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Variable Gains Sliding Mode Control
Sergio Alvarez-Rodríguez*, Gerardo Flores, and Noé Alcalá Ochoa

Abstract: In this paper a sliding mode control with variable gains is proposed. Such a controller has chattering-
effect reduction without detriment to the robustness properties of the sliding modes. The key idea behind the control
design is that the variable gains magnitude is proportional to the trajectory tracking error magnitude. Also, this
design establishes a connection between both the first and the second order sliding modes control. It is demonstrated
that the proposed controller does not overestimates disturbances, which significantly reduces the control energy
used. Finally, a stability analysis in the sense of Lyapunov is developed to demonstrate finite time convergence
to the origin; simulations experiments are carried out to show the effectiveness and robustness of the proposed
controller.
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1. INTRODUCTION

1.1. Background and motivation

In recent robust control literature, numerous approaches
have been proposed in order to achieve satisfactory con-
trol performances for nonlinear systems. One of those ap-
proaches is the Sliding Modes (SM) technique, a particu-
lar class of variable structure control which was first intro-
duced by Emelyanov [1]. As it has been set by Emelyanov,
this control design framework has many attractive features
including the ability to counteract the effect of uncertain-
ties and disturbances, which are present in most practi-
cal systems. Nevertheless, it is well known that SM con-
trol (SMC) has a major drawback: the chattering-effect
[2–4]. In practice, the chattering-effect is produced by
the switching of the control signal [5, 6], causing high
frequency mechanical vibrations, heat, mechanical wear,
noise, among others. In order to overcome the chattering
problem, the High Order Sliding Modes (HOSM) con-
cept was introduced in the Ph.D. dissertation of A. Lev-
ant. Examples of HOSM are: Drift Algorithm, Twisting
Algorithm (TA), Super-Twisting Algorithm (STA), and
Integral Sliding Mode controllers [7, 8]. Nevertheless,
in practice every SMC is susceptible to produce chatter-
ing, since it inherits such characteristic from the variable
structure systems, a wider class of systems that includes
SMC, which by nature present the chattering effect [9].
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1.2. Literature review
The beginnings of adaptivity for SM control are estab-

lished in [9], where it is treated the control gain propor-
tional to the system state. This key idea of proposing the
control gain as a function of system information is taken
in several works. For instance, in [10], the control gain
depends on the distance of the system state to a disconti-
nuity surface. In the same way, [11] presents a Lyapunov-
based variable gain for using STA approach applied to lin-
ear time invariant systems (LTIS); it provides an attenua-
tion of the chattering-effect. A similar approach also ap-
plied to LTIS is presented in [12], where gain adaptation
of STA is applied. This approach makes the control strat-
egy global, but also provides attenuation of the chattering-
effect. In the same sense, [13] presents an adaptive STA
for the control of an electro-pneumatic actuator; this ap-
proach uses some dynamically adapted control gains. In
the same way, in [14], an adaptive version of the TA is pro-
posed, in which due to dynamic adaptation of the gains,
the controller design does not require information about
uncertainties and disturbances. Since chattering magni-
tude is proportional to the control discontinuity [15], one
approach to reduce such chattering is by using adaptation
methods. In this sense, some adaptive laws with SM ap-
proach have been investigated in several works such as
[15–17]. In [15], the efforts were oriented to the applica-
tion of adaptivity principles to reduce the consequences of
chattering-effect. In [16], a systematic adaptive SM con-
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troller design is proposed for the robust control of nonlin-
ear systems with uncertain parameters, where an adapta-
tion tuning approach is developed to deal with unknown
but bounded system uncertainties. Also, an adaptive law
using integral sliding mode control concepts for distur-
bance rejection and considering system uncertainties is
presented in [17].

In [18], the sliding-mode control problem is treated for
T-S fuzzy-model-based nonlinear Markovian jump singu-
lar systems subject to matched/unmatched uncertainties.
While in [19], dissipativity based fuzzy integral sliding
mode control of continuous-time are addressed, taking
Takagi-Sugeno fuzzy systems with matched/unmatched
uncertainties and external disturbances. Despite these in-
teresting approaches, the aim of the present work, is to
increase conceptual basis of SM, taking generic control
systems.

