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Fuzzy Greedy RRT Path Planning Algorithm in a Complex Configuration

Space

Ehsan Taheri*, Mohammad Hossein Ferdowsi, and Mohammad Danesh

Abstract: A randomized sampling-based path planning algorithm for holonomic mobile robots in complex config-
uration spaces is proposed in this article. A complex configuration space for path planning algorithms may cause
different environmental constraints including the convex/concave obstacles, narrow passages, maze-like spaces and
cluttered obstacles. The number of vertices and edges of a search tree for path planning in these configuration
spaces would increase through the conventional randomized sampling-based algorithm leading to exacerbation of
computational complexity and required runtime. The proposed path planning algorithm is named fuzzy greedy
rapidly-exploring random tree (FG-RRT). The FG-RRT is equipped with a fuzzy inference system (FIS) consisting
of two inputs, one output and nine rules. The first input is a Euclidean function applied in evaluating the quantity
of selected parent vertex. The second input is a metaheuristic function applied in evaluating the quality of selected
parent vertex. The output indicates the competency of the selected parent vertex for generating a random offspring
vertex. This algorithm controls the tree edges growth direction and density in different places of the configuration
space concurrently. The proposed method is implemented on a Single Board Computer (SBC) through the xPC
Target to evaluate this algorithm. For this purpose four test-cases are designed with different complexity. The
results of the Processor-in-the-Loop (PIL) tests indicate that FG-RRT algorithm reduces the required runtime and
computational complexity in comparison with the conventional and greedy RRT through fewer number of vertices
in planning an initial path in significant manner.

Keywords: Holonomic robot, processor-in-the-loop test, rapidly-exploring random tree, sampling-based path plan-

ning, single board computer.

1. INTRODUCTION

The efficiency of autonomous unmanned vehicles
(AUxV) for scientific, commercial and military operations
have increased over the past two decades. This in turn,
has made more researchers to run more studies thereof.
One of the biggest available challenging bottlenecks in
developing these robots is the technology readiness level
in the autonomy field [1]. In order to increase the level
of autonomy in these robots, at least, cooperation of four
subsystems including guidance, control, navigation and
path planning is required [2]. Running studies on path
planning algorithm is one of the open research areas for
holonomic and non-holonomic autonomous robots [3].
The path planning ability is defined as a skill in AUXV
to convert the high-level human demand (mission) to the
low-level human demand (displacement) [4]. In this con-
text, the planning collision-free paths among polyhedral
obstacles is accomplished for the first time by [5] which is
considered as a milestone in the development of this field.

For assessing this subject, authors in [6] have reviewed
about 200 articles and authors in [7] have reviewed about
120 articles. Path planning issues are developed through
the two main groups of classical and heuristic candidate
algorithms: Classical algorithms consist of: Bugs [8],
Voronoi Diagram (VD) [9], Visibility Graph (VG) [10],
Cell Decomposition (CD) [11] and Potential Fields [12].
In this group, the geometric or kinematic aspect of paths is
the main issue where the kinodynamic constraints and the
caused movement factor in the robot are not of concern.
These algorithms are efficient in path planning, provided
that, all degrees of freedom of a robot are independently
controllable or the robot has a small inertia. Classical
algorithms are deterministic and complete where their
performances are usually evaluated through the piano
mover’s problem benchmark [13]. The main drawbacks
in this group consist of: 1) sensitivity to parameter tuning,
2) exponential increase in computational complexity and
required runtime due to an increase in dimensionality of
the configuration space and the density of obstacles, 3)

Manuscript received January 19, 2018; revised May 19, 2018; accepted June 26, 2018. Recommended by Associate Editor DaeEun Kim

under the direction of Editor Euntai Kim.

