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Adaptive Fuzzy Finite-time Control for Uncertain Nonlinear Systems with
Dead-zone Input
Wenshun Lv, Fang Wang*, and Lili Zhang

Abstract: This paper presents a novel adaptive finite-time tracking control scheme for nonlinear systems. During
the design process of control scheme, dead-zone input nonlinearity phenomena existing in the actuator is taken into
account. Fuzzy logic systems are adopted to approximate the unknown nonlinear functions. This paper provides
a new finite-time stability criterion, making the adaptive tracking control scheme more suitable in the practice
than traditional methods. Under the presented controller, the desired system performance is realized in finite time.
Finally, the validity and effectiveness of the proposed control method is validated by two examples.
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1. INTRODUCTION

In recent years, the adaptive control of nonlinear sys-
tems has achieved remarkable breakthroughs by combin-
ing with the backstepping technology [1–27]. Many of the
technical limitations in traditional adaptive control, such
as matching condition and relative-degree constraint, can
be eliminated by adaptive backstepping control scheme.
Fuzzy logic systems and neural networks(NNs) provide
useful tools for designing control schemes of uncertain
nonlinear systems, because of their capability of nonlinear
approximation. The nonlinear control scheme using neu-
ral networks has been further improved by the introduc-
tion of adaptive algorithms for tuning the weighs of NNs
[28]. By employing norms of unknown weight vectors as
the estimated parameters, the huge computation problem
of this method has also been resolved in [29] to a certain
extent.It is worth mentioning that the control schemes pro-
posed in the above literatures can only realize the desired
system performance when the time tends to infinity. How-
ever, in practical engineering, the controlled systems are
usually required to realize steady response from transient
response quickly.

Finite-time control has received much attention because
it can provide many benefits such as strong robustness and
disturbance resistance capability [2, 3, 30, 31]. The Lya-
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punov theory of finite-time stability for nonlinear systems
has been clearly established by several authors [32, 33].
It is necessary to point out that the nonlinear functions
in these systems all meet the linear growth condition. In
practice, the nonlinear functions are often completely un-
known due to some constraints like the modeling method
and unknown dynamic disturbances. In this case, the lin-
ear growth condition might not be satisfied. Consequently,
these existed adaptive finite-time control methods are not
suitable for the tracking control of uncertain nonlinear sys-
tems. To eliminate this limitation, a new finite-time sta-
bility criterion was proposed [34]. However, the effect of
dead zone nonlinear factor on the system performance was
not taken into account in [34], which would limit the ap-
plication of the control method to some extent. In other
words, there is still some room for improvement in mak-
ing the finite-time control scheme implemented more effi-
ciently.

In the field of practical application, the actuator of the
system may encounter dead-zone input nonlinearity phe-
nomena, which is marked by insensitivity for small con-
trol inputs. Dead zone in the actuator degrades the track-
ing performance of the system and it may even cause the
instability of the system. Many results have been ob-
tained for uncertain nonlinear systems with dead-zone in-
put [35–40]. However, these control algorithms can only
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drive the output tracking error to a small neighborhood of
the origin when the time approaches to infinity. It is under
current study to ensure that the performance of the system
can be realized in finite time.

These facts motivate us to provide a new finite-time
adaptive fuzzy control method for uncertain nonlinear sys-
tems with dead-zone input. In contrast with the existing
literatures, this paper has the following contributions.

1) The traditional adaptive neural or fuzzy control
strategies can only guarantee the system performance
when time tends to infinity. These existing adaptive fuzzy
control methods are not suitable for the finite-time track-
ing control of uncertain nonlinear system. Based on the
Lyapunov theory of finite-time stability for nonlinear sys-
tems, this paper constructs an adaptive fuzzy controller
which can ensure the tracking performance of the uncer-
tain nonlinear system in finite time. Finite-time control
scheme can also provide many benefits such as strong
robustness and better disturbance resistance capability
in presence of dead-zone input nonlinearity phenomena.
Therefore, to a certain extent, the control strategy pro-
posed in this paper is more meaningful than the control
methods presented in [4, 6, 17, 41, 42] in the practical ap-
plication fields.