Another interesting idea to remove chattering is pre-
sented in [20], which uses an hyperbolic tangent function
to reach the control law, however, it does not establishes
a relationship between r-orders of SMC (see the last issue
in next subsection: "Contribution" of the present work).

The problem studied herein can also be addressed by
the ideal of other switching-based adaptive techniques as
those proposed in [21–23], nevertheless, the present ap-
proach takes advantage of the robust properties of SM,
whereas the last cited works use another control tech-
niques.

1.3. Contribution
Conventional SM and TA are designed to operate with

fixed parametric gains. Even when such gains are cor-
rectly tuned, it is possible that disturbances overestimation
is presented, and thus generating additional chattering. A
flexible controller with variable gains designed to avoid
the chattering-effect, which increases system efficiency, is
potentially attractive for the industrial sector. For that, in
this work it is proposed a variable-gain sliding mode con-
trol (VGSM) based on the following goals:

• Design a variable gain structure for the sliding mode
control.

• Decrease chattering-effect.
• Increase control efficiency.
• Establish a basic relationship between first and sec-

ond order sliding mode control.

As will be seen along this work, those goals are mutually
complementary.

The proposed control law presents flexibility features,
since it is possible that it behaves as a first or second order
SM control. According to our knowledge, this is the first
time that a SM controller with this property is proposed.

The remainder of this paper is organized as follows.
Section 2, presents the system and the problem statement.

In Section 3, the main result is presented including the
control algorithm and the corresponding stability analysis
of closed-loop control system. In Section 4, simulation
results are obtained and a comparison between the con-
ventional Twisting algorithm and the presented approach
is investigated. Finally, Section 5 presents some conclud-
ing remarks and final comments.

2. PROBLEM SETTING

Let us consider the following nonlinear scalar system

ẋ1 = x2, (1)

ẋ2 = f (x1,x2, t)+bu, (2)

where x1, x2 ∈ R are the system states; u ∈ R is the
control input; f (x1,x2, t) ∈ R is an uncertain, measurable
and bounded function which can represent non modeling
terms and external disturbances, such a function satisfy
| f (x1,x2, t)| ≤ C for C ∈ R+; and b ∈ R is a positive def-
inite parameter. In this paper we consider the following
problem setting:

Design a SM controller that behaves as first and second
order, for solving the trajectory tracking problem for sys-
tem (1,2), such that the chattering-effect be considerable
reduced, and at the same time maintaining the robustness
for the closed-loop system taking into account actuators
bounds.

In this work the absolute value for the tracking error is
used to dynamically adjust the variable gains magnitude.
For this purpose, a sliding mode controller (SMC) is pro-
posed, which is inspired in the conventional second order
twisting control [7,14,24–26] and in the conventional first
order sliding mode control [9]. The former has the form

u =−r1sgn(x1)− r2sgn(x2), (3)

where r1,r2 ∈R+, and r1 > r2 holds; whereas the latter has
the form

u =−rsgn(x1), (4)

where r ∈ R+.

Remark 1: Note that (4) is included in (3) for the case
of r1 = r, r2 = 0. Also note that both the regulation prob-
lem and the trajectory tracking problem of system (1,2)
can be solved either by the first or by the second order
SMC.

The main disadvantage of controllers (3, 4) is that non-
modeled dynamics and disturbances can be overestimated,
producing unnecessary amounts of chattering, and thus,
decreasing system efficiency. To overcome these draw-
backs, it is proposed that r1,r2 and r be replaced by time-
variable gains, specially designed to:

• Avoiding overestimation of internal and external dis-
turbances.
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• Avoiding overestimation of unmodeled dynamics.
• Reducing chattering-effect.
• Maintaining SMC robust properties.
• Reaching well performance on convergence rates.
• Obtaining adaptability and flexibility for controller

operation.

3. MAIN RESULT

In this Section, the design of the variable-gain sliding
mode control (VGSM) is addressed. Also, the stability
analysis for the closed-loop system (1,2) with the VGSM
controller is presented.