Ehsan Taheri and Mohamad Hossien Ferdowsi are with the Control Group, Electrical Engineering Department, Malek-Ashtar University of
Technology, Tehran 15875-1774, Iran (e-mails: taheri.ehsan@mut-es.ac.ir, Ferdowsi @mut.ac.ir). Mohammad Danesh is with the Department
of Mechanical Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran (e-mail: danesh@cc.iut.ac.ir).

* Corresponding author.

@ Springer

(©ICROS, KIEE and Springer 2018


http://www.springer.com/12555

Fuzzy Greedy RRT Path Planning Algorithm in a Complex Configuration Space 3027

requiring a precise map of workspace, 4) existence of lo-
cal minimums and 5) inability in applying the variables
such as linear and angular velocities in path planning
procedure. In order to overcome these drawbacks, the
workspace is transferred from the configuration space to
state space, while in the state space, the computational
complexity and required runtime increase greatly because
the path planning variables double in number.

Heuristic algorithms: some of these are developed
based on randomized sampling method. This group is
probabilistically complete. In probabilistic complete algo-
rithms, if a path exists and time is infinite, then the path de-
sign is certain. However, if there exists no path, the prob-
abilistic complete algorithm will not become converged
to its solution [14]. The major advantages of sampling-
based algorithms in path planning consist of: 1) the in-
ternal (differential) and external (kinematic) constraints
of the robot are applied in the sampling process, 2) the
state variables are replaced by configuration variables in
a sense that changing variables rate can be considered in
the generation of random vertices, 3) the collision detec-
tion module is applied as a black box in sampling-based
algorithm, 4) a free configuration space is not necessary to
be constructed in a high dimensional space for robots with
high degrees of freedom and 5) the initial path is designed
rapidly through the sampling-based algorithms. The
main sampling-based path planning algorithms include:
Probabilistic Roadmap (PRM), Rapidly Exploring Dense
Tree (RDT), Rapidly-exploring Random Tree (RRT) and
Expansive-Spaces Tree (EST). The PRM algorithm is pro-
posed for path planning in high-dimensional configura-
tion spaces by [15]. This algorithm consists of the two
training and query phases and is appropriate for multiple-
query problems. The training phase is accomplished of-
fline, while query phase is accomplished online. In this
study the RRT path planning algorithm is of concern. RRT
is presented by [16], which is of only one phase, accom-
plished online. This algorithm is perfect for single query
issues [17]. RRT is based on the search tree ,while PRM is
based on the graph (roadmap). RRT is popular method for
rapid path planning in highdimensional spaces and its dif-
ferent procedure are being developed for holonomic and
non-holonomic robots as: Informed RRT* [18], RRT*-
smart [19], LQR-RRT* [20], RRT-connect [21,22],Kino-
dynamic RRT* [23], anytime RRT [24], skilled-RRT [25],
Theta*-RRT [26], BIZRRT* [27], Cloud RRT* [28], bidi-
rectional RRT* [29], RRT*-AB [30], MDMI-RRT* [31],
LBT-RRT [32],T-RRT [33], Line Segment [34], Reverse
Time Tree [35], Anytime Synchronized-Biased-Greedy
RRT [36], DT-RRT [37]. Among the most RRT algo-
rithms mentioned above, the Euclidean metric function
is commonly applied for measurement distance between
the vertices and edge lengths. The ability of this met-
ric function in complex configuration space which include
the convex/concave obstacles, narrow passage, maze like

spaces, cluttered obstacles is insufficient and search tree
may be trapped into a local minimum. The tree edges
(branches) density increase in an inefficient manner in
inappropriate places of configuration space through this
metric function. For this purpose the FG-RRT algorithm
is proposed. The main contributions of this article are
briefed as follows:

1) Density of the selected parent vertices in FG-RRT are
controlled through the metaheuristic function. In this
manner, density of the search tree edges (branches)
and vertices increase in appropriate places in the con-
figuration space, where the total numbers of vertices
and edges are reduced to plan an initial path, hence
computational complexity and required runtime are
decreased. It is notable that the density of search
tree edges and vertices in the conventional RRT and
greedy RRT increase in different places of the config-
uration space randomly.