2) In the available literature w.r.t. finite time stability
and tracking control problems towards nonlinear systems,
the nonlinear functions are assumed to satisfy the linear
growth conditions and the bounding functions of those un-
known system functions are known [30, 32, 33]. With the
new adaptive control scheme proposed in this article, the
nonlinear functions can be completely unknown and they
are only required to be continuous. Consequently, in con-
trast with the finite-time control schemes in [30, 32–34],
the control method in this note is more adaptable to the
realistic systems. What is more, the stability analysis and
control design depend on the finite-time stability condi-
tion presented in Lemma 5, i.e., V̇ ≤ −a0V + b0 with
a0,b0 > 0, rather than that in Lemma 3.6 proposed in [34],
say V̇ ≤−a0V℘+d0 with 0 <℘< 1 and d0 > 0. Accord-
ingly, the difficulty of controller design is decreased with-
out the introduce of the constant 0 <℘< 1 in control law
and Lyapunov functions.

The paper is organized as follows. The control problem
of the nonlinear system with dead-zone input is formu-
lated in Section 2. In Section 3 and Section 4, finite-time
adaptive fuzzy tracking control scheme is presented for a
class of uncertain nonlinear systems with dead-zone input,
and its stability is analyzed. Simulation results are pre-
sented in Section 5. The paper ends with the conclusion
in Section 6.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. System description

The uncertain nonlinear systems with dead zone in this
paper can be expressed as follows:

χ̇ı = χı+1 + fı(χ̃ı)+ pı(t), ı = 1,2, . . . ,n−1

χ̇n = D(ν)+ fn(χ̃n)+ pn(t)

y = χ1, (1)

where χ̃ı = [χ1,χ2, ...,χı]
T ∈Rı and χ̃n = [χ1,χ2, ...,χn]

T ∈
Rn are the state vectors. fı(χ̃ı), ı = 1,2, . . . ,n are unknown
smooth functions, pı, ı = 1,2, . . . ,n denote bounded per-
turbations. ν is the control input signal to be designed. To
facilitate the control system design, the dead-zone charac-
teristic D(ν) is described as

D(ν) =


ξ1(ν −ℑ1), ν ≥ ℑ1,

0, ℑ1 < ν < ℑ2,

ξ2(ν −ℑ2), ν ≤ ℑ2.

(2)

The parameters ξ1 ,ξ2 ,ℑ1 and ℑ2 are unknown constants,
and we suppose that there is the positive constant ξ̌ de-
signed to meet

ξ̌ < ξ1 < ξ̂ ,

ξ̌ < ξ2 < ξ̂ .

D(ν) denotes the output of the dead zone, ℑ1 > 0 and
ℑ2 < 0 stand for the breakpoints of the input nonlinearity.
Then D(ν) can be reformulated as

D(ν) = ξ (t)ν +ϖ(t), (3)

where

ξ (t) =


ξ1, ν ≥ ℑ1,

0, ℑ2 < ν < ℑ1,

ξ2, ν ≤ ℑ2,

and

ϖ(t) =


ξ1ℑ1, ν ≥ ℑ1,

0, ℑ2 < ν < ℑ1,

ξ2ℑ2, ν ≤ ℑ2.

Then, we have

0 < ξ̌ < ξ (t)< ξ̂

and |ϖ(t)| ≤ ϖ0 = max{ξ̂ |ℑ1|, ξ̂ |ℑ2|}. (4)

Define a vector function as ȳrı = [yr,y
(1)
r , . . . ,y(ı)r ]T ∈ Ωrı ,

where y(ı)r denotes the ıth time derivative of yr and Ωrı de-
notes a known compact set. The vectors ȳrı , ı = 1, . . . ,n
are continuous and available.

