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Convolutional Neural Network for Monocular Vision-based Multi-target

Tracking

Sang-Hyeon Kim and Han-Lim Choi*

Abstract: This paper addresses multi-target tracking using a monocular vision sensor. To overcome the fundamental
observability issue of the monocular vision, a convolutional neural network (CNN)-based method is proposed.
The method combines a CNN-based multi-target detection into a model-based multi-target tracking framework.
While previous CNN applications to image-based object recognition and tracking focused on prediction of region
of interest (Rol), the proposed method allows for prediction of the three-dimensional position information of the
moving objects of interest. This is achieved by appropriately construct a network tailored to the moving object
tracking problems with potentially occluded objects. In addition, the cubature Kalman filter integrated with a data
association scheme is adopted for effective tracking of nonlinear motion of the objects with the measurements
information from the learned network. A virtual simulator that generates the trajectories of the target motions and
a sequence of images of the scene has been developed and used to test and verify the proposed CNN scheme.
Simulation case studies demonstrate that the proposed CNN improves the position accuracy in the depth direction
substantially.

Keywords: CNN-based multi-target detection, indoor quadrotor tracking, monocular vision, multi-target tracking,

three-dimensional indoor quadrotor simulator.

1. INTRODUCTION

Tracking multiple moving targets is an important task
in many application domains such as automated surveil-
lance, traffic monitoring, image-based navigation, and
multi-agent missions [1-6]. Object detection that extracts
the target information from the sensor read is a core part
of the multi-target tracking system. While specific theo-
ries and algorithms for multi-target tracking strongly de-
pend on the choice of sensors, one popular choice due to
its cost-effectiveness and availability is to use vision sen-
sors [9—13]. However, the use of a vision sensor suffers a
fundamental limitation in extracting three-dimensional in-
formation from the target of interest, as the image is a two-
dimensional projection of the three-dimensional world.
Stereo processing is one standard and typical solution to
produce three-dimensional information, i.e., bearing and
depth, but, the compatibility of such stereo system de-
pends on the overall system requirement and availability.
Therefore, monocular vision is often adopted as a sensor
system for the sake of cost and weight.

However, due to the aforementioned fundamental limi-

tation, the use of monocular vision, which is of the present
work’s interest, requires some other mechanism to over-
come this limitation; often this is achieved by moving
the sensors and taking information from different perspec-
tives. As such, monocular vision-based tracking has often
been interested in keeping track of target locations within
the two-dimensional image plane rather than tracking the
three-dimensional position coordinates.

On the other hand, there have been significant advances
in deep learning-based image detection and tracking. In
particular, the convolutional neural network (CNN) [7]
has been established as an effective class of models for
the image interpretation; it has been shown to achieve a
state-of-art result on image recognition and object region
proposal [8]. There have been noticeable applications of
CNNs to multi-object detection, including R-CNN [14],
Fast R-CNN [15], Faster R-CNN [16], YOLO [17, 18],
and SSD [19]. Faster R-CNN [16] is composed of two
modules which are a deep fully convolutional network that
proposes regions and detector that uses the proposed re-
gions. YOLO [17, 18] has a single convolutional neural
network which simultaneously detects objects and classi-
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fies the detected objects. SSD [19] also has a single convo-
lutional neural network like YOLO, but the neural network
architecture is different from YOLO. YOLO and SSD are
known to be more effective than Faster R-CNN in com-
puting speed.

It should be noted that these conventional CNN-based
object recognition techniques are designed to predict the
Region of Interest (Rol) and the object class defined by
VOC [23] or COCO [24] data set. This is sufficient if
the goal for tracking is to obtain the target position infor-
mation on the image plane. However, if the objective of
tracking is to have knowledge of the motion of the target,
more specifically, the center of mass of the target, keeping
track of Rol within the image plane may not be sufficient.
For this, three-dimensional position information is needed
either by direct sensing or by inference.

For this reason, this paper proposes to extend the exist-
ing CNN architecture to enable inference of depth infor-
mation as well as the bearing information. The proposed
CNN-based multi-target detection method recognizes the
three-dimensional position of the target based on the en-
tire image of the target. The proposed method features a
combination of the CNN-based multi-target detection and
the conventional multi-target tracking algorithm.

Fig. 1 shows the CNN for multi-target detection. The
proposed CNN only uses a single image to generate
the three-dimensional positions of targets. These three-
dimensional position information is used as the measure-
ment information of the target tracking algorithm.