2) Growth directions of the search tree in the FG-RRT
are guided by the Euclidean function. In this manner,
search tree grows up in appropriate directions. It is
notable that in the conventional RRT the search tree
grows up in random directions.

3) The FG-RRT is able to make decision through FIS.
If selected parent vertex is of sufficient competency,
a random offspring vertex is generated to expand
and explore in appropriate places in the configura-
tion space, otherwise, a new parent vertex is selected.
Moreover, FG-RRT is implemented on the Axiomtek
SBC 84710 through the xPC Target and then eval-
uated through PIL test. For this purpose, four test-
cases are designed. The PIL tests results indicate that
the required runtime and computational complexity in
FG-RRT are reduced in comparison with the conven-
tional and greedy RRT.

This article is organized as follows: a brief background of
the RRT path planning algorithm is explained in Section 2;
the proposed FG-RRT algorithm is presented and then im-
plemented through the xPC Target on a SBC for evaluating
with the PIL test in Section 3; performance and effective-
ness of the proposed method is compared with the conven-
tional and greedy RRT in path planning by four test-cases
with different complexity in Section 4 and finally the arti-
cle is concluded in Section 5.

2. BACKGROUND OF RRT PATH PLANNING
ALGORITHM

This algorithm is heuristic, which due to its high execu-
tion speed, simplicity and limited amount of computations
is appropriate for real-time applications in complex con-
figuration spaces. The structure of RRT algorithm consists
five main functions of: 1) metric, 2) random sampling, 3)
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steer branch, 4) nearest neighbors and 5) collision detec-
tion functions [16].

2.1.  Metric function

The proper selection of metric function affects the abil-
ity of sampling-based algorithms [38]. For this purpose,
as shown in Fig. 1 if the Euclidean metric function is ap-
plied, the path planning algorithm will act in an appropri-
ate manner, while due to the kinodynamic constraints of
vehicle and restriction of side motion, designing a feasi-
ble path between the initial and target points would not be
possible. The metric function (p) is defined as:

L =p(x) = (Y i —xi")7. (1)
i=1

If (p) in (1) is 1, 2 or o the metric function is named
Manhattan, Euclidean or Chessboard, respectively.

2.2.  Random sampling function

A random configuration variable (gruq) is generated
through this function followed by adding a new vertex
(gnew) to the search tree T (V, E) for exploring in the con-
figuration space. In this context there exists many sam-
pling strategies applicable in a search tree as: 1) sampling
around the M-Line axis in the BUG algorithm, 2) sam-
pling around the Medial axis in the PRM algorithm, 3)
sampling in large areas of VG and VD, 4) applying the
boundary layer and Gaussian techniques to increase the
probability of sampling at the border of the obstacles, 5)
running the bridge test to increase the probability of sam-
pling in narrow passages and 6) adding bias to the sam-
pling procedure [39].

2.3. Steer branch function

In this function, (grang) and (gparen;) variables are in-
volved in designing a path () between them in free con-
figuration space (Xpr.) as an output. Kinematic, dy-
namic,environmental, operational and the maximum dis-
tance of robot mobility in one step are applied in this func-
tion as the constraints. The edge of the search tree grows
up from the place of the parent vertex in the configuration
space to its target point of the edge which is a random ver-
teX (GRrana) OF new vertex (gney) based on the considered
constraint [23].

2.4. Nearest neighbors function

A set of the best candidate vertices (Vy., C V') are con-
sidered between all available vertices of search tree (V)
through this function and then one of them would be se-
lected to become a parent vertex (¢pyen;) for generating a
random offspring vertex (granq)- A set of the best candi-
date vertices (Vi) is defined by:

VN ear

Initial state

Target state

Fig. 1. Drawback of Euclidean metric function for path
planning in the presence of kinodynamic con-
straints.

initial edge IRand

‘O New x

Target

qlniﬁa/

N~

o[- actual edge

Fig. 2. Describing RRT path planning algorithm concept.