Assumption 1: There is an uncertain positive constant
p̃ı designed to meet

|pı(t)| ≤ p̃ı, ı = 1,2, . . . ,n. (5)
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2.2. Fuzzy logic systems
The following fuzzy logic systems (FLSs) will be uti-

lized to approximate the unknown function. Choose a col-
lection of fuzzy rules as follows:

Rı : If χ1 is Mı
1 and . . . and χn is Mı

n,

then y is U ı, ı = 1,2, . . . ,N,

where χ̃n = [χ1,χ2, ...,χn]
T ∈ Rn and y ∈ R are the input

and the output of the fuzzy system, respectively. Mı
ℓ and

Uı denote fuzzy sets composed of fuzzy membership func-
tions µMı

ℓ
(χℓ) and µU ı(y). N is the number of the rules.

Through the singleton fuzzifer, the product inference and
the center-average defuzzifier, the fuzzy logic system is:

y(χ) =
∑N

ı=1 φı ∏n
ℓ=1 µMı

ℓ
(χℓ)

∑N
ı=1[∏

n
ℓ=1 µMı

ℓ
(χℓ)]

,

where

φı = max
y∈R

µU ı(y), φ = (φ1,φ2, . . . ,φN)
T .

Let

ℜı(χ) =
∏n

ℓ=1 µMı
ℓ
(χℓ)

∑N
ı=1[∏

n
ℓ=1 µMl

ℓ
(χℓ)]

,

where ℜ(χ) = (ℜ1(χ),ℜ2(χ), . . . ,ℜN(χ))T . We can
override the fuzzy logic system as

y(χ) = φT ℜ(χ). (6)

Then, the definition of semi-globally uniformly finite-
time bounded (SGUFB) and some related lemmas are in-
troduced.

Definition 1: The solution {z(t), t ≥ t0} of the nonlinear
system ż = f (z), f (0) = 0 is SGUFB, if for any z(t0) =
z0 ∈ Ω0 (some compact set containing the origin), there
exists ε > 0 and a settling-time T (ε,z0)< ∞, such that the
following statements hold: z∈Ω0∪Ω, for all t ≥ t0, where
Ω = {z|∥z(t)∥< ε}; ∥z(t)∥< ε , for all t ≥ t0 +T .

Lemma 1 [43]: Let f (χ) be a continuous function de-
fined on a compact set Ω. Then, for ∀ε > 0, there exists a
FLS (6) such that

sup
χ∈Ω

| f (χ)−φT ℜ(χ)| ≤ ε. (7)

Lemma 2 [44]: For aℓ ∈ R, q ∈ (0,1], ℓ = 1, 2, . . ., d,
the following inequality is satisfied:

(
d

∑
ℓ=1

|aℓ|)q ≤
d

∑
ℓ=1

|aℓ|q ≤ d1−q(
d

∑
ℓ=1

|aℓ|)q. (8)

Lemma 3 [45]: For any constants s̄, t̄, λ > 0, ρ , σ ∈ R
satisfy the following inequality:

|ρ|s̄|σ |t̄ ≤ s̄
s̄+ t̄

λ |ρ|s̄+t̄ +
t̄

s̄+ t̄
λ− s̄

t̄ |σ |s̄+t̄ . (9)

Lemma 4 [34]: Consider the system ż = f (z,ν), for
smooth positive-definite function V (z) ∈C1, if there exist
constants a0 > 0,0 <℘< 1 and d0 > 0 satisfying that

V̇ (z)≤−a0V℘(z)+d0, t ≥ 0, (10)

then the solution of the system ż = f (z,ν) is SGUFB.
Lemma 5: Consider the system ż = f (z,ν), for smooth

positive-definite function V (z) ∈ C1, if there exist con-
stants a0 > 0 and b0 > 0 satisfying that

V̇ (z)≤−a0V (z)+b0, t ≥ 0, (11)

then we have

V̇ (z)≤−a0V℘(z)+d0, t ≥ 0, (12)

where 0 <℘< 1 and d0 = a0(1−℘)℘
℘

1−℘ +b0.