3.1. Controller design
The controller design is composed by the following

three key ideas:
1) Consider the second order twisting control (3) with

state-varying control gains, i.e.

u =−p1(·)sgn(x1)− p2(·)sgn(x2) (5)

with p1(·) : x1 → R+ and p2(·) : x1 → R+
0 , where R+

0 =
{x|0 ≤ x < ∞} and p1 > p2 ≥ 0 holds. It is assumed that
the first state x1 represents the tracking error for the control
system, i.e. x1 = X1 − xd , where X1 is the actual absolute
value and xd represents the desired value for the first state
of the plant to be controlled. Thus, in order to solve the
trajectory tracking problem, this proposal is focused on
the positioning tracking error, avoiding the inclusion of
x2 (related to the velocity tracking) to design the variable
gains.

Remark 2: The bounds for u, i.e.

min(u)≤ u ≤ max(u)

can be obtained by taking two cases from (5):

a) when sgn(x1) = sgn(x2) = +1 giving rise to

min(u) = min(−p1(x1)− p2(x1))

=−max(p1(x1)+ p2(x1)).

b) When sgn(x1) = sgn(x2) =−1 giving place to

max(u) = max(p1(x1)+ p2(x1)).

It is easy to see from (5), that for the cases sgn(x1) ̸=
sgn(x2), and sgn(x1) = sgn(x2) = 0, |u| ≤ |p1(x1(t)) +
p2(x1(t))|, ∀t ≥ 0. Also note that for practical implemen-
tations, the expression |u| ≤ U0 must be accomplished,
where U0 represents the operational limits of the plant.

2) It is assumed that for the transient state, and also
when a (sufficiently large) disturbance occurs at the steady
state, |x1| ̸= 0 holds. Then the control u must be propor-
tional to |x1|. As such, let us propose that p1(·)+ p2(·) ∝

|x1|. As a consequence we can define p1(·), p2(·) as func-
tions of x1. Also, let k be a positive constant gain for the
absolute value of the tracking error, and let S be a positive
constant taken as an independent term to ensure that the
sliding manifold occurs even at the steady state, such that

p1(x1)+ p2(x1) = k |x1|+S. (6)

Remark 3: It is worth to mention that S should be se-
lected in the interval 0 ≤ S ≤U0 provided that the plant to
control has actuators constraints (U0), and must be noted
that S with values near U0 could produce saturation of |u|.
Thus, important properties of S on control performance
can be expressed as:

lim
x1→0

|u|= S, lim
S→∞

|u|=U0. (7)

The main idea behind the correct selection of S, is to guar-
antee the minimum, necessary, but sufficient sliding mode,
and must be tuned taking into account the needs of every
specific implementation.

3) Let us define w ∈R such that 0 ≤ w < 1, to establish
the following constant relationship between the variable
gains,

p2(x1) = wp1(x1). (8)

From the above, it follows that p1(x1)> p2(x1)≥ 0. Com-
bining (6)-(8) the design for the variable gains is obtained
as,

p1(x1) =
k|x1|+S

1+w
, (9)

p2(x1) = w
k|x1|+S

1+w
. (10)

Finally, substituting (9)-(10) in (5) the VGSM is given by

u =−k |x1|+S
1+w

sgn(x1)−w
k |x1|+S

1+w
sgn(x2). (11)

Remark 4: Controller gains in (11) includes two parts:
a) the variable gains ( k|x1|

1+w ,
wk|x1|
1+w ) and b) the constant val-

ues ( S
1+w ,

wS
1+w ). Thus, u = u1 + u2, where u1 = −k|x1|L,

u2 = −SL, and L =
sgn(x1)+wsgn(x2)

1+w
. Then, parame-

ter S affects the control performance only through u2, and
S =−k|x1|−

u
L

.

Remark 5: It is important to mention that by choosing
w = 0 in (11), the first order VGSM is obtained as

u =−(k |x1|+S)sgn(x1). (12)

While by selecting k = 0 the variable gain sliding mode
control (VGSM) becomes

u =− S
1+w

sgn(x1)−w
S

1+w
sgn(x2), (13)
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where S
1+w > w S

1+w > 0, ∀0 < w < 1, which is the

conventional twisting algorithm (3), due to r1 = S
1+w ,

and r2 = w S
1+w . Also, by choosing k = w = 0 the first

order VGSM becomes

u =−Ssgn(x1), (14)

which is the conventional first order sliding mode control
(4) with r= S. These facts show that both the conventional
SM and the TA are included in the VGSM.

Next, we show the stability result of the closed-loop sys-
tem (1)-(2)-(11).

