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Stability Analysis and Dynamic Output Feedback Control for Nonlinear
T-S Fuzzy System with Multiple Subsystems and Normalized Membership
Functions
Wei Zheng*, Zhi-Ming Zhang, Hong-Bin Wang, Hong-Rui Wang, and Peng-Heng Yin

Abstract: This paper addresses the stability analysis and dynamic output-feedback control problems for a class
of nonlinear Takagi-Sugeno (T-S) fuzzy systems with multiple subsystems and normalized membership functions.
First, the switching control law of the membership function is proposed based on the membership function for the
nonlinear T-S fuzzy subsystems. Secondly, the relaxation parameter is introduced into this switching control law to
guarantee a minimal dwell time between two consecutive switching. Then, based on the proposed switching control
law of the membership function and relaxation parameter, the dynamic output feedback controller with the estimate
algorithm is designed to estimate the attraction domain. By introducing the new switched Lyapunov-Krasovskii
functional, it can be seen that the solutions of the resultant closed-loop system converge to an adjustable bounded
region. Compared with the previous works, the developed controller in this paper is flexible and smooth, which
only uses the system output. And the results are further extended to the mobile robot case and the chemical process
case. Finally, two simulation examples are performed to show the effectiveness of the theoretical results.

Keywords: Dynamic output-feedback, Lyapunov-Krasovskii functional, multiple subsystems, relaxation parame-
ter, switching control law, T-S fuzzy system.

1. INTRODUCTION

The nonlinear control problem is a common phe-
nomenon for many industrial process systems [1]. The sta-
bility analysis and intelligent control for the nonlinear dy-
namic systems have attracted considerable attentions [2].
The presence of such nonlinear uncertainties in the non-
linear systems may induce severe deterioration of the sys-
tem performances [3, 4]. Many controller design strate-
gies were proposed to deal with the nonlinear uncertain-
ties and time-delays cases, see [5–7] and the references
therein. In practice, it is generally known that the fuzzy
control theory can be employed to control a class of non-
linear uncertain systems, which has become an important
methodology for the nonlinear system design [8, 9].

On the other hand, it is well known that the fuzzy con-
trol theory provides a powerful method to solve the control
design issues for the nonlinear systems [10]. The most
advantage of T-S fuzzy control is that the dynamics of
the concerned nonlinear system can be achieved by the
smooth combination of linear system models [11]. Re-
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cently, a lot of important investigations on the class of T-S
fuzzy systems in both the discrete-time and continuous-
time cases have been discussed in the literatures based on
the linear matrix inequalities (LMIs) methods. In [12], the
intelligent fuzzy digital redesign approach was proposed
for the fuzzy control systems based on state-matching er-
ror cost function. A new fuzzy filtering control scheme
was proposed for the nonlinear system to approximate the
local dynamics of the system in a certain region deter-
mined by a set of T-S rules [13]. Based on the fuzzy
back-stepping dynamic surface control theory, an adap-
tive tracking controller was designed for the nonlinear dy-
namic MIMO system [14]. In [15], an adaptive fuzzy-
decentralized robust output-feedback control strategy was
proposed for a class of large-scale strict-feedback nonlin-
ear systems with unmeasured states. Then, a new adap-
tive T-S fuzzy method was developed in [16] to improve
the haptic feedback fidelity of the nonlinear affine sys-
tem. It should be point out that in order to reduce the
conservatism, a switched controller was proposed for the
fuzzy systems [17,18]. In addition, based on the values of
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membership functions, a new switched parallel distributed
compensation controller was proposed in [19]. Recently,
some adaptive control strategies were proposed for the
switched nonlinear systems via the LMIs design technique
[10, 15, 18]. In [10], the robust control approach based
on the LMIs was proposed for a class of fuzzy dynamic
systems with one-sided control constraint, without consid-
ering the switched Lyapunov-Krasovskii functional tech-
nique. In [15], the adaptive decentralized output feedback
control approach was proposed for a class of stochastic
fuzzy systems with nonlinear uncertainties, without con-
sidering the dynamic output feedback and the attraction
domain issues. The membership functions are assumed
to be non-differentiable and the state-feedback controller
was constructed for the T-S fuzzy system [18]. However,
the relaxation parameter is not considered such that the
dwell time between two consecutive switching may not
be minimal. In addition, since the average dwell-time
method was employed in [20], the switching signals are
not arbitrary and need to satisfy some restrictive condi-
tions. However, for the switching law in [17] was based
on the membership functions and has no minimal dwell
time, the famous Metzler matrix method [19] and aver-
age dwell time method [21] cannot be applied to the fuzzy
systems with switching control. Therefore, dealing with
the trade-off between a less conservative condition and in-
creased design complexity remains an important problem
in system control design.