Proof: According to Lemma 3, for ∀0 < ℘ < 1, the
following inequality is satisfied:

V℘(z) =V℘(z)11−℘ ≤℘λV (z)+(1−℘)λ
−℘
1−℘ . (13)

Let λ =℘−1, then one has

V℘(z)≤V (z)+(1−℘)℘
℘

1−℘ . (14)

It follows that

−V (z)≤−V℘(z)+(1−℘)℘
℘

1−℘ . (15)

From (11) and (15), we have

V̇ (z)≤−a0V℘(z)+d0, t ≥ 0, (16)

where 0 <℘< 1 and d0 = a0(1−℘)℘
℘

1−℘ +b0. □

3. ADAPTIVE TRACKING CONTROLLER
DESIGN

The control goal of this manuscript is to establish an
adaptive fuzzy controller ν(t), such that the desired con-
trol performance can be guaranteed in finite time.

Define Θ̂ı as the estimation of Θı, and Θ̌ı =Θı−Θ̂ı with
Θı = ∥φı∥2.

The design procedure is based on the coordinate trans-
formation as follows:

z1 = χ1 − yr,zı = χı −αı−1, ı = 2, . . . ,n,

where αı−1 is an virtual controller.
Step 1: Consider the following Lyapunov function can-

didate:

V1 =
z2

1

2
+

Θ̌2
1

2v1
.
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Differentiating V1 with respect to time t yields

V̇1 = z1(χ2 + f1(χ1)+ p1(t)− ẏr)−
1
v1

Θ̌1
˙̂Θ1. (17)

Based on Lemma 3 , one has

z1z2 ≤
z2

1

2
+

z2
2

2
, (18)

and

z1 p1 ≤
z2

1

2l1
+

l1 p̃2
1

2
,

where l1 > 0 . Introduce one new function f 1 = f1 +
z1
2l1

+
z1 − ẏr, then it yields

V̇1 ≤ z1( f 1 +α1)+
l1 p̃2

1

2
− z2

1

2
+

z2
2

2
− 1

v1
Θ̌1

˙̂Θ1. (19)

According to Lemma 1, for ∀ε1 > 0 , there exists a FLS
φT

1 ℜ1(X1) satisfying

f 1 = φT
1 ℜ1(X1)+∆1(X1), |∆1| ≤ ε1, (20)

where X1 = [χ1,yr, ẏr]
T . By using Lemma 3, we have

z1 f 1 = z1φT
1 ℜ1(X1)+ z1∆1(X1)

≤ 1
2m2

1
z2

1Θ1ℜT
1 ℜ1 +

1
2

m2
1 +

1
2

z2
1 +

1
2

ε2
1 . (21)

Choose a virtual control signal as

α1 =−k1z1 −
z1

2m2
1

Θ̂1ℜT
1 ℜ1. (22)

Establish the adaptation law as

˙̂Θ1 =
v1

2m2
1

z2
1ℜT

1 ℜ1 −µ1Θ̂1, (23)

where µ1 > 0. Then we have

V̇1 ≤−k1z2
1 +

1
2

m2
1 +

1
2

ε2
1 +

l1 p̃2
1

2
+

z2
2

2
+

µ1

v1
Θ̌1

˙̂Θ1.

(24)

z2
2
2 will be handled later on.

Step 2 : Construct the Lyapunov function candidate as

V2 =V1 +
1
2

z2
2 +

1
2v2

Θ̌2
2. (25)

Applying the same approach as step 1, we have

V̇2 = V̇1 + z2( f2 + z3 +α2 + p2 − α̇1)−
1
v2

Θ̌2
˙̂Θ2.