The three-dimensional position information obtained
using the proposed CNN model is input as measurements
of the nonlinear tracking filter that tracks quadrotors. The
method used in this paper as a nonlinear tracking filter is
Cubature Kalman Filter (CKF) [20], which is based on
the same principle as the Unscented Kalman Filter (UKF)
[21] but is known to be computationally more efficient
than the UKF. In order to track multiple targets accurately,
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Fig. 1. CNN for multi-target detection. The proposed
CNN model recognizes the three-dimensional po-
sition (x, y, depth) based on the single image. (x,
y) is the center of mass position on the image.

the measurements obtained through CNN should be ap-
propriately assigned to each target. The nearest neighbor
method is used for this data association procedure. The
nearest neighbor method is a method that assigns the clos-
est measure to the current estimate of the target.

Three-dimensional indoor quadrotor simulator is de-
veloped for generating the training data set which con-
tains images of the single/multi-quadrotor and the ground
truth position information of the single/multi-quadrotor,
and for testing the proposed framework. We used Python
language and OpenGL module [22] to develop this sim-
ulator. Experiments are conducted to demonstrate the
single/multi-target tracking performances of the proposed
framework.

The contributions of this paper are as follows:

e A CNN model is proposed that can recognize the
three-dimensional positions of multiple targets only
using a monocular vision sensor. For this purpose,
the CNN model can obtain the distance information
from the sensor to the target based on the shape infor-
mation of the target.

e A multi-target tracking framework is proposed which
is a combination of a conventional multi-target track-
ing method and the CNN-based multi-target detection
method for sustainable target tracking.

e A 3-D simulator is developed and applied to the per-
formance analysis of the proposed technique. Using
this simulator, a virtual indoor flight environment and
a quadrotor model are implemented and images for
learning the proposed CNN model are generated.

The organization of this paper is as follows: Section
2 presents the proposed CNN architecture for detecting
multiple targets and recognizing the three-dimensional po-
sition. Section 3 describes the multi-target tracking al-
gorithm using CKF. Section 4 introduces the 3-D indoor
quadrotor simulator for training data generation and per-
formance evaluation of the proposed multi-target track-
ing framework. Section 5 shows experiment results for
demonstrating the single or multiple targets tracking per-
formances of the proposed approach.

2. CONVOLUTIONAL NEURAL NETWORK
MODEL FOR THREE-DIMENSIONAL
POSITION RECOGNITION

In this section, our CNN-based three-dimensional po-
sition recognition method is presented. The overall CNN
architecture is inspired by YOLO [17, 18]. The key dif-
ference between the proposed CNN and YOLO is that the
proposed CNN obtains depth measurement with the center
coordinates while YOLO obtains Region of Interest (Rol)
of the object.
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2.1.  Proposed CNN model architecture

The proposed CNN can detect multiple targets using
single neural network like YOLO [17, 18]. By using our
CNN, the three-dimensional position is predicted based on
the features obtained from the entire input image. The ar-
chitecture of proposed CNN model is shown in Fig. 2. The
size of the input image is (480,480,3) and the final output
is (6,6,8) tensor. The CNN model consists of 8 convolu-
tional layers and 1 fully connected layer.

The CNN-based three-dimensional position recognition
method divides the input image into 6 x 6 grids for recog-
nizing the centroid position of the target and the distance

of output tensor is ((6 x 6) x 4) x 2. More detailed expla-
nation is as follows.

2.2.  CNN model training

The framework of CNN model training is illustrated in
Fig. 3. The ground-truth three-dimensional position in
the inertial frame, whose center is at the camera and z-
direction is directed to the object, is converted into the
image frame. In other words, the inertial position coor-
dinates is converted to the pixel position and the depth
(Xp, Yp, Zp):

-1
to the target (depth). Each grid cell carries four parame- X, = Wtan™ (X/Z) + E’
ters — the centroid position of target, (X,,,Y,), the distance R O‘I 2
to the target (depth), Z,, and the objectiveness, O € [0, 1], _ H’tan™ (Y/Z) n Ii )
which indicates the probability of being an object. To han- i Wa 2’
dle an occluded target, an additional layer with the afore- 7 Z
. . . P ’
mentioned four parameters is added. Therefore, the size Lyorm
96
480
D D Connected Layer
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5x5-5-5 2x2-s-2 2x2-s-2 2x2-5-2 2x%2-s-2