- {x,- EV.(i=0,..K): D(x,x;) < a(lOIgVN)% } ,
(2)

where,d is the dimension of configuration space, N is the
vertex count in the search tree,¢ is the design parameter
and K is the neighboring vertex count.

2.5. Collision detection function

The output of the random sampling function(ggang) and
branch function (Y(x)Vx € Xfree, gnew) are evaluated by this
function for located in free configuration space (Xpye.)-

Based on the above considered five functions the
schema of this is shown in Fig. 2. The nearest neigh-
bors to the random offspring vertex (grans) are marked by
empty circles and the subset of these neighbors is shown
by a large circle(Vy., ). The initial edge of search tree
between the parent vertex (gpyren;) and random offspring
verteX (granq) is shown by a solid line. The actual edge
of search tree is oriented from the parent vertex (qparenr)
to the new vertex (gye,) and is shown by dotted line. The
discrepancy between the solid and dotted lines is due to
either motion constraints or insufficient time.

3. PROPOSED FG-RRT

This FG-RRT is proposed to increase the computational
runtime speed and to decrease computational complexity
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Fig. 3. The schematic block diagram of the FG-RRT path planning algorithm.

in complex configuration spaces. Here the quantity of the
selected parent vertex is evaluated by the Euclidean func-
tion and its quality is evaluated by the metaheuristic func-
tion. The quantity term is the distance between the target
point and selected parent vertex, presented in subsection
3.1, while quality term is the position of selected parent
vertex in the free configuration space, presented in sub-
section 3.2. The outputs of these two functions (quan-
tity and quality) are fed to the FIS and then competency
of the selected parent vertex is evaluated for generating
an offspring vertex. If the selected parent vertex has suf-
ficient competency, a random offspring vertex is gener-
ated, otherwise, a new parent vertex is selected. For ex-
ample in the FG-RRT when a selected parent vertex of
the search tree is trapped near the target point in a lo-
cal minimum, quantity is good but quality is bad and so
competency of that is insufficient for generating a random
offspring vertex. Through this method not only the tree
edges growth direction and density are to be controllable
but also fewer number of vertices and edges are required
for path planning. Therefore, computational complexity is
reduced and FG-RRT becomes applicable for real time ap-
plication. Structure of FG-RRT path planning algorithm is
shown in Fig. 3. First, initial parameters are determined,
including: the free configuration space, initial and target
vertices of search tree, nine fuzzy rules, maximum itera-
tion for path planning and maximum iteration for parent
verteX (¢gparens) selection. Then, quality and quantity of
the selected parent vertex are computed by metaheuristic
function presented by (4) and by Euclidean function pre-
sented by (3), respectively. Density and growth direction
of edges are controlled concurrently through the quality
and quantity factor in the proposed FG-RRT. Outputs of
these two functions are fuzzified through the membership
functions, in Fig. 4(a)-(b). Fuzzy values enter FIS where
competency of the selected parent vertex is computed. Fi-
nally, if the selected parent vertex is of sufficient compe-
tency, a random offspring vertex is generated and a new
vertex (gney) is added to the search tree T'(v, E) for explor-
ing configuration space, otherwise, a new parent vertex is
selected.

Table 1. Comparison the features of conventional RRT,
greedy RRT and FG-RRT.

Growth Density of Make
directions of | the vertices decision
the search tree | and edges ability
Conventional
RRT Randomly Randomly Unable
Greedy RRT Controllable Randomly Unable
FG-RRT | Controllable | Controllable | Enable by
using FIS

Features of the conventional RRT, greedy RRT and FG-
RRT are tabulated and compared in Table 1.