Theorem 1: Consider the system (1,2) and the control
given by

u =−p1(x1)sgn(x1)− p2(x1)sgn(x2),

where p1 : R → R+, and p2 : R → R+ are variable gains
dependent of the state x1, given as follows

p1(x1) =
k|x1|+S

1+w
, p2(x1) = w

k|x1|+S
1+w

,

then the origin of system (1,2) at closed-loop with (11) is
globally stable with finite-time convergence

treach ≤
2
q

√
V (x1(0),x2(0), t0).

Proof: The closed-loop system (1)-(2)-(11) is a Vari-
able Structure System (VSS), and it is certainly not lo-
cally Lipschitz continuous, thus, existence and uniqueness
of solutions must be understood in the sense of Filippov.
In order to obtain a candidate Lyapunov function for the
VGSM (a kind of VSS), a methodology based on [26, 27]
is used in the proof. The method can be summarized in
the next two steps:

• Propose the first time derivative V̇ of the candidate
Lyapunov function. Such that, V̇ should be at least a
negative semi-definite function.

• From the Method of Characteristics [28], it is ob-
tained a partial differential equation generated by V̇ ,
then obtain the solution V which should be at least a
positive semi-definite function.

Following the previous steps, let us propose V̇ (x1,x2, t) as
the first time derivative for the candidate Lyapunov func-
tion V (x1,x2, t) : R2 ×R+ → R, along the trajectories of
system (1)-(2),

V̇ =
∂V
∂x1

x2 +
∂V
∂x2

( f +bu)+
∂V
∂ t

. (15)

From the model presented in Section 2 where
| f (x1,x2, t)| ≤C, it follows that

V̇ ≤ ∂V
∂x1

x2 +
∂V
∂x2

bu+C
∣∣∣∣ ∂V
∂x2

∣∣∣∣+ ∂V
∂ t

(16)

≤ ∂V
∂x1

x2 +
∂V
∂x2

bu+C
∂V
∂x2

sgn
(

∂V
∂x2

)
+

∂V
∂ t

.

(17)

Taking q as a positive parameter, then, −qV
1
2 ≤ 0 is ac-

complished, thus, one needs to investigate a Lyapunov
function V (x1,x2, t) as an absolute continuous positive
definite solution of the following PDE

−qV
1
2 =

∂V
∂x1

x2 +
∂V
∂x2

bu+C
∂V
∂x2

sgn
(

∂V
∂x2

)
+

∂V
∂ t

.

(18)

From the Method of Characteristics [28], the PDE (18)
satisfies the following system

dx1

x2
=

dx2

C v+bu
=

dt
1

=
dV

−qV
1
2
, (19)

where v = sgn
(

∂V
∂x2

)
. Equation (19) holds for |x1|2 +

|x2|2 > 0, then, V (x1,x2, t) from (19) is a solution of (18)
(to see the proof please refer to [28]). Note that both the
first and the third members in (19) are redundant, since
x2 =

dx1
dt .

Introducing the control u (11) in (19), one obtains the
following set of mutually coupled Ordinary Differential
Equations (ODEs)

dx1

x2
=

(1+w)dx2

(1+w)Cv−b(k|x1|+S)(sgn(x1)+wsgn(x2))
,

(20)
dx1

x2
= dt =

dV

−qV
1
2
. (21)

From (20)-(21) the following respective set of integrals is
also obtained, giving rise to mutually dependent functions
denoted by h1, h2 as follows

h1 = ha +hb +hc, (22)

h2 =
∫

dt +
1
q

∫
V− 1

2 dV , (23)

where

ha = bk
∫

|x1|sgn(x1)dx1 +bS
∫

sgn(x1)dx1,

hb = wbk
∫

|x1|sgn(x2)dx1 +wbS
∫

sgn(x2)dx1,

hc = (1+w)
[∫

x2dx2 −C v
∫

dx1

]
.

Solving the last integrals,

h1 = hd +he, (24)

h2 = t +
2
q

V
1
2 , (25)
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where

hd = b(1+wv)
(

1
2

kx2
1 +S|x1|

)
,

he = (1+w)
(

1
2

x2
2 −C vx1

)
.