(26)

It is noticed that

z2z3 ≤
z2

2

2
+

z2
3

2
, (27)

and

z2 p2 ≤
z2

2

2l2
+

l2 p̃2
2

2
, (28)

where l2 > 0 . Introduce one new function f 2 = f2 +
z2
2l2

+
3
2 z2 − α̇1, then it yields

V̇2 ≤− k1z2
1 +

1
2

m2
1 +

1
2

ε2
1 +

l1 p̃2
1

2
+

µ1

v1
Θ̌1Θ̂1 + z2 f̄2

− 1
2

z2
2 + z2α2 +

1
2

z2
3 +

l2
2

p̃2
2 −

1
v2

Θ̌2Θ̂2. (29)

On the base of Lemma 1, for ∀ε2 > 0 , we can find a FLS
φT

2 ℜ2(X2) satisfying

f2 = φT
2 ℜ2(X2)+∆2(X2), |∆2| ≤ ε2, (30)

where X2 = [χ̃T
2 ,Θ̂1, ȳT

r2
]T . One has

z2 f 2 = z2φT
2 ℜ2(X2)+ z2∆2(X2)

≤ 1
2m2

2
z2

2Θ2ℜT
2 ℜ2 +

1
2

m2
2 +

1
2

ε2
2 +

1
2

z2
2. (31)

Choose a virtual control signal is as

α2 =−k2z2 −
z2

2m2
2

Θ̂2ℜT
2 ℜ2. (32)

Take the adaptation law as

˙̂Θ2 =
v2

2m2
2

z2
2ℜT

2 ℜ2 −µ2Θ̂2, (33)

where µ2 > 0. Then we have

V̇2 ≤
2

∑
ℓ=1

(−kℓz2
ℓ +

1
2

m2
ℓ +

1
2

ε2
ℓ +

lℓ p̃2
ℓ

2

+
µℓ

vℓ
Θ̌ℓΘ̂ℓ)+

1
2

z2
3. (34)

z2
3
2 will be handled later on.

Step ııı (3 ≤ ı ≤ n−1): Establish the Lyapunov function
as

Vı =Vı−1 +
1
2

z2
ı +

1
2vı

Θ̌2
ı , (35)

where vı > 0 and Θ̌ı =Θı−Θ̂ı is the parameter error. Sim-
ilar to the approach in step 1, we have

V̇ı =V̇ı−1 + zı( fı + zı+1 +αı + pı − α̇ı−1)

− 1
vı

Θ̌ı
˙̂Θı. (36)

It is noticed that

zızı+1 ≤
z2

ı

2
+

z2
ı+1

2
(37)
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and

zı pı ≤
z2

ı

2lı
+

lı p̃2
ı

2
, (38)

where lı > 0 . Define a new function f ı = fı +
zı
2lı

+ 3
2 zı −

α̇ı−1, then plugging (37), (38) into (36) yields

V̇ı ≤
ı−1

∑
ℓ=1

(−kℓz2
ℓ +

1
2m2

ℓ

+
1

2ε2
ℓ

+
lℓ p̃2

ℓ

2
+

µℓ

vℓ
Θ̌ℓΘ̂ℓ)

+ zı f̄ı −
1
2

z2
ı + zıαı +

1
2

z2
ı+1 +

lı
2

p̃2
ı −

1
vı

Θ̌ıΘ̂ı.

(39)

On the basis of Lemma 1, for ∀εı > 0 , we can find a FLS
φT

ı ℜı(Xı) satisfying

fı = φT
ı ℜı(Xı)+∆ı(Xı), |∆ı| ≤ εı (40)

where Xı = [χ̃T
ı ,Θ̂ı−1, ȳT

rı
]T . One has

zı f ı = zıφT
ı ℜı(Xı)+ zı∆ı(Xı)

≤ 1
2m2

ı
z2

ı ΘıℜT
ı ℜı +

1
2

m2
ı +

1
2

ε2
ı +

1
2

z2
ı . (41)

An virtual control signal is taken as

αı =−kızı −
zı

2m2
ı

Θ̂ıℜT
ı ℜı. (42)

Take the adaptation law as

˙̂Θı =
vı

2m2
ı

z2
ı ℜT

ı ℜı −µıΘ̂ı, (43)

where µı > 0 . Plugging (41)-(43) into (39) , we have

V̇ı ≤
ı

∑
ℓ=1

(−kℓz2
ℓ +

1
2

m2
ℓ +

1
2

ε2
ℓ +

lℓ p̃2
ℓ

2

+
µℓ

vℓ
Θ̌ℓΘ̂ℓ)+

1
2

z2
ı+1. (44)