Fig. 2. The proposed CNN model architecture consisting of 8 convolutional layers (five of which is combined with max-
pooling layers ) and 1 fully connected layer at the back. The size of input image is (480,480,3) and the final output
is (6,6,8) tensor. The number of total trainable parameters is 4,314,344,

Three-Dimensional
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Fig. 3. Framework of CNN model training. To generate training data of CNN model, ground-truth three-dimensional
position in inertial frame is converted into the image frame. The training data contains the centroid position

(X,,Y,) and depth measurement Z,,.
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Fig. 4. Example of training image set.

where W is the image width, H is the image height, and
W > H. o is the camera’s field of view (FoV) and L,
is the normalization parameter. Note that the following
equivalently holds:

X — Ztan <a(Xp - O.SW)) ’
w
o(Y,—0.5H)
Y =Ztan (W ) (2)
Z= LnormZp~

If the centroid coordinates (X,,Y,) of a target is within a
certain grid cell, that grid cell is responsible for recogni-
tion of the position of the target predicting X,,,Y,,Z,, and
O of the target. Some tie-breaking rule can be applied if
the centroid is one the boundary.

Training data for the proposed CNN can be obtained
by either real experiments and/or virtual simulated data;
this work particularly takes advantage of the virtual sim-
ulation whose details will be explained in Section 4. In
essence, this simulator generates images of the motion of
target vehicles — quadrotor drones; some reference trajec-

tories are given to these vehicles and random perturbation
is added to diversify the motion characteristics. Exam-
ples of images used in the training are depicted in Fig. 4.
The images used for the training CNN model are shown
in Fig. 4.
The training process optimizes the following custom

loss function:

m

Loss :Al Z Oi[(XpJ _XPJ)Z + (YPJ — ?p,i)z]
i=1

m 2
+1220i <\/ Zpi—/ 2p,i> 3)
o1

where the subscript i indicates the i-th entry of the out-
put tensor considering the grid size and the overlapping,
m = (6 X 6) x 2 is the total number of these entries, ;, 2,
are loss weight parameters, and (A) refers to the predicted
value while the plain variable refers to the truth. Note
that this loss function penalizes the prediction error only

if the object center is present in the grid cell. A gradient
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descent method with adaptive learning rates, the Adam
(Adaptive moment estimation) optimizer [28] is used in
the process of optimization.n addition to storing an expo-
nentially decaying average of past squared gradients like
Adadelta [29] and RMSprop [30], Adam also keeps an ex-
ponentially decaying average of past gradients.

In order to apply the CNN model to an environ-
ment with disturbance, training data should be generated
through several iterative experiments. When the training
data is simply generated repeatedly, the size of the training
data increases in proportion to the number of iterations.
This causes training time increasing and wastes memory
resources for storing training data.

This paper suggests the concept of “selective training”
to manage the increase in the training data size in an envi-
ronment with disturbances and noises. The selective train-
ing initially generates training data for the entire time do-
main and trains the CNN model. Then, a set of multi-
target tracking scenarios are simulated using this trained
CNN model. Due to the disturbance, the target position
would vary in this simulation step, which causes large
tracking errors. In the second round of training, training
data is generated only when the predicted position has a
large error. Then, the first training data and the second se-
lective training data are used for further training of the net-
work. This process is repeated until the training data is no
longer needed to successfully accomplish the multi-target
tracking mission. This selective procedure is found to re-
duce the total size of the training data for a given tracking
mission.

3. MULTI-TARGET TRACKING ALGORITHM

Fig. 5 illustrates the overall architecture of the multi-
target tracking algorithm that estimates the target state

' CNN-Based Multi-

Target Detection

Measurement Set

Input image

CKEF for Data
Multi-Target Tracking [V efe - il0) 1)

Prediction
Step [Dyn.]

Update
Step [Meas.]

Estimated
State

Fig. 5. Multi-target tracking framework. Multi-target
tracking algorithm uses CKF [20] and nearest
neighbor data association method. CNN is used
for generating measurements of targets.

variables, i.e., position, velocity, and attitude, using the
position measurements from the CNN. A data associa-
tion technique is also adopted to prevent intermixing of
the tracks.