Recently, the adaptive fuzzy control methods have been
studied extensively in the nonlinear control problems
and application problems, see [22–26] and the references
therein. In [24], an output-based adaptive backstepping
control method was developed for a class of nonlinear
nonstrict-feedback systems against actuator fault. In [25],
an adaptive fuzzy backstepping method was proposed for
a class of single-input single-output nonlinear systems
with network-induced delay and data loss. Moreover,
an observer-based adaptive fuzzy backstepping control
method was proposed for a class of nonlinear nonstrict-
feedback stochastic systems with input saturation and pre-
scribed performance [26]. In [27], a fuzzy-model-based
static output-feedback method was proposed and the reli-
able distributed fuzzy controller was constructed. In order
to deal with the unknown nonlinear uncertainties, some
adaptive fuzzy and robust output-feedback decentralized
control strategies [28–30] have been developed. Based
on the above reasons, the neural network fuzzy-logic con-
trol systems and output-feedback control are often con-
sidered as universal effective controllers. In [31], the dy-
namic output-feedback control theory was considered for
a class of nonlinear industrial system with unknown dis-
turbances, and the network-based fuzzy design methodol-
ogy was presented. Recently, the LMIs-based design con-
ditions were employed for the system stabilization via the
fuzzy and output feedback theories in [32–34]. In [35],

the dynamic output feedback control method was pro-
posed for the nonlinear networked discrete-time system
with missing measurements. With the help of dynamic
output-feedback control technique, two-term approxima-
tion theory was investigated in [36] for the Markovian
jump systems with time-varying delay and defective mode
information. However, most of the above controllers are
designed based on the static output feedback control. In
addition, it should be mentioned that the performance of
the T-S fuzzy systems have not been considered in the lit-
eratures. Very few results employed the fuzzy switched
Lyapunov-Krasovskii functional method to estimate the
attraction domain, and consider with the normalized mem-
bership functions in the nonlinear T-S fuzzy dynamic
output-feedback control system. Especially the dynamic
output feedback technique is more flexible and the con-
trol design conditions are relaxed. Therefore, the dynamic
output-feedback control problem is investigated in this pa-
per.

In this paper, the dynamic output-feedback control
problem is considered for a class of nonlinear T-S fuzzy
systems with multiple subsystems and normalized mem-
bership functions. Compared with the previous works, the
developed controller in this paper is effective, which only
uses the system output. And the control design conditions
are relaxed because of the developed switching control
law of the membership function with relaxation param-
eter. The contributions of this paper are summarized as
follows:

1) The fuzzy switching control law is proposed based
on the membership function and the minimal dwell time
between two consecutive switching is guaranteed effec-
tively. The relaxation parameter is introduced into this
switching control law of the membership function and the
control design conditions are relaxed in the control system
design.

2) The dynamic output feedback controller is designed
based on the switching control law and the relaxation pa-
rameter, such that the required conditions on the consid-
ered systems are less conservative. The estimate algorithm
is introduced into the dynamic output feedback controller
and the attraction domain can be estimated efficiently.

3) The switched Lyapunov-Krasovskii functional is em-
ployed and two stability criterions are obtained. By intro-
ducing the new Lyapunov-Krasovskii functional, it can be
seen that the solutions of the closed-loop system converge
to an adjustable bounded region. The results are further
extended to the mobile robot case and the chemical pro-
cess case.

This paper is organized as follows: The preliminary
knowledge is presented in Section 2. Two stability crite-
rions are presented for the closed-loop system in Section
3. The dynamic output feedback controller is designed
in Section 4. Two simulation examples are performed in
Section 5. Finally, Section 6 concludes with a summary
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of the obtained results.

2. PROBLEM FORMULATION

Consider a class of nonlinear T-S fuzzy system with
multiple subsystems and normalized membership func-
tions

ẋ(t) =
r

∑
i=1

fi (t)(Aix(t)+Biu(t)) ,

y(t) =
r

∑
i=1

fi (t)(C1ix(t)) , i ∈ [1, r] ,
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny are the state
variable, control input and control output of the system
(1), respectively. Ai, Bi and Ci are the gain matrices with
appropriate dimensions for i ∈ [1,r], where r is the num-
bers of IF-THEN rules (i.e., r is the numbers of subsys-
tems). fi(t) are the normalized membership functions
with premise variables in the fuzzy inference rules, such
that the following conditions hold

fi(t)≥ 0,
r

∑
i=1

fi(t) = 1.
(2)

For the system (1), the time derivatives of fi(t) satisfy

| ḟi(t)| ≤ φi, (3)

where φi are the upper bound parameters for the time
derivatives of the membership functions fi(t).

With (1)-(3), the system (1) is rewritten [37]

ẋ(t) = Āix(t)+ B̄iu(t) ,

y(t) = C̄1ix(t) , (4)

where

Āi =
r

∑
i=1

fi (t)(Ai) ,

B̄i =
r

∑
i=1

fi (t)(Bi) ,

C̄1i =
r

∑
i=1

fi (t)(C1i) . (5)

For the T-S fuzzy system (4), the set of state variables is
defined [38]

⨿ := {x(t) ∈ Rnx | |x(t)| ≤ x̄i, i ∈ [1, r] } , (6)

where x̄i is the upper bound value of x(t).
With (1) and (3), the set of normalized membership

functions is defined

R :=
{

fi (t)≥ 0
∣∣ ∣∣ ḟi (t)

∣∣≤ φi, i ∈ [1, r]
}
. (7)

The objective of this paper is to design the dynamic output
feedback controller, such that the solutions of the resultant
closed-loop system converge to an adjustable bounded re-
gion. And the set of adjustable bounded region is defined

D : =
{

x(0) ∈ Rnx

∣∣∣∣ lim
t→+∞

x(t) = 0
}
. (8)

Assumption 1: For the system (1), if there exists a
Lyapunov-Krasovskii functional V (x(t)) : U → R for any
x(t) ∈ U −{0} such that V̇ (x(t)) ≤ 0, then the following
condition holds

Z (b) : = {x(t) ∈ Rnx |V (x(t))≤ b} , (9)

where Z is an inner estimate of the attraction domain, and
b is the attraction domain parameter.