3.1.  First input

This input in FIS is obtained from the Euclidean func-
tion through (3):

E"=(R'dg) < R' xR", 3)

dp (¥ ) = 1/ (6 =2 4 e (6, — )2,
Vxx e R",

where (E") is the metric space on a set (R) with Euclidean
function (dg). In order to fuzzify the crisp value of this in-
put into a fuzzy value, three special membership functions
are applied, Fig. 4(a). By applying this input in the FG-
RRT algorithm, the search tree growth direction is towards
the target point in the complex configuration spaces.

3.2.  Second input

This input in FIS is a metaheuristic function, inspired
from the bees’ behavior. The mathematical model of bees’
behavior for food search in nature is presented as (4).

1
T+ (qrarent)’ aren >= 07
fit("]Parem) — ¢ 14/ (qrarent) f(QP t)
1 +abs(f(anrent)), f(anrent) < 07

f it QParen
P LLLULTED 4)

Z fil(anrent)
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Algorithm 1 evaluating competency of the selected parent
vertex in the FG-RRT
1: M < Determining maximum iteration for qparens
2: selection
3: Tec < qparens has a Low competency
4: while j <M and T == Low do
5 de(qparens) ¢+ Calculated Euclidean function
Jor qparens by equation (3)
Sit(qparens) < Calculated metaheuristic function
for qParent by equation (4)
7: Fy, < Fuzzify dg (qparent) through the membership
functions depicted in Fig. 4(a).
8: Ffittgraen) < SuzZify fit(qparen) through the
membership functions depicted in Fig. 4(b).
9: For i=1:9
10: Fruie (i) < fulfillment degree of rule No. (i) through

@

the min-operator(Fu, Fri(gp,on))
11: EndFor
12: Feompetency < calculated aggregation of all rules

through the max-operator(Fy.(i))
13: T, < Update(T.(Feompetency)) by Table 2
14: EndWhile
15: Ccompelency < crisp value 0f(Eompetency)
16: by Centroid of Area (CoA) method

Table 2. Comparison the features of conventional RRT,
greedy RRT and FG-RRT.

competency of the First input dg (qparent)
selected parent vertex Small Average Large
Excellent High High Middle
Second O @) )
. High Middle Low
input Good
Fitlamn) ) 5) (©)
Ararent Middle Low Low
Poor
) ® ®

where fit(gparent) 1s the random offspring vertices count,
generated by the selected parent vertex (gparens) Which it-
self or its edge is located in the obstacle space. In the other
words, fit (qparen;) 18 the bee’s unsuccessful efforts count
in reaching the target point or determining the appropriate
location in the configuration space which contains the ad-
equate nectar. The (gparens) is the probability of choosing
(qparens) s a parent vertex among all vertices of the search
tree.

The functionality of each one of the vertices in this FG-
RRT is similar to that of a bee in the nature and they col-
laborate with one another to find the target point or lo-
calities in the configuration space which is rich in nectar
(food). For this purpose, each vertex of search tree be-
comes a simple computational component where through
cooperation with other vertices can design the initial path.
Metaheuristic function presented by (4) is applied by ver-
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Fig. 4. Membership functions applied to fuzzify two in-
puts and one output are shown by (a), (b) and (c),
respectively and rules surface for the FIS is shown
by (d).

tices to exchange information and inform one another. By
applying this input in the FG-RRT algorithm, the density
of edges in search tree is controlled in the different places
of configuration spaces. In order to fuzzify the crisp value
of the second input, three special membership functions
are applied, Fig. 4(b). The relation between the two inputs
and one output is expressed by the nine linguistic rules
tabulated in Table 2. For example, rule 1 in Table 2 indi-
cates that: If the first input is small and the second input is
excellent Then competency of the selected parent vertex
is high. In other words, the selected parent vertex by the
FG-RRT algorithm has a highest competency to become
a parent vertex for generating a random offspring vertex,
if dg(qparens) in (3) is small and fit(gparens) in (4) is ex-
cellent after the fuzzification. The pseudo-code of that is
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Algorithm 2 FG-RRT path planning algorithm

