Ė2

Ż

=

 0n In 0n

H̄ 0n bI
I 0n −I

⊗ Im

 E1

E2

Z


= D̄⊗ Im

 E1

E2

Z

 .
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Matrix H̄ = C̄−bI, and C̄ = (c̄i j) ∈ Rn×n is defined as

c̄i j =


ci j, i ̸= j,

−
n

∑
j=1, j ̸=i

ci j − ci0, i = j.

Let r =α∗+β ∗ i be an eigenvalue of C̄. Then, all eigen-
values of C̄ have negative real parts when the leader has a
directed path to all the other agents. It can be obtained
from Theorem 1 that all eigenvalues of D̄ have negative

real parts if b >
(α∗+1)(β ∗)2−|β ∗(α∗−1)|

√
(β ∗)2−4α∗

2α∗ . Thus, by
using a similar analysis presented in Theorem 1, we con-
clude that lim

t→∞
∥E1∥ = 0 and lim

t→∞
∥E2∥ = 0. So, we have

xi → x0, vi → v0 as t → ∞. This completes the proof. □
Remark 2: Corollary 1 indicates that all follower

agents can converge to the leader’s state under the con-
dition that the feedback parameter b is bigger enough.

By the calculation, we get that xi → ψ0(0)+
v0(0)

b , vi →
0, as t → ∞, where v0(0) and ψ(0) are the initial states of
v0 and ψ , respectively.

4. NUMERICAL SIMULATIONS

In this section, numerical simulations on a system con-
sisting of six second-order agents are performed. The con-
sensus process of system (1) with protocol (2) and (11)
will be given, respectively, to show the effectiveness of
the proposed protocols.

The initial positions and velocities of six agents are
chosen as (x1(0), v1(0), y1(0)) = (−0.5, −0.3, −0.2),
(x2(0), v2(0), y2(0)) = (0.1, −0.6, 0.3), (x3(0), v3(0),
y3(0)) = (0.4, −0.6, 0.5), (x4(0), v4(0), y4(0)) = (−0.8,
0.9, 0.4), (x5(0), v5(0), y5(0)) = (−0.5, −0.1, 0.8) and
(x6(0), v6(0), y6(0)) = (0.7, 0.4, 0.9). Let the parameters
ci j = 1, or 0, depending on network topology. The units
of the position and velocity are m and m/s, respectively.

4.1. Leaderless consensus
Consider system (1) composed of n= 6 agents with pro-

tocol (2) and network topology shown in Fig. 1.
Example 1: It is calculated that the eigenvalues of ma-

trix C associated with network topology shown in Fig. 1
are λ1 = 0, λ2,3 =−1, λ4 =−3.32, λ5,6 =−1.34±0.56i,
the left eigenvector of matrix C associated eigenvalue zero
is 1

7a (2, 2, 1, 1, 1, 0)⊤. By applying the results of Theo-
rem 1, the positions of the agents in (1) can reach the state

6
∑

i=1
ξi
(
vi(0)+ayi(0)

)
when a > 4.85.

Figs. 3-4 show the change process of positions and ve-
locities of the agents in (1) with a = 1.5 and a = 5, re-
spectively. Noted that consensus is achieved after a long
period of time in Fig. 3. It is observed in Fig. 4 that the
positions and velocities of six agents achieve consensus
within a short period of time. It can be concluded from

Fig. 1. Network of six interacting agents.

Fig. 2. Network of five follower agents and one leader.

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
i(i

=
1

,2
,.

..
,6

)(
m

)

Time[s]

Fig. 3. Positions converge to 0.12 with a = 1.5.
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Fig. 4. Positions converge to 0.23 with a = 5.

Figs. 3-4 that the value of parameter a heavily affects the
velocity-free consensus of multi-agent systems.

Fig. 5 shows the evolution of the agents in system (1)
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Fig. 5. Failure to reach consensus without velocity mea-
surements.
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Fig. 6. Unstable consensus with a=1.

with the protocol presented in [9]. Noted that in the ab-
sence of velocity measurements, the agents in system (1)
cannot achieve consensus. Fig. 6 illustrates that the agents
in (1) cannot achieve consensus due to a smaller a = 1.
The trajectories of all agents have tendency to go infinity
as time goes.

4.2. Leader-follower consensus
Consider system (1) composed of five follower agents

and one leader with protocol (11) and network topology
shown in Fig. 2. The protocol used in this simulation isui =

5

∑
j=1

ci j(x j − xi)+b(ψi − xi)+ ci0(x0 − xi),

ψ̇i = xi −ψi, i = 1,2, · · · ,5,

where c10 = 2, c50 = 2, ci0 = 0, i = 2,3,4, x0(0) = 0.5,
v0(0) =−0.5 and ψ0(0) =−0.2.
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Fig. 7. Positions converge to -0.325.
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Fig. 8. Unstable leader-follower consensus with b=0.5.

Example 2: It is calculated that the eigenvalues of C̄
associated with network topology shown in Fig. 2 are λ1 =
−0.47, λ2 = −3.1, λ3 = −4.64, λ4,5 = −1.39± 0.305i.
From the result of Corollary 1, all positions and velocities
of the agents in system (1) can converge to the leader’s
position when b > 14.45.

Fig. 7 shows the process of positions and velocities of
all agents with b = 4, which indicates that the agents can
achieve the leader’s state −0.325 and the developed pro-
tocol (11) is effective. Fig. 7 also indicates that the condi-
tions in Theorem 1 and Corollary 1 are sufficient. Fig. 8
illustrates that the agents in (1) cannot achieve the leader’s
state since the parameter b = 0.5 is small.

It can be concluded from Figs. 3-8 that the theoretical
results are in good agreement with numerical simulations.
Therefore, the feasibility of Theorem 1 and the effective
of the developed protocols (2) and (11) are verified.
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5. CONCLUSIONS

The consensus for second-order multi-agent systems,
in which all agents do not obtain their velocity measure-
ments, has been studied in directed networks. Two simple
consensus protocols for multi-agent systems to reach con-
sensus were derived. A key constant which is determined
by the eigenvalue of the Laplacian matrix was analytically
developed. Numerical simulations were used to illustrate
the theoretical results. In future work, we will focus on
the consensus problems of heterogeneous multi-agent sys-
tems without velocity measurements.
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