Remark 1: Different from the previous works, the
switching control law of the membership function, the re-
laxation parameter and the switched Lyapunov-Krasovskii
functional are considered for the nonlinear T-S fuzzy sys-
tems with multiple subsystems and normalized member-
ship functions in this paper. Although a membership-
function-dependent switching method was proposed in
[32], only the common Lyapunov function is considered.
If the switching control law was given in the control
system design, the switched Lyapunov-Krasovskii func-
tional is more suitable [33]. With the above reasons, the
LMIs sufficient conditions are derived by employing the
switched Lyapunov-Krasovskii functional.

Remark 2: For the problem formulated, there are three
challenging issues as follows. The first one is how to de-
sign the switching control law of the membership func-
tion based on the normalized membership functions for
the nonlinear T-S fuzzy subsystems. The second one is
how to introduce the relaxation parameter into the switch-
ing control law to guarantee the minimal dwell time be-
tween two consecutive switching. The third one is how to
design the dynamic output feedback controller with the es-
timate algorithm to estimate the attraction domain. If the
above three issues are solved, the controller will be de-
signed with easy implementation in the practical control
systems. Since the nonlinear membership functions and
number of rules would make the controller design more
difficult and lead to potentially conservative results. Thus
the dynamic output feedback controller is constructed in
this paper based on the switching control law and relax-
ation parameter for the nonlinear T-S fuzzy system via the
estimate algorithm, such that the stability conditions in the
form of LMIs are derived and the solutions of the resultant
closed-loop system converge to an adjustable bounded re-
gion.

3. STABILITY ANALYSIS

In this section, the stability conditions are presented for
the nonlinear T-S fuzzy system with multiple subsystems
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and normalized membership functions. In practice, the
upper bound parameters φi for the time derivatives of the
membership functions fi(t) may be available/unavailable.
Thus, for the available and unavailable cases, two stability
conditions are presented.

Remark 3: Compared with the previous works, the
switched Lyapunov-Krasovskii functional Vσ(t)(x(t)) is
introduced for the nonlinear T-S fuzzy systems, where
σ(t) is the switching control law. {t0, t1, ..., tk, tk+1} are
the switching sequence for t0 = 0 is the initial time, and
tk is the kth switching instant. The using details of the
parameters are shown in [17].

3.1. Stability conditions when φi are available
For the system (1), based on the normalized member-

ship functions fi(t), the switching control law of the mem-
bership function is designed

σ (t) =


arg max

i∈[1, r]
fi (0) , t = 0,

σ
(
t−
)
, λ f j (t)≥ max

i∈[1, r]
fi (t) ,

arg max
i∈[1, r]

fi (t) , λ f j (t)< max
i∈[1, r]

fi (t) ,

(10)

where t− is the last time instant, λ is the relaxation param-
eter such that λ ≥ 1 .

By employing (10) for (1), the system (1) is written

ẋ(t) =
r

∑
i=1

fσ(t) (t)(Aix(t)+Biu(t)) , (11)

where fσ(t)(t) represents the membership function with
switching control law.

Remark 4: Let u(t) ≡ 0, then the nonlinear T-S fuzzy
system (11) can be rewritten

ẋ(t) =
r

∑
i=1

fσ(t) (t)(Aix(t)) . (12)

With (4) and (5), the system (12) can be rewritten

ẋ(t) =Aσ(t)x(t), (13)

where Aσ(t) =
r
∑

i=1
fσ(t)(t)(Ai). Then it can be seen that the

system (12) is stable if there exists a common Lyapunov-
Krasovskii functional. The common solutions can be ob-
tained by employing the standard LMIs method in [39].

Assumption 2: For any switching signal σ(t), if there
exists a scalar Td such that Td > 0, then the following in-
equality holds

inf{tk+1 − tk} ≥ Td . (14)

The minimal dwell time tm is introduced

tm =− (1−λ )
rφ (1+λ )

, (15)

where φ = min{φi}.
With (3) and (10), one has

λ fσ(tk) (t)≥λ
(

fσ(tk) (tk)− (t − tk)φ
)

≥max fi (tk)+(λ−1) fσ(tk) (tk)−λ (t−tk)φ
≥max fi (tk)+φ (1+λ )

(
λ −1

/
rφ (λ +1)

)
−λ (t − tk)φ

≥max fi (tk)+φ (1+λ )(t−tk)−λ (t−tk)φ
≥max fi (tk)+(t − tk)φ
≥max fi (t) , tm ≥ t − tk. (16)

With (4) and (16), one has

inf{tk+1 − tk} ≥ Td ≥ tm. (17)

Remark 5: From (10), it can be seen that if the relax-
ation parameter λ = 1, the switching control law (10) is re-
duced to the existing switching control law in [17,18,40].
Obviously, λ > 1 will ensure that Td ≥ tm > 0 which
means that the switching control law (10) has a minimal
dwell-time. As shown in [33], the switched control tech-
nique is a more effective way to deal with the dwell time
switching. Therefore, the switching control law technique
is adopted in this paper.