To track state variables of multiple targets, this paper
adopts the cubature Kalman filter (CKF) [20] with the
nearest neighbor data association scheme. Cubature rules
are used in order to calculate the statistical moments of
a random variable approximately which is transformed
through a nonlinear function [20]. The moments are ex-
pressed as multidimensional integrals that cannot gener-
ally be solved in a closed form; some type of numerical
approximation is often used. The cubature rule approxi-
mates a multi-dimensional integral as a weighted sum of
integrands evaluated at specified set of nodes. Consider an
integral I(f) = [, f(x)w(x)dx where f(-) is an arbitrary
nonlinear function (dynamic or measurement equation) of
the state vector x € R" and w(x) is the associated weight.
D C R” is the region of integration and w(x) > 0. The
main idea is that the integral I(f) can be approximated
using 2n cubature points x,, g = 1,...,2n, and the asso-
ciated weights, w,, such that:

2n
1(f) = Y waf (%g)- )
g=1

Assuming that a weighted sum of Gaussian density func-
tions is again a Gaussian,

2n
)= [ SONsODd Twaf &)

where N (-;-) represents the probability density function
of a Gaussian distribution, and

&= (—1)e,, (6)
1
Wq:ﬂ’ qg=1,2,....2n, ©)]

where e, is the g-th unit vector whose g-th entry is one
and others are all zero.

Suppose that the target motion is expressed as the fol-
lowing system dynamics:

X1 = f(Xk) + vk (8)

with some nonlinear function f(-), where v; € R” is the
zero-mean white Gaussian process noise with covariance
Oy = 0. The measurement equation is given by

Vi = h(Xx) +ng )

with output y; € R and a nonlinear observation function
g(+). nx € R'is the zero-mean Gaussian sensing noise with
covariance Ry. The noise covariance is assumed to be pos-
itive definite, R; > O.
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Like the other variants of Kalman filters, the CKF fea-
tures a recursive procedure of initialization, prediction,
and update steps. The recursion begins with the initial
condition on the state estimate X, and the estimation error
covariance Py:

)A(O éE[XOL PO é]E[(XO_),ZO)(XO_)A(O)T]’ (10)

which are often provided as a priori knowledge or initial-
ized in a non-informative way.
The prediction step can be written as follows:

e Draw cubature points &,.

e Propagate the cubature points. The matrix square root
is the lower triangular cholesky factor.

Xg—tk—1 = y/Pro1jk-18 +Ke1jx-1- (11)

e Evaluate the cubature points with the dynamic model
function.

Xylk—1 = f(Xgr—1jx=1)- (12)

e Estimate the predicted mean and the error covariance.

12n

Kpk—1 = 5= ) Xykle—1, (13)
2n q; 4
2n
Por1= 5= ) (Xoun—1 — Rae1)
2n q; K
X (X -1 — Kee—1) " + Qi (14)

The update step can be written as follows:

e Evaluate the cubature points with the measurement
model function.

Vo1 = h(Xq,k\k—l)- (15)

e Estimate the predicted measurement.
2n
-1 = Y Varlk-1- (16)
g=1

e Estimate the innovation covariance matrix.

1 2n A
Skik—1 =5, qgl(yq,k\k—l —¥ik-1)
X (Vyutiet — Fue—1)” + R (7

e Estimate the cross-covariance matrix.

1 2n .
| =5 PG AT A

g=1

X (Vg ilk-1 _yk\k—l)T- (18)

- N
e . . /
’ Target 1 (’ A ’,//
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. - \\\A ~. R
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Fig. 6. Nearest neighbor method for data association.
e Calculate the Kalman gain.
~1
K, = ny,k\kflsk‘kfl- (19)

e Estimate the updated state and the error covariance.

Kk = Ree—1 + Kie(¥e — Fape—1); (20)
Py =Pyt — KiSiem 1 KT - (21

For accurate tracking of multiple targets, data associa-
tion that determines to which target a measurement is cor-
responding is crucial. While many different methods have
been proposed for data association, this work takes advan-
tage of a simple nearest neighbor method [31] . The narest
neighbor method assigns the closest measurement to the
current estimate of the target as depicted in Fig. 6. For ex-
ample, target 2 will be assigned the next closest measure
since the closest measure is assigned to target 1.

4. THREE-DIMENSIONAL INDOOR
QUADROTOR SIMULATOR

4.1. Simulation engine: 6-DoF quadrotor dynamics
and controller

The quadrotor considered herein consists of four fixed-

pitch-angle blades. The quadrotor kinematics model is il-

lustrated in Fig. 7. Each rotor produces thrust and torque

Fig. 7. Quadrotor kinematics with {B} and {I} represent-
ing the body frame and inertial frame.
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whose combination generates the main thrust, the roll,
pitch, and yaw torque acting on the quadrotor [25-27].