Step nnn: Establish the Lyapunov function candidate as
follows:

Vn =Vn−1 +
1
2

z2
n +

1
2vn

Θ̌2
n. (45)

Differentiating Vn with respect to time t yields

V̇n =V̇n−1 + zn( fn +D(ν)+ pn − α̇n−1)

− 1
vn

Θ̌n
˙̂Θn. (46)

It is noticed that

zn pn ≤
z2

n

2ln
+

ln p̃2
n

2
, (47)

where ln > 0. Define a new function f n = fn +
zn
2lı

+ zn −
α̇n−1, then plugging (47) into (46) yields

V̇n ≤
n−1

∑
ℓ=1

(−kℓz2
ℓ +

1
2m2

ℓ

+
1

2ε2
ℓ

+
lℓ p̃2

ℓ

2
+

µℓ

vℓ
Θ̌ℓΘ̂ℓ)

+ zn f̄n −
1
2

z2
n + znD(ν)+

ln
2

p̃2
n −

1
vn

Θ̌nΘ̂n. (48)

On the basis of Lemma 1, for ∀εn > 0 , we can find a
FLS φT

n ℜn(Xn) satisfying

fn = φT
n ℜn(Xn)+∆n(Xn), |∆n| ≤ εn (49)

where Xn = [χ̄T
n ,Θ̂n, ȳT

rn
]T .

Based on Lemma 3 , one has

zn f n = znφT
n ℜn(Xn)+ zn∆n(Xn)

≤ 1
2m2

n
z2

nΘnℜT
n ℜn +

1
2

m2
n +

1
2

ε2
n +

1
2

z2
n. (50)

The controller law is chosen as

ν =−kn

ξ̌
zn −

1

2m2
nξ̌

znΘ̂nℜT
n ℜn. (51)

Take the adaptation law as

˙̂Θn =
vn

2m2
n

z2
nℜT

n ℜn −µnΘ̂n. (52)

According to [46], for any given bounded initial condition
Θ̂n(t0)≥ 0, one has Θ̂n(t)≥ 0 for ∀t ≥ 0.

Plugging (50)-(52) into (48), we have

V̇n ≤
n

∑
ℓ=1

−kℓz2
ℓ +

n

∑
ℓ=1

1
2

m2
ℓ +

n

∑
ℓ=1

1
2

ε2
ℓ

+
n

∑
ℓ=1

lℓ p̃2
ℓ

2
+

n

∑
ℓ=1

µℓ

vℓ
Θ̌ℓΘ̂ℓ+

1
2

ϖ2
0 . (53)

4. STABILITY ANALYSIS

Theorem 1: Consider the uncertain nonlinear system
(1) with Assumption 1. Under control law (51) and adap-
tive laws (23), (33), (43), (52), all the signals in the
system are semi-globally uniformly finite-time bounded
(SGUFB) for any bounded initial conditions.

Proof: Choose a Lyapunov function candidate V = Vn

for system (1). From (53), we have

V̇ ≤− ǩ
n

∑
ℓ=1

z2
ℓ +

n

∑
ℓ=1

(
1
2

m2
ℓ +

1
2

ε2
ℓ +

lℓ p̃2
ℓ

2

+
µℓ

vℓ
Θ̌ℓΘ̂ℓ)+

1
2

ϖ2
0 , (54)

where ǩ = minℓ=1,...,nkℓ.
Nothing that Θ̌ℓ = Θℓ− Θ̂ℓ, one has

gℓΘ̌ℓΘ̂ℓ = gℓΘ̌ℓ(−Θ̌ℓ+Θℓ) = gℓ(−Θ̌2
ℓ + Θ̌ℓΘℓ)
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≤ gℓ(−Θ̌2
ℓ +

1
2s

Θ̌2
ℓ +

s
2

Θ2
ℓ)

=
−gℓ(2s−1)

2s
Θ̌2

ℓ +
sgℓ
2

Θ2
ℓ , (55)

where s is a positive constant satisfying s≥ 1
2 , and gℓ =

µℓ

vℓ
.