Theorem 1: For the given positive scalars λ > 1, Td > 0
and K > 0, if there exist the matrices Q jl,n, Si jl and Nil,n

such that Q jl,n = QT
jl,n > 0, Si jl = ST

i jl > 0 and Nil,n =

N T
il,n > 0, then the following inequalities hold

Q jl,0 −Q jq,K < 0, l ̸= q,

Q jl,n −Nil,n > 0,

Gi jl,mm +G jil,mm < 0, i ≤ j,

Gi jl,(m+1)m +G jil,(m+1)m < 0, i ≤ j,

Gi jl,K +G jil,K < 0, i ≤ j

(18)

with

Gi jl,nm = He(Q jl,nAi)+
r

∑
q=1

φq (Qql,n −Nil,n)

+
(
K
/
Td
)
(Q jl,m+1 −Q jl,m)

+ailλ
r

∑
q=1

Sq jl −Si jl ,

Gi jl,K = He(Q jl,KAi)+
r

∑
q=1

φq (Qql,K −Nil,K)

+ailλ
r

∑
q=1

Sq jl −Si jl ,

(19)

where i, j, l, q ∈ [1,r], m ∈ [1,K −1], n ∈ [1,K] and

ai j =

{
0, i ̸= j,

1, i = l.
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Thus, it can be seen that the solutions of the resultant
closed-loop system converge to an adjustable bounded re-
gion.

Proof: Choose the switched Lyapunov-Krasovskii
functional Vσ(t)

Vσ(t)(x(t)) = xT (t)Q f (t)σ(t)(t)x(t). (20)

With (17), one can obtain tk+1 − tk ≥ Td . Then the time
interval [tk, tk + Td) is divided into K segments, and de-
scribed as [tk + τm, tk + τm+1) for τm = m∆T = mTD/K.
Note that

Q f (t)lk(tk + τm) =Q f (t)lk ,m, (21)

where lk is a positive scalar representing the lkth subsys-
tem. It means that the lk th subsystem is activated when
t ∈ [tk, tk+1).

Based on the linear interpolation theories, one has
Q f (t)lk (t) =Q f (t)lk

(
tk + τm +α

(
Td
/

K
))

= (1−α)Q f (t)lk ,m +αQ f (t)lk ,m+1,

tk ∈ [tk + τm, tk + τm+1) ,

Q f (t)lk (t) =Q f (t)lk ,K , t ∈ [tk + τk, tk+1) ,

(22)

where α = (t−tk−τm)K
Td

.
With(21) and (22), equation (20) is rewritten

Vσ(t) (x(t)) =



xT (t)
(
(1−α)Q f (t)σ(t),m

+αQ f (t)σ(t),m+1
)

x(t) ,

t ∈ [tk + τm, tk + τm+1) ,

xT (t)Q f (t)σ(t),Kx(t) ,

t ∈ [tk + τK , tk+1) .

(23)

The time derivative of (20) yields

V̇σ(t) (x(t)) =2ẋT (t)Q f (t)σ(t) (t)x(t)

+ xT (t) Q̇ f (t)σ(t) (t)x(t)

=xT (t)
(
He
(
Q f (t)σ(t) (t)Ai

)
+ Q̇ f (t)σ(t) (t)

)
x(t)

<0. (24)

Then, the proof of (24) is divided into three steps.
Step 1: (If the following inequality (27) holds, equation

(24) will be holds) For (23) with t ∈ [tk+τm, tk+τm+1), the
following equality holds

Q̇ f (t)lk (t) =
(
K
/
Td
)(

Q f (t)lk ,m+1 −Q f (t)lk ,m
)

+
r

∑
q=1

ḟq (t)Qqlk (t) ,

tk ∈ [tk + τm, tk + τm+1) , (25)

where

Qqlk(t) = (1−α)Qqlk ,m +αQqlk ,m+1. (26)

With (25) and (26), one has

r

∑
i=1

r

∑
j=1

fi (t) f j (t)(He(Q jlk (t)Ai)

+
r

∑
q=1

ḟq (t)Qqlk (t)+
(
K
/
Td
)
(Q jlk ,m+1 −Q jlk ,m))

< 0. (27)

Then, it can be seen that (24) holds.
Step 2: (If the following inequality (30) holds, the in-

equality (27) will hold) With (18), one has

Qqlk(t)−Nilk(t)> 0. (28)

With (2) and (28), one has

r

∑
q=1

ḟq (t)Qqlk (t) =
r

∑
q=1

ḟq (t)(Qqlk (t)+Nilk (t))

≤
r

∑
q=1

φq (Qqlk (t)+Nilk (t)) . (29)

For (27), if there exists the inequality

r

∑
i=1

r

∑
j=1

fi (t) f j (t)
(
He(Q jlk (t)Ai)

+
r

∑
q=1

φq (Qqlk (t)−Nilk (t))

+
K
Td

(Q jlk ,m+1 −Q jlk ,m)+ailk λ
r

∑
q=1

Sq jlk −Si jlk

)
=

r

∑
i=1

r

∑
j=1

fi (t) f j (t)
(
(1−α)Gi jlk ,mm +αGi jlk ,(m+1)m

)
< 0. (30)

Then, it can be seen that inequality (27) holds.
Step 3: For (3) with t ∈ [tk + τk, tk+1), and considering