In this paper, the quaternion-based 6-DoF dynamics
equation is used; the state vector for quadrotor motion is
defined as:

x=[x y z £y ¢z qT]T7 (22)
w=[p q r", (23)
a=lw o @ @, (24)

where (x,y,z) are three-dimensional position coordinate
in the inertial frame !, (p,q,r) are angular velocity com-
ponents in the body frame. q is the quaternion repre-
senting attitude of the quadrotor and its norm satisfies
lq||> = 1 [32] 2. By applying both the Euler-Lagrange and
the Newton-Euler approaches, the quadrotor 6 degree-of-
freedom (DoF) dynamics can be represented as

X 0 1
¥l =101+ ERDCMtB +fp, (25)
Z -8
w=J" (13— wx (Iw)), (26)
—q91 —q92 —q3
. Llg -4 ¢
E— w, 27
1=3 q3 90 —q @7
—q2 qi qo

where g is the gravitational acceleration, m is the total
mass of the quadrotor, J is the moments of inertia matrix,
Rpcy is the direction cosine matrix (DCM) to represent
the coordinate transformation from the body frame to the
inertial frame, tp is the total thrust acting on the quadrotor
body, 7p is the torque command acting on the quadrotor
and £ is the aerodynamic drag vector.

A standard way of designing a position controller for
the quadrotor is to use the proportional-derivative (PD)
control method. When the desired position (x4,Y4,24)
and the yaw angle y; are determined, the rotational speed
(u1,uz,u3,uy) of each motor is calculated. z, is related to
the altitude of the quadrotor. The motor rotational speed
input value, uy, required to maintain the altitude z; by
compensating the gravity is calculated as follows:

MZE@*@*@ng% (28)

where P, and D, are the proportional and the derivative
control gains, and k is the thrust coefficient. Regarding the
attitude, the quaternion and the attitude angles are related
as

1 2(q091 +q293)
$=tan (1—2(61?+q%))’ 29)

'This may not be identical to the inertial frame in Section 2,
but appropriate coordinate transformation can easily be applied.

2To ensure this norm condition all the time even in the pres-
ence of numerical errors, a normalization process is often applied
in the numerical integration of dynamics.

0 =sin"' (2(q0q2 — g3q1)) . (30)
1 (2(q093 +q1qz))
W:mn1< . (31)
1-2(¢3+43)

The motor rotational speed input value, Ty, for Yy is cal-
culated as follows:

Ty = Py(Yu — ) — Dyr, (32)

where Py, and Dy, are the proportional gain and the deriva-
tive gain, respectively. To move the quadrotor to the de-
sired location, the pitch angle and the roll angle need to
be changed accordingly. Thus, the desired pitch, 6, and
roll, ¢, angles can be calculated in terms of the desired
location:

6, P O Xqg—X D, 0 —X
o) =[5 Alr L] aJml]
(33)

with appropriate gains P, P, D,, and D,. R, is the rota-
tional matrix for the yaw angle, y and is defined as:

_ | cos(y)  sin(y)

Ry = { sin(y) cos(y)|" 34
The motor rotational speed values, (Tg, 7y) for (64, ¢,) are
calculated as follows:

2= Al )] o

with control gains Py, Py, Dg, and Dy. The motor rota-
tional speed values obtained in the previous procedure are
assigned to the corresponding motors as follows:

Uy = —Tg + Ty + Uy, (36)
Uy = —Ty — Ty +Ug, (37)
Uz = Tp + Ty +Uq, (38)
Uy =Ty — Ty +Ug. (39)

The total thrust, tg is calculated using the motor rotation
values, (uy,us,us,uy) as follows:

0
tg = 0 , (40)
k(103 +u3 +u3)
where k is the thrust coefficient. The torque command, 7
acting on the quadrotor is calculated as follows:

Lk(uf — u3)
Tp = Lk(u% - u%) , 41)
b(ui — 13 +u5 — uj)

where b is the drag coefficient acting on rotor blades, and
the moment arm length L is shown in Fig. 7.

The parameter values for the quadrotor dynamics
and control in this work are as follows: m = 0.5
(kg), L=03 (m), k=2x10"° b =2x10"5 1=
diag(0.08,0.08,0.16) (kg:m?), P, = 300, D, = 0, P, =
200, Dy =200, P, =0.1, B, =0.1, D, =1, D, =1,
Py =600, Py = 600, Dg = 0.2, and Dy = 0.2.
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Coordinaté X

Fig. 9. Look-arounds of virtual environment.