Now, selecting the linear dependency for h1 and h2 as h1−
Lh2 = 0, for some real L, it follows that

h1 −Lt =
2L
q

V
1
2 , (26)

from which the Lyapunov function is obtained as

V (x1,x2, t) =
q2

4L2 [h1(x1,x2)−Lt]2 . (27)

Thus V is positive semi-definite and radially unbounded.
Further, from (16)-(18) it follows that

V̇ ≤−qV 1/2. (28)

Expression (28) can be rearranged as

dV
−qV 1/2 ≥ dtreach. (29)

Solving (29) for treach and taking the initial conditions
(x1(0),x2(0), t0), the finite-time convergence is obtained
and is given as follows

treach ≤
2
q

√
V (x1(0),x2(0), t0). (30)

Similar treach expressions (although for time-invariant sys-
tems) are presented in [26, 27]. □

4. SIMULATION RESULTS

Since (11) has a similar structure than (3), in this sec-
tion, performance comparisons are made between VGSM
and the conventional TA.
A linear piston in horizontal position was selected as the
plant to control, with the following dynamics,

ẋ1 = x2,

ẋ2 = I−1(− f x2 + fNOISE +u), (31)

where x1, x2 ∈ R are the variable system states for posi-
tion and velocity, respectively, and x1 = x1(t),x2 = x2(t);
fNOISE ∈ R represents a white noise function with an am-
plitude bounded by 2.1×10−4 Nm, and an averaging fre-
quency of 650 Hz; I = 0.42 Kg·m, is the inertia value;
f = 0.14 Kg·m/s; and u is the control signal. The task
of the control is to solve the trajectory tracking problem,
where the linear piston is intended to track a square wave
form as the reference signal, which has an amplitude of 1
m (i.e., from +0.5 to -0.5 m) and frequency of 0.4 Hz (i.e.,
the period is 2.5 s). Initial conditions for the actuator are
selected as x1(0) = 1.5 rad, and x2(0) = 0 rad/s.

4.1. Preliminary simulations

In order to select parameters for the TA, one first sim-
ulation is given to show the effect of increasing the sum
r1 + r2, for the closed-loop control of plant (31). In
Fig. 1, the graphic where r1 = 4,r2 = 2 is presented in
thin line (in black), the performance for r1 = 8,r2 = 4 is
shown in medium line (in red), and for parametric values
r1 = 30,r2 = 15 the behavior of the TA is given in thick
line (in bluish green). It can be seen that the reference sig-
nal (the square wave in dashed line), results to be a diffi-
cult signal to track by the closed-loop control of plant (31)
with (3), e.g., for the first valley of the wave form, there is
not convergence at all, while for the first peak of the wave
form, the convergence is reached only by r1 = 30,r2 = 15,
nearly at the end of square wave.

Observe that increasing the value for the sum r1+r2, the
control signal u is also increased, and as a consequence,
the time convergence becomes reduced. In order to under-
stand and to select the S value, Fig. 2 shows the closed-
loop control of plant (31) with (11), taking S = 0,6,18,36
with w= 0.5 and k = 5000. From this result, it is clear that
low values for S, delay the time convergence, while high
values for this parameter, make robust the control perfor-
mance.

Fig. 1. Performance of conventional TA under three dif-
ferent values for r1,2.

Fig. 2. Behavior of the VGSM under different values of S:
0, 6, 18, and 36 Nm.
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4.2. Selection of parameters
As the VGSM controller has adaptivity properties, it is

possible to select an only one set of parametric values to
work under a wide range of operational conditions. Nev-
ertheless, certain guidelines must be followed in order to
tune it adequately:

• Verify the amount of noise that your application can
absorb, without suffering damages.

• Verify the control robustness that your application re-
quires.

• Take into account that when k increases, the VGSM
reacts more powerfully to perturbations and noise.

• Take into account that increasing the value for S, both
robustness and chattering also increase their magni-
tudes.

• Take into account that when w increases its value,
the VGSM approaches to the conventional TA per-
formance, while when w decreases, the VGSM ap-
proaches to conventional SMC.

Considering these guidelines for the plant (31), it was
found that: in the range 1000 ≤ k ≤ 9000, the controller
reacts with enough power to reject disturbances; in the
range 4 ≤ S ≤ 8, the chattering-effect is reduced to neg-
ligible levels, but preserving the steady state convergence;
and working with 0.3 ≤ w ≤ 0.7, the VGSM takes advan-
tage from both the SMC and the TA. As such, the averages
for each of these ranges were selected to tune the con-
troller: k = 5000 [N], S = 6 Nm, w = 0.5. Even more, ac-
tuator maximum operating limit is selected with U0 = 75
Nm, which is an average value for commercial applica-
tions. These parametric values for the VGSM, are used in
the reminder of this section.