(22), one has

Q̇ f (t)lk (t) =
r

∑
q=1

ḟq (t)Qqlk ,K , t ∈ [tk + τK , tk+1) . (31)

Via the similar approach, (24) holds. Based on the condi-
tion Q jl,0 −Q jq,K < 0 in (18), one has

Vσ(tk+1)(x(tk+1))<Vσ(tk)(x(t
−
k+1)), (32)

where Vσ(tk+1) is the value of the Lyapunov-Krasovskii
functional at tk+1. Vσ(tk) is the value of the Lyapunov-
Krasovskii functional at t−k+1, and t−k+1 is the last time in-
stant before the (k+1)th switching. The proof of Theorem
1 is completed. □
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Remark 6: The switching control law of the member-
ship function is proposed based on the normalized mem-
bership functions fi(t) of the nonlinear T-S fuzzy system.

Then the relaxation parameter λ in ailλ
r
∑

q=1
Sq jlk −Si jlk is

introduced. Compared with the previous works, the de-
veloped Lyapunov-Krasovskii functional in this paper is
switched, and the control design conditions are relaxed
because of the developed relaxation parameter.

3.2. Stability conditions when φi are unavailable
From Theorem 1, it can be seen that the upper bound

parameters φi for the time derivatives of the membership
functions fi(t) should be available. However, for the prac-
tical systems, the upper bound parameters φi for the time
derivatives of the membership functions fi(t) may be un-
available.

Theorem 2: For the given positive scalars λ > 1, Td > 0
and K > 0, if there exist the positive matrices Ql,n and
Sil such that Ql,n = QT

l,n > 0 and Sil = ST
il > 0, then the

following inequalities hold
Ql,0 −Qq,K < 0, l ≠ q,

Gil,mm < 0,

Gil,(m+1)m < 0,

Gil,K < 0

(33)

with

Gil,nm = He(Ql,nAi)+
(
K
/
Td
)
(Ql,m+1 −Ql,m)

+ailλ
r

∑
q=1

Sql −Sil ,

Gil,K = He(Ql,KAi)+ailλ
r

∑
q=1

Sql −Sil ,

(34)

where i, l, q ∈ [1,r], m ∈ [1,K − 1], n ∈ [1,K], and ai j ={
0, i ̸= l,

1, i = l.
Thus, it can be seen that the solutions of the

closed-loop system converge to an adjustable bounded re-
gion.

Proof: Choose the switched Lyapunov-Krasovskii
functional

Vσ(t) (x(t)) = xT (t)Q f (t)σ(t) (t)x(t) . (35)

Via the similar approach, one can obtain Theorem 2 based
on the proof of Theorem 1. □

4. CONTROLLER DESIGN

In this section, based on the proposed switching con-
trol law σ(t) and the relaxation parameter λ , the dynamic
output feedback controller with the estimate algorithm is

Fig. 1. The graphical abstract of proposed methodology.

designed to estimate the attraction domain. The graphical
abstract of the proposed methodology is shown in Fig. 1.

Remark 7: In practice, the upper bound parameters φi

for the time derivatives of the membership functions fi(t)
are not easy to obtain. In addition, in order to obtain the
inner estimate of the attraction domain Z(b∗) with b∗ =
max{b ∈ R | Z(b)⊆ U}, the values of φi are computed in
the prescribed region L(θ) [40].

L(θ) = {x(t) ∈ Rnx | |xi (t)| ≤ θ , i ∈ [1, r]} ⊆ C,
(36)

where θ = [θ1, θ2, ..., θ j]
T .

For the nonlinear T-S fuzzy system (1), the dynamic
output feedback controller is designed.

Step 1: For the system (1), there exist the scalars k, γ j,
λ , ε and vector θ k = [θ k

1 , θ k
2 , ..., θ k

j ]
T such that k ≥ 1, γ j >

0, λ > 1, ε > 0 and θ k
j > 0. With Theorems 1, 2 and (36),

the upper bound parameters φk
i for the time derivatives of

the membership functions fi(t) are described

φk
i =

{
x(t) ∈ L(θ) | max

∣∣ ḟi (t)
∣∣ , i ∈ [1, r]

}
. (37)

Then, φk
i can be computed by the LMIs toolbox.

Step 2: With (10), (13) and (37), the minimal dwell
time is designed

tk
m =− 1−λ

rφk (1+λ )
≤ T k

d . (38)

Step 3: With (37) and (38), the following conditions
hold.

If k = 1, set θ k
j = θ k

j−1 + γ j, then one has{
θ k

j > x̄i, go to Step 4,

θ k
j ≤ x̄i, return to Step 1.
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If k ̸= 1, set θ k
j = θ k

j−1 −
γ j

2 , then one has{
θ k

j > ε, return to Step 1,

θ k
j ≤ ε, go to Step 4.

Step 4: Defining φ∗
i = φk−1

i , t∗m = tk−1
m ≤ T ∗

d and θ ∗
j =

θ k−1
j , then the attraction domain parameter b∗ can be de-

scribed

b∗ = max{b ∈ R | Z (b)⊆ L(θ ∗)} . (39)

Step 5: For the system (1), the dynamic output feed-
back controller is designed{

ẋd (t) =A f (t)xd (t)+B f (t)y(t) ,

u(t) = C f (t)xd (t)+D f (t)y(t) ,
(40)

where xd(t) is the state vector of the dynamic output-
feedback controller. A f (t), B f (t), C f (t) and D f (t) are the
gain matrices with appropriate dimensions. With (1) and
(40), the nonlinear closed-loop system is obtained[

ẋ(t)
ẋd (t)

]
=

[
Āi + B̄iD f (t)C̄1i B̄iC f (t)

B f (t)C̄1i A f (t)

][
x(t)
xd (t)

]
.