Substituting (55) into (54) yields

V̇ ≤−a0V +b0, (56)

where a0 = min{2ǩ, µ1(2s−1)
s , . . . , µn(2s−1)

s } with s > 1
2 and

b0 =
n

∑
ℓ=1

(
sµℓ

2vℓ
Θ2

ℓ +
1
2

m2
ℓ +

1
2

ε2
ℓ +

lℓ p̃2
ℓ

2
)+

1
2

ϖ2
0 . (57)

According to Lemma 5 and (56), one has

V̇ ≤−a0V℘+d0, (58)

where

d0 = a0(1−℘)℘
℘

1−℘ +b0. (59)

Define a positive constant ς0 =
d0

(1−ζ0)a0
, where ζ0 is a

constant which satisfies 0 < ζ0 < 1.
Let

Tr =
1

(1−℘)ζ0a0
[V 1−℘(X(0))− ς

1−℘
℘

0 ], (60)

where V (X(0)) represents the initial of V (X) with X =
[χ̄T

n ,Θ̂n, ȳT
rn
]T .

Then according to Lemma 4, If zt ∈ Ω̃X = {X |V℘(X)≥
d0

(1−ζ0)a0
}, we have

V̇ (X)≤−ζ0a0V℘(X)≤ 0, t ∈ [t0,Tr). (61)

The time to reach the set X(t) ∈ ΩX , is bounded as
Tr where ΩX = {X |V℘(X) ≤ d0

(1−ζ0)a0
}. It follows that

z ∈ ΩI ∪ ΩX , for all t ≥ t0, where ΩI = {X |V℘(X) ≤
Vn(X(0))}.

If X(0) ∈ ΩX , X(t)(t ≥ t0) does not exceed the set
ΩX . Consequently, all signals in the resulting system are
SGUFB.

It can be seen from (57) and (59) that d0 depends upon
the parameters s,µℓ,vℓ,mℓ,εℓ, lℓ,ϖ0, ℓ= 1,2, . . . ,n. By ap-
propriately choosing these parameters, for example, in-
creasing vℓ, decreasing µℓ and mℓ, d0 will be reduced.
On the other hand, a smaller µℓ will lead to a smaller
a0, then by (60), the convergent rate of the state will be-
come smaller. Accordingly, there is a tradeoff between the
bound of the neighborhood and the convergent rate. □

5. SIMULATION EXAMPLE

In this section, to testify the results obtained, two simu-
lation examples are performed.

5.1. Example 1
The nonlinear system with dead-zone input is described

as follows:

χ̇1 = χ2 +(1+ sin2(χ1))χ2 +
cos(t)

10
,

χ̇2 = D(ν)− 5χ2

2
+χ1χ2

2 +
sin(2t)

10
,

y = χ1, (62)

where D(ν) is defined as (2).
Choose the dead-zone parameters as ℑ1 = 1, ℑ2 =−1,

ξ1 = ξ2 = 1.5. The reference signal is chosen as yr =
sin( t

2 )+
t
2 sin(t).

Based on Theorem 1, the adaptive laws (23,52), the in-
termediate control function (22) and the control law (51)
are chosen.

The related simulation parameters are selected as m1 =
0.8, m2 = 1, µ1 = 1, µ2 = 2, v1 = 20, v2 = 25. Choose the
initial conditions as χ1(0) = 1, χ2(0) =−0.5, Θ̂1(0) = 0.1
and Θ̂2(0) = 0.2.