—

Qinit < Initial vertex of search tree

Grarger < target vertex of search tree

X < configuration space

N < Maximum iteration for path planning
Tedges — {@}

Tvertices — {qmita qmrget}

T(Tedges: Tversices) < search tree

TC <~ L2 norm (QHequmrget)

B < threshold of qyarger
while i <N and T, > B do

—  Select (qparem) randomly from the

R A A

—_ =
—_ O

qparent

Tvertices

N

Gpares <  Evaluating competency of (qparent)
through the algorithm 1
13: Grana < sampling function (X free,qparent )
14: [Gnew, Y] < branch function (qparent s Grand)
15: if Output of the collision detection function
(qnewa qrand » 7) located in xfree then
16: Tedges — Tedges Uy
17: Tverticex — Tverticex U new
18: T < Update(T)
19: EndIf
20: T. <+ Update(T,)
21: EndWhile

expressed in Algorithm 1.

3.3. Fuzzy inference system

The Mamdani FIS describes the relation between
the two inputs and one output through the nine rules.
The fuzzy rules are stated through the following struc-
ture; Rule it Xfdg(qparen) is MF'y, and fit(qparen) is
MFifir(qpm,) Then comp,,, .. is MFicomp(qu,),i =1,..9,
where the first input (dg(qparen): quantity of the selected
parent vertex) is computed through (3) and fuzzified by
the three membership functions (MF';,), Fig. 4(a). The
second input (fit(qparens): quality of the selected parent
vertex) is computed through (4) and fuzzified by the three
membership functions(MF’ fit(qraren))» F1€- 4(b). The out-
put (compy,,..) is the competency of the selected parent
vertex for generating a random offspring vertex and fuzzi-
fied by the three membership functions (MF o,p(gp))s
Fig. 4(c).

The nine rules of FIS through the surface method are
shown in Fig. 4(d). The fulfillment degree of each one
of the rules and its implication is calculated through min-
operator. The aggregation of the priorities of FIS is ob-
tained through the max-operator. The crisp value of FIS
output is obtained through the Centroid of Area (CoA)
method. The pseudo-code of the FG-RRT is expressed
in Algorithm 2 and its flowchart is shown in Fig. 5. Pa-
rameters 3, N and M in Algorithms 2 and 1 are designed

Set initial parameters

e

Iy (Gparent) }

i [Compuling the quantity of sclected Computing the quality of selecled}

{ Select Parent Vertex Rand

arent vertex by Metaheuristi
i | parent vertex by Eulidean Function| I gunction RESEERESEE

Evaluating the competency
of selected parent vertex by FIS

\
i
i
i
i
i
i

/.
5

S e e A R e R s i

2
FG-RRT
iteratively expanded

[ Update FG-RRT }

Fig. 5. FG-RRT path planning algorithm flowchart.

Target PC Monitor

/£
TCP/IP
Communicatiol

Fig. 6. PIL test setup.

according to the path planning requirements and complex-
ity of the configuration space, respectively.

3.4. The implementation of the proposed FG-RRT

Path planning ability of this algorithm is evaluated
through PIL test which is an intermediate test usually
run before Hardware-in-the-Loop (HIL) test and after
Software-in-the-Loop (SIL) test [40]. The proposed FG-
RRT with FIS is verified and debugged, by the means
of the PIL test without actual AUxV system involve-
ment. For this purpose, execution codes here are gener-
ated through the xPC Target builder and then implemented
on a separate SBC through TCP/IP communication proto-
col according to maximum 10 Mbit/sec data transfer rate.
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Table 3. Comparison of FG-RRT, greedy RRT and conventional RRT results in four test-cases with different complexity.