(41)

Theorem 3: For the given positive scalars λ > 1, Td > 0
and K > 0, if there exist the positive matrices W jl,n, S̄i jl

and N̄il,n such that W jl,n = WT
jl,n > 0, S̄i jl = S̄T

i jl , and
N̄il,n = N̄ T

il,n > 0, then the following inequalities hold

W jl,K −W jq,0 < 0, l ̸= q,

W jl,n −N̄il,n > 0,

Ḡi jl,mm + Ḡ jil,mm < 0,

Ḡi jl,(m+1)m + Ḡ jil,(m+1)m < 0,

Ḡi jl,K + Ḡ jil,K < 0

(42)

with

Ḡi jl,mm = He
(
AiW jl,n

+BiS jl,n
)
+

r

∑
q=1

φq
(
Wql,n −N̄il,n

)
−K

/
TD (W jl,m+1 −W jl,m)

+ailλ
r

∑
q=1

S̄q jl −S̄i jl ,

Ḡi jl,K = He(AiW jl,K +BiS jl,K)

+
r

∑
q=1

φq
(
Wql,K −N̄il,K

)
+ailλ

r

∑
q=1

S̄q jl −S̄i jl ,

(43)

where i, j, l, q ∈ [1,r], n ∈ [1,K], m ∈ [1,K − 1],

ai j =

{
0, i ̸= l,

1, i = l,
Ai =

[
Āi B̄iC f (t)

B f (t)C̄1i A f (t)

]
and Bi =[

(B f (t)C̄1i)
T 0

]T .

Thus, it can be seen that the solutions of the closed-loop
system converge to an adjustable bounded region.

Proof: The proof of Theorem 3 is divided into two
steps.

Step 1: Based on the conditions Ḡi jl,mm + Ḡ jil,mm < 0
and Ḡi jl,(m+1)m + Ḡ jil,(m+1)m < 0 in (42), one has

r

∑
i=1

r

∑
j=1

fi (t) f j (t)
(
He(AiW jlk +BiW jlk)

+
r

∑
q=1

φq
(
Wqlk −N̄ilk

)
− K

Td
(W jlk ,m+1 −W jlk ,m)

)
+

r

∑
i=1

r

∑
j=1

fi (t) f j (t)

(
ailk λ

r

∑
q=1

S̄q jlk −S̄i jlk

)
< 0,

(44)

where

r

∑
i=1

r

∑
j=1

fi (t) f j (t)

(
ailk λ

r

∑
q=1

S̄q jlk −S̄i jlk

)
> 0, (45)

Wqlk = (1−α)Wqlk ,m +αWqlk ,m+1. (46)

Based on the conditions (2) and (3), with (40), (45) and
(46), inequality (44) can be rewritten

r

∑
i=1

r

∑
j=1

fi (t) f j (t)
(
He(AiW jlk +BiW jlk)

−
r

∑
q=1

ḟq (t)Wqlk −
K
Td

(W jlk ,m+1 −W jlk ,m)
)

= He
(
A f (t)X f (t)lk (t)+B f (t)X f (t)lk (t)

)
−Ẋ f (t)lk (t)

< 0, (47)

where X f (t)lk(t) is a function matrix and defined

X f (t)lk (t) =
K
Td

(
X f (t)lk ,m+1 −X f (t)lk ,m

)
+

r

∑
i=1

ḟi (t)Wilk .

(48)

Let

Hlk(t) = X−1
f (t)lk

(t). (49)

Then, the time derivative of (49) yields

Ḣlk (t) = Ẋ−1
f (t)lk

(t) =−X−1
f (t)lk

(t) Ẋ f (t)lk (t)X
−1
f (t)lk

(t) .
(50)

Substituting (46) into (47), with (49) and (50), one has

He
(
Hlk (t)

(
A f (t)+B f (t)

(
C f (t)xd (t)+D f (t)y(t)

)))
+ Ḣlk (t)< 0, t ∈ [tk + τm, tk + τm+1) . (51)

Step 2: Via the similar way as shown in the first step,
based on the condition Ḡi jk,K + Ḡ jil,K < 0 in (42), the fol-
lowing inequality holds

He
(
Hlk (t)

(
A f (t)+B f (t)

(
C f (t)xd (t)+D f (t)y(t)

)))
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+ Ḣlk (t)< 0, t ∈ [tk + τk, tk+1) . (52)

For the system (41), choose the switched Lyapunov-
Krasovskii functional

Vσ(t)(x(t)) = xT (t)H f (t)σ(t)(t)x(t). (53)

Then, the time derivative of (53) yields

V̇σ(t) (x(t)) =ẋT (t)H f (t)σ(t) (t)x(t)

+ xT (t)Ḣ f (t)σ(t) (t)

+ xT (t)H f (t)σ(t) (t) ẋ(t) . (54)

Based on the condition W jl,K −W jq,0 < 0 in (42), with
(51) and (54), one has{

V̇σ(t) (x(t))< 0,

Vσ(tk+1) (x(tk+1))−Vσ(tk)
(
x
(
t−k+1

))
< 0.