Conventional TA is not endowed with flexibility and
adaptability, thus, to obtain interesting comparisons with
the VGSM, two cases are considered:

Case 1: Selecting the TA parameters to obtain low chat-
tering, i.e., the same chattering level than that produced
by the VGSM. This is in order to compare the conver-
gence time, and disturbances rejection of both controllers.
For this case r1 = 12 and r2 = 6 are proposed, which are
equivalent to max|u|= 18 Nm.

Case 2: Tuning the TA to reach the same convergence
time and robustness than than obtained by the VGSM.
This is to compare the levels of chattering-effect produced
by both controllers. To not overload U0 = 75 Nm, r1 = 50
and r2 = 25 are proposed.

4.3. Case 1
Fig. 3 exhibits performance of both the VGSM (thick

line) and the conventional TA (thin line). From initial con-
ditions, the piston must travel a distance of 2 m to reach
the first valley of the wave form, thus, the inertial motion

Fig. 3. Tracking a square wave form: thick line is the per-
formance of VGSM, while thin line is the conven-
tional TA with r1 = 12 and r2 = 6.

Fig. 4. Control signal produced by both VGSM and con-
ventional TA, for the tracking process of Fig. 3.

produces large overshoots for both controllers, however,
the VGSM recovers faster than the conventional TA.

Fig. 4 is an enlarged view of the control signals pro-
duced by both controllers. It can be seen that the pro-
posed controller reaches the sliding manifold, along with
the SM properties, faster than the TA. Control goals are
achieved by the VGSM at 3.213 s, while the conventional
TA at 3.623 s, thus, considering that the reference signal
changes from +0.5 to −0.5 m at 2.5 s, the time difference
(0.41 s) represents a reduction of ≊ 36.5% for the time
convergence. Also observe that from 3.213 to 3.623 s, the
TA is out from control goals (e.g., convergence, robust-
ness, sliding manifold).

Remember that the chattering-effect is a phenomena
produced by the combination of both the dynamics of the
plant to control and the output signal generated by the
controller. The real amplitude, frequency and shape of
the chattering, can be visualized by making a zoom view
inside the simulation of Fig. 3. Once the conventional
TA reaches the sliding manifold, it can be compared with
the VGSM. Fig. 5 is an enlarged view of Fig. 3, to show
the actual chattering waveform produced by the dynamics
of the piston combined with the control signal presented
by Fig. 4. Observe that for this operating conditions, the
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Fig. 5. Enlarged view of Fig. 3 from 3.62 to 3.64 s, to
show the actual chattering produced by the control
signals of VGSM and TA.

Fig. 6. Tracking a square wave form: thick line is the per-
formance of VGSM, while thin line is the conven-
tional TA with r1 = 50 and r2 = 25 (both lines are
overlap with each other).

chattering produced by VGSM (thick line) is smaller than
that produced by the conventional TA (thin line) before
3.627 s, and after this time both real vibrations are sim-
ilar (which corresponds to the approach of this first case
study).

This first case shows that the time convergence is much
more faster for the VGSM than that of conventional TA,
when both controllers have similar chattering in the steady
state. Also shows that the proposed control reject distur-
bances faster.

4.4. Case 2
In order to increase robustness for the conventional TA

to the same level of the one obtained by the VGSM, the
Twisting parameters must be modified to the maximum
allowed by the operational limits of the plant 75 Nm, e.g.,
r1 = 50 and r2 = 25. Under these new parameters, Fig. 6
shows that the thick and the thin lines are practically the
same, which means that the tracking performance of both
controllers is similar. Nevertheless, when robustness for
the conventional TA is increased, also the chattering-effect
is increased, because the control signals must be more
powerful. Fig. 7 shows a zoom view of the control sig-
nal produced by VGSM (thick line) and conventional TA
(thin line), for the steady state where both controllers have
reached the sliding manifold. Fig. 8 is an enlarged view

Fig. 7. Control signal produced by both VGSM and con-
ventional TA for the tracking process given in
Fig. 6.