The fuzzy membership functions are chosen as

µM1
n
(χ) = (1+ exp(5χ +10))−1,

µMk
n
(χ) = exp(−(χ +3.5− k)2), k = 2,3,4,5,

µM6
n
(χ) = (1+ exp(−5χ +10))−1. (63)

The results of simulation are shown in Figs. 1-4.
To give some suggestions in choosing the design pa-

rameters, we choose two groups of variables as v1 = 20,
v2 = 25, m1 = 0.8, m2 = 1 and v1 = 5, v2 = 5, m1 = 10,
m2 = 10, respectively, while the rest of parameters remain
the same. Compared with the existing control strategies, a
previous adaptive control scheme proposed in [31] is also
utilized to control this system with the same controller pa-
rameters and ℘= 0.93. The simulation results are shown
in Figs. 5-7. It can be seen from Figs. 5-6 that the conver-
gence region of the tracking error in Fig. 5 is smaller than

Fig. 1. y and yr.
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Fig. 2. y− yr.

Fig. 3. u.

Fig. 4. Θ1 and Θ2.

that in Fig. 6. From Figs. 5 and 7, we see that the tracking
errors converge to a small neighborhood of the origin in
finite time Tr ≈ 0.65s and Tr ≈ 4.60s, respectively.

Fig. 5. y − yr, y and yr with v1 = 20,v2 = 25,m1 =
0.8,m2 = 1.

Fig. 6. y− yr, y and yr with v1 = 5,v2 = 5,m1 = 10,m2 =
10.

Fig. 7. y− yr, y and yr with the controller in [31].

5.2. Example 2
Consider the tracking control of a one-link manipulator

actuated by a brush dc motor [41]. The nonlinear system
is described as:

Rq̈+Sq̇+Wsin(q) = p+4sin(t),

Cṗ = Ap+Lmq̇+ I, (64)

where q, q̇, q̈ denote the link angular position, velocity
and acceleration, respectively. p is the motor current. The
disturbance is chosen as 4sin(t). I is the input voltage.
Choose the appropriate parameters as R = 1, S = 1, C = 1,
A =−0.5, W = 2.2 and Lm =−5.

Let χ1 = q, χ2 = q̇, χ3 = p and I = D(ν). (64) can be
rewritten as

χ̇1 = χ2,

χ̇2 =−W sin(χ1)−χ2 +χ3 +4sin(t),

χ̇3 = Lmχ2 +Aχ3 +D(ν),
y = χ1. (65)

D(ν) is defined as (2). Choose the dead-zone parame-
ters as ℑ1 = 0.7, ℑ2 = 0.4, ξ1 = ξ2 = 1.5. The reference
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Fig. 8. y and yr.

Fig. 9. y− yr.

Fig. 10. u.

signal is chosen as yr = sin( t
2 )+

1
2 sin(t). The fuzzy mem-

bership functions are chosen as (63).
Based on Theorem 1, adaptive laws (23,52) and the in-

termediate control function (22) and the control law (51)
are chosen. The related simulation parameters are selected
as m1 = 4

5 , m2 = 1, m3 = 4
5 , µ1 = 1, µ2 = 2, µ3 = 2,

v1 = 20, v2 = 25, v3 = 25. Choose the initial conditions
as χ1(0) = 1

100 , χ2(0) = 1
100 , χ3(0) = 1

100 , Θ̂1(0) = 1
10 ,

Θ̂2(0) = 1
5 and Θ̂3(0) = 1

10 . Simulation results are shown
in Figs. 8-11.

Fig. 11. Θ1 and Θ2.

6. CONCLUSION

Combining backstepping technique and FlSs, an adap-
tive controller of uncertain nonlinear system with dead-
zone input has been proposed. Finite time stability of the
nonlinear system was ensured by using a novel Lyapunov
theory. In the simulation, the proposed control scheme
was proved to be able to achieve the desired tracking per-
formance of the system in finite time.

It is known that there are many uncertainties in practical
nonlinear systems, such as time delays uncertainties, un-
known dynamics disturbances, unmodeled dynamics and
so on [47]. Therefore, it is an interesting issue to apply
the control scheme proposed in this paper for systems with
these certainties in the future. As one of the most famous
nonlinear control strategies, SMC technique has the ad-
vantages of quick response and strong robustness [48–52].
So We would like to combine the SMC technique with the
proposed finite time adaptive control method in the future.
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