(55)

Then it can be seen that the solutions of the closed-loop
system (41) converge to an adjustable bounded region.
The proof of the Theorem 3 is completed. □

5. SIMULATIONS

In this section, two simulation examples are performed
to verify the feasibility and effectiveness of the proposed
method.

5.1. Example 1
Consider a class of nonlinear T-S fuzzy mobile robot

system ẋ1 (t)
ẋ2 (t)
ẋ3 (t)

=
r

∑
i=1

fi (t)

Ai

 x1 (t)
x2 (t)
x3 (t)

+Biu

 , (56)

where x1 is the direction angle of the mobile robot, x2

and x3 are the mobile robot position coordinates. u is
the control input of the system. For the simulation, the

gain matrices are defined A1 =

 1 0 0.5
0 1 1
1 0 1

, A2 = 0.5 1 05
1 0.5 1
1 2 0.5

 and B1 = B2 =

 0.5
0.8
1

.

For the system (56), the dynamic output feedback con-
troller with the estimate algorithm is designed.

Step 1: The parameters k, γ1, γ2, γ3,λ , ε and θ 1
1 are

given as k = 1, γ1 = γ2 = γ3 = 0.3, λ = 1.5, ε = 0.003 and
θ 1

1 = 1. With Theorems 1, 2 and (36), the upper bound
parameters φk

i for the time derivatives of the membership
functions fi(t) are described as follows:

φk
i =

{
x(t) ∈ L(θ) | max

∣∣ ḟi (t)
∣∣ , i = 1,2,3

}
. (57)

In this case, the upper bound parameters φ1
1 , φ1

2 and φ1
3

are given
φ1

1 = max
∣∣ ḟ1 (t)

∣∣= 0.125,

φ1
2 = max

∣∣ ḟ2 (t)
∣∣= 0.148,

φ1
3 = max

∣∣ ḟ3 (t)
∣∣= 0.130.

Step 2: With (10) and (57), the minimal dwell time is
designed

tk
m =− 1−λ

rϕ k (1+λ )
≤ T k

d . (58)

Step 3: With (57) and (58), the following conditions
hold.

If k = 1, set θ 1
j = θ 1

j−1 + γ j = 1.3, then one has{
θ k

j > x̄i, go to Step 4,

θ k
j ≤ x̄i, return to Step 1.

If k = 9 ̸= 1, set θ 9
j = θ 9

j−1 −
γ j

2 , then one has

{
θ k

j > ε, return to Step 1,

θ k
j ≤ ε, go to Step 4.

Step 4: For k = 9, one can obtain φ∗
i = φk−1

i = φ8
i =

0.8329, t∗m = tk−1
m = t8

m = 0.0286 ≤ T ∗
d and θ ∗

j = θ k−1
j =

θ 8
j = 1.2875, then the attraction domain parameter b∗ can

be designed

b∗ = max{b ∈ R | Z(b)⊆ L(θ ∗)}= 0.4180. (59)

Step 5: For the system (56), the dynamic output feed-
back controller is designed{

ẋd (t) =A f (t)xd (t)+B f (t)y(t) ,

u(t) = C f (t)xd (t)+D f (t)y(t) ,
(60)

where A f (t) =

 −0.3200 0.3171 0.1573
−0.1047 0.1957 0.0265
−0.1732 0.5010 0.6142

, B f (t) = −0.1915
−1.1800
−0.0025

, C f (t) =
[

3.5400 −0.8120 −0.7058
]

and D f (t) =−0.1672.
For the simulation, the initial state are chosen as x(0) =

[0.5 0 0]T . The responses of the system state variables
x1(t), x2(t) and x3(t) for system (56) are shown in Figs. 2
and 3. The control inputs are shown in Fig. 4. From three
figures, it can be seen that the proposed method is effective
and can stabilize the mobile robot system quickly.
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Fig. 2. The response of system state variables x1.

Fig. 3. The responses of system state variables x2 and x3.

Fig. 4. The responses of system control inputs.

5.2. Example 2

Consider a class of nonlinear T-S fuzzy chemical stirred
tank reactor system [41]


ĊA = qV−1 (CA fsik −CA)−a0 exp

(
− E

RT

)
CA,

Ṫ = qV−1 (Tfsik −T )−a1 exp
(
− E

RT

)
CA

+a2 (TC −T ) ,
(61)

where k = 1, 2 is the mode index, fsi is the feed stream
index, and the use details of parameters k and fsi were
shown in [41]. CA, T and TC are the reactant concentration,
reactor temperature and coolant temperature, respectively.
In this paper, the mode index k is chosen as k = 1 [41],

then the system (61) is rewritten
ĊA = qV−1 (CA fsi1 −CA)−a0 exp

(
− E

RT

)
CA,

Ṫ = qV−1 (Tfsi1 −T )−a1 exp
(
− E

RT

)
CA

+a2 (TC −T ) .
(62)

In addition, the using details of parameters in (62) were
shown in [41].