Fig. 8. Actual chattering produced by control signals pre-
sented in Fig. 7.

inside Fig. 6, to show the actual chattering produced by
the dynamics of the plant combined with control signals
of Fig. 7. The bounds of the vibrations produced by con-
ventional TA are eight times larger than those produced
by VGSM under the specified working conditions. At
this point, it is important to note that the overshoots ap-
pearing at Figs. 3 and 6 can be reduced or eliminated by
modifying the constraint of the operational limits of the
actuator. Second case shows an outstanding reduction of
the chattering-effect when the VGSM technique is used.
Time convergence and disturbances rejection are similar
for both controllers, nevertheless, the proposed controller
is able to not-overestimate noise and perturbations, which
makes the control work much more efficient. In Fig. 9
the behavior of the variable gains p1 (thin line) and p2

(thick line) is presented. This graphic was obtained for
the tracking process of Fig. 6. After 0.9s, is clearly visible
the effect produced by fNOISE (when the noise function
is suppressed, both p1 and p2 become plain). This Fig-
ures shows that the VGSM is sensitive to disturbances and
noise.

4.5. Phase portraits for VGSM and conventional TA
Let us consider the following two closed-loop systems,

ẋ1 = x2, (32)

ẋ2 =−12sgn(x1)−6sgn(x2), (33)
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Fig. 9. Enlarged view to show the behavior of variable
gains p1 and p2.

Fig. 10. Phase portrait for Twisting Algorithm for system
(32).

and

ẋ1 = x2, (34)

ẋ2 =−(10|x1|+2)sgn(x1)− (5|x1|+1)sgn(x2).
(35)

System (32) corresponds to TA of (3) with r1 = 12 and
r2 = 6. System (34) corresponds to the structure of equa-
tion (11), with k = 15, S = 3 and w = 0.5. The phase
portraits of both systems are shown in Figs. 10-11 respec-
tively, for comparison purposes. Fig. 10, exhibits that for
(0,x2) the trajectories of TA present discontinuities. In
Fig. 11 it can be observed that the trajectories for VGSM
are soft functions for all (x1,x2).

Finally, Fig. 12, shows the behaviour of the closed-loop
control system (31), where it is possible to observe a sim-
ilar performance than in Fig. 11, nevertheless, the time
convergence is faster in Fig. 12 (observe that the scale for
x1 in Fig. 12, is from −0.5 to 0.5, while in Fig. 11, is from
−10 to 10).

5. CONCLUSIONS

The VGSM controller can be tuned manually to in-
crease its robustness via increasing the value of S. Also, it
automatically increases its robustness when a disturbance
occurs, because the amplitude of the sliding manifold is

Fig. 11. Phase portrait for the VGSM algorithm corre-
sponding to the closed-loop system (34).

Fig. 12. Phase portrait for the VGSM controller at closed-
loop with system (31).

proportional to the absolute value of the state (|x1|). The
conventional SM is included in VGSM when k = 0, since
under this case the variable terms in (11) are switched
off. Results exhibited by Figs. 3, 4 and 5, show evidence
that VGSM has a better performance than TA in track-
ing the reference signal, in the case when TA is tuned to
produce similar levels of chattering than VGSM. Results
given by Figs. 6, 7 and 8, show evidence that VGSM pro-
duces only a small fraction (around 1/8) of the chattering
produced by the conventional TA, when TA is tuned to be
as robust as VGSM in tracking the reference signal. In
order to match the tracking performance of the VGSM,
TA inevitably must increase the chattering-effect. Fig. 9
shows actual behaviour of the variable gains, which does
not overestimate disturbances.

According to the Stability analysis, the control system
at closed-loop presents finite time convergence under the
action of the VGSM controller. This claim is also shown
by results exhibited in Figs. 3, 6, 11, and 12. Since VGSM
is designed for operational flexibility and adaptability, it
has the possibility to be tuned in order to improve the per-
formances for both the tracking processes and the permit-
ted levels of chattering, according to specific needs of the
plant to be controlled or to the specific application where
it is going to be implemented.

As such, the novel VGSM controller has the potential
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to be successfully used all over the industrial processes
and practical applications where a robust, adaptable, and
flexible control law is required. Even more, this controller
is environmentally friendly, since it does not overestimates
perturbations and noise.
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