4.2. Three-dimensional model

Three-dimensional indoor quadrotor simulator is devel-
oped to train the proposed CNN and to verify the perfor-
mance of the multi-target tracking algorithm. The simu-
lator is written in the Python language and uses OpenGL

graphical tools [22] to implement three-dimensional vir-
tual space and quadrotors. An exemplary simulation view
is shown in Fig. 8. Real images are used to improve the
reality of the environment. Fig. 9 illustrates some look-
around views of the virtual test room reconstructed from
real images. An image of the virtual environment and the
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target vehicles in it is regarded as one taken by some vir-
tual camera; this is used as a training and/or test data for
the CNN.

5. SIMULATION CASE STUDIES

To verify the performance of the proposed algorithm,
tracking scenarios are created in the virtual simulation en-
vironment. The root mean square error (RMSE) is calcu-
lated as the metric of tracking performance:

Sang-Hyeon Kim and Han-Lim Choi

where x is the true position, X is the estimated position,
and N is the total number of data.

Tracking of three quadrotors is considered in the virtual
simulation environment. The quadrotors move to follow
the waypoints listed in Table 1, and random input distur-
bance is added to the motor control input of the quadrotor.
Note that quadrotors pass over themselves when following
the waypoints; this is intended to test the performance of
the proposed algorithm in case of occlusion.

The true position, predicted position, and estimated po-
sition of each quadrotor are shown in Figs. 10 to 12, re-
spectively. It can be seen that the trajectories of the three

1 ¥ .
RMSE, = (/=) ((x—2%)?), (42) quadrotors are properly detected and tracked. Comparison
N= of the errors in the CNN prediction and the CKF estimate
Table 1. Waypoints of the multiple quadrotors.
Target 1 Start Waypoint 1 Waypoint 2 Waypoint 3 Waypoint 4 End
(0,0,0) m (0,0,1.8) m (1,0,1.8) m (-1,0,1.8) m (0,0,1.8) m (0,0,0) m
Target 2 Start Waypoint 1 Waypoint 2 Waypoint 3 Waypoint 4 End
(1,1,0) m (1,1,1.8) m -1,1,1.8) m (0,1,1.8) m (1,1,1.8) m (1,1,0) m
Target 3 Start Waypoint 1 Waypoint 2 Waypoint 3 Waypoint 4 End
(-1,0.5,0) m (-1,0.5,1.8) m (0,0.5,1.8) m (1,0.5,1.8) m (-1,0.5,1.8) m (-1,0.5,0) m
E E
L i I i L _1.5 L i L I L
5 10 15 20 25 30 0 5 10 15 20 25 30
t [sec] t [sec]
Fig. 10. Quadrotor 1’s position history: CNN prediction (left), CKF estimate (right).
E E
135 5 10 15 20 25 30 k2 5 10 15 20 25 30
t [sec] t [sec]

Fig. 11. Quadrotor 2’s position history: CNN prediction (left), CKF estimate (right).
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Fig. 12. Quadrotor 3’s position history: CNN prediction (left), CKF estimate (right).
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Fig. 13. Quadrotor 1’s position error history: (a) x position error, (b) y position error, (c) z position error, (d) RMSE.

suggest that the error is further reduced by CKF that can
take advantage of the knowledge of the dynamics of the
targets.

Monte-Carlo results on the tracking errors with 100 sce-
narios are illustrated in Figs. 13 to 15. It can be seen that
the position error is around 0.5m while the error in the
altitude is noticeably smaller than the errors in the other
directions. Note also that the error of the y-coordinate is
less than 0.5m all the time, indicating that the targets are
well separated without confusion.

Several snapshots from the whole scenario are depicted

in Fig. 16. The green, red, and blue crosses indicate true
position of the first, second, and third quadrotor, respec-
tively; the yellow cross indicates a predicted position.

6. CONCLUSIONS

A convolutional neural network (CNN)-based multi-
target tracking scheme has been proposed for the prob-
lem of multi-target tracking using a monocular vision sys-
tem. The scheme overcomes the lack of depth measure-
ment from the monocular vision by learning the CNN so
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Fig. 16. Snapshots of target detection and tracking.

that it can produce the three-dimensional target informa-
tion rather than the region of interest. A virtual simula-
tion environment has been set up in order to generate the
training data for the CNN and also to verify the proposed
multi-target tracking scheme. Numerical case studies have
shown that the position accuracy in the depth direction can
be significantly improved using the proposed CNN archi-
tecture over a state-of-the-art CNN method.
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