For the chemical stirred tank reactor system (62), the
desired nominal operating values are C∗

A = 0.5 mod/L,
T ∗ = 350 K and T ∗

C = 350 K. In this case, x1 = CA −C∗
A

and x2 = T −T ∗ are the state variables. With k = 1 and
the Table 1 as shown in [41], the system (62) is rewritten
[41]

(κ = 1) :



ẋ1 (t) = x2 (t)+0.5(1.5− x1 (t))

−a0x1 (t)e−8750/(x2(t)+350)

− x2 (t) ,

ẋ2 (t) = a2u(t)−2.592x2 (t)

−a1x1 (t)e−8750/(x2(t)+350)

−104.6.

(63)

Remark 8: The schematic diagram of the chemical
stirred tank reactor is shown in Fig. 5. It consists of a con-
stant volume CSTR fed by a single inlet stream through
a selector valve. Suppose that the position of the selector
valve at each time is determined by a supervisory mecha-
nism based on an objective. In other words, at each time
the reactor is fed by one of the source streams according
to the decision made by the supervisor. Since the source
streams have different parameters, the parameters of the
feed of the reactor can change instantaneously. The reac-
tor is cooled by a coolant stream with a constant flow rate
and a variable temperature TC [41].

For the simulation, the gain matrices are defined

A1 =

[
1 0
0 1

]
, A2 =

[
1 1
1 0

]
, B1 =

[
1
1

]
and B2 =

[
0.5
1

]
.

For the system (63), the dynamic output feedback con-
troller with the estimate algorithm is designed.

Step 1: The parameters k, γ1, γ2, λ , ε and θ 1
1 are given

as k = 1 , γ1 = γ2 = 0.5, λ = 2, ε = 0.003 and θ 1
1 = 1.

With Theorems 1, 2 and (36), the upper bound parameters
φk

1 for the time derivatives of the membership functions
fi(t) are described

φk
i = {x(t) ∈ L(θ) | max | ḟi(t)|, i = 1,2}. (64)
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Fig. 5. The schematic diagram of the chemical stirred tank
reactor.

In this case, the upper bound parameters φ1
1 and φ1

2 are
given{

φ1
1 = max | ḟ1(t)|= 0.187,

φ1
2 = max | ḟ2(t)|= 0.209.

Step 2: With (10) and (64), the minimal dwell time is
designed

tk
m =− 1−λ

rϕ k (1+λ )
≤ T k

d . (65)

Step 3: With (64) and (65), the following conditions
hold.

If k = 1, set θ 1
j = θ 1

j−1 + γ j = 1.5, then one has{
θ k

j > x̄i, go to Step 4,

θ k
j ≤ x̄i, return to Step 1.

If k = 9 ̸= 1, set θ 9
j = θ 9

j−1 −
γ j

2 = 1.2096, then one has{
θ + Jk > ε, return to Step 1,

θ k
J ≤ ε, go to Step 4.

Step 4: For k = 9, one can obtain φ∗
i = φ8

i = 0.5111,
t∗m = t8

m − 0.1913 ≤ T ∗
d and θ ∗

j = θ 8
j = 1.2875, then the

attraction domain parameter b∗ can be designed

b∗ = max{b ∈ R | Z(b)⊆ L(θ ∗)}= 0.3947. (66)

Step 5: For the system (63), the dynamic output feed-
back controller is designed{

ẋd (t) =A f (t)xd (t)+B f (t)y(t) ,

u(t) = C f (t)xd (t)+D f (t)y(t) ,
(67)

Fig. 6. The response of system state variable x1.

Fig. 7. The response of system state variable x2.

Fig. 8. The responses of system control inputs.

where A f (t) =

[
−0.1506 0.2295
−0.5009 0.1981

]
, B f (t) =

[
0.1050
−0.1873

]
,

C f (t) =
[

2.4300 −0.7910
]

and D f (t) =−0.1517.
For the simulation, the initial state are chosen as x(0) =

[−0.57 −69]T . The responses of the system state variables
x1(t) and x2(t) for system (63) are shown in Figs. 6 and
7. The control inputs are shown in Fig. 8. From the three
figures, it can be seen that the proposed method is effective
and can stabilize the chemical stirred tank reactor system
quickly.

6. CONCLUSION

This paper addresses the stability analysis and dynamic
output-feedback control problems for a class of nonlin-
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ear T-S fuzzy system with multiple subsystems and nor-
malized membership functions. The upper bound param-
eters for the time derivatives of the membership functions
are available/unavailable and bounded by the linear ma-
trix inequalities technique. The switching control law of
the membership function with the relaxation parameter is
designed, and the minimal dwell time between the two
consecutive switching is guaranteed. The dynamic out-
put feedback controller with the estimate algorithm is de-
signed, and the attraction domain can be estimate effec-
tively. With the help of the proposed switched Lyapunov-
Krasovskii functional, it can be seen that the designed
controller renders that the closed-loop system has better
transient state performance and better steady state perfor-
mance. Finally, two simulation examples are performed to
show the effectiveness of the proposed method. With the
help of the minimal dwell time, the switched Lyapunov-
Krasovskii functional technique can be adopted to obtain
the less conservativeness conditions. Moreover, a more
effective algorithm is obtained based on the new stability
conditions to estimate the attraction domain for the T-S
fuzzy systems. In the future work, the proposed method
will be applied to the finite/fixed-time stabilization of the
T-S fuzzy system with multiple time-varying delays and
the obtained results will further extended to the actual ap-
plication of the mobile robot system.
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