Path Planning Configuration | Number of total | Number of valid Initial path Optimized path Runtime
Algorithm space vertices vertices cost cost
CCS 8849 6254 22 20.98 19.3
Conventional NPCS Max — — — INF
RRT MCS Max — — — INF
COCS Max — — — INF
CCS 983 295 25 214 1.87
Greedy RRT NPCS 1382 493 42 37.31 3.48
MCS Max — — — INF
COCS Max - - — INF
CCS 151 72 24 20.97 0.6
FG-RRT NPCS 1138 687 38 33.42 2.53
MCS 6442 3399 67 56.86 41

COCS 6974 3305 56 45.88 43.5

The setup of the PIL test is shown in Fig. 6, consisting
of three major parts of: host PC, target PC and xPC Tar-
get. The host PC is a laptop with an Intel Core 174700HQ
@ 2.4GHz and 8GB RAM, the target PC is an Axiomtek
SBC 84710 and xPC Target is a cost-effective method for
running the PIL test. The FG-RRT path planning algo-
rithm and configuration space are modeled and built in the
host PC and then the FG-RRT kernel code is transferred
to the target PC for execution.

4. TEST-CASES

To evaluate the path planning ability of FG-RRT al-
gorithm four test-cases are designed through MATLAB
R2016a with different complexity, Fig. 7(a)-(d). The first
test-case is a cluttered configuration space (CCS) with 70
static obstacles in, Fig. 7(a); the second test-case is a con-
figuration space with few narrow passages (NPCS) and
102 static obstacles in, Fig. 7(b); the third test-case is a
maze-shaped configuration space (MCS) with 111 static
obstacles in, Fig. 7(c) and the fourth test-case is a con-
figuration space with combination of convex and concave
obstacles, narrow passages, maze-like space (COCS) and
120 static obstacles in, Fig. 7(d). The results of applying
the FG-RRT path planning algorithm with its FIS in these
four configuration spaces are illustrated in, Figs. 8-11 and
the results, here are tabulated in Table 3 for comparison
purposes. The places with less nectar are shown in yel-
low rectangular, Figs. 8-11. These rectangular are ob-
tained through the second input of the FIS in the FG-RRT
which detects inappropriate places for exploring through
the search tree; thus, FG-RRT prevents the tree edges’
density increase in these places. This prevention allows
search tree to have opportunity to expand and explore in
the appropriate non-yellow places. In this process the ver-
tices and edges count of the search tree do not increase,
therefore the computational complexity and runtime re-

mains constant. The valid edges, invalid edges, initial path
and the final path of the search tree are shown in back solid
lines, red dash lines, thick black line and thick red line, re-
spectively. The triangular inequality optimization method
is adopted to the initial path in order to plan the final path.
The following results are summarized from Table 3 and
Figs. 8-11:

1) The conventional RRT algorithm is able to plan the
path only in the configuration space, Fig. 7(a), while
in other three configurations with respect to the maxi-
mum number of vertices (15000 vertices) it is not able
to plan the same.

According to the findings here, the greedy RRT
path planning algorithm is able to plan the path in
Figs. 7(a)-(b), while in the other two configurations
with respect to higher degree of complexity it is not
able to plan an initial path regarding the maximum
number of vertices.

According to results obtained from the PIL test for
the first test-case which are tabulated in Table 3 and
shown in Fig. 8, the conventional RRT plans the
initial path with 8849 vertices in19.3 seconds, the
greedy RRT plans the initial path with 983 vertices
in 1.87 seconds and the FG-RRT algorithm plan the
initial path with 151 vertices in 0.6 seconds. The
FGRRT algorithm is 32 times faster than conventional
RRT and 3 times faster than greedy RRT. It is notable
that, FG-RRT requires about 98% fewer vertices in
comparison with conventional RRT and about 85%
fewer vertices in comparison with greedy RRT for
path planning.

According to results of the PIL test for the second
test-case which are tabulated in Table 3 and shown in
Fig. 9, the FG-RRT and greedy RRT algorithms plan
an initial path through 1138 vertices in 2.53 seconds
and 1382 vertices in 3.48 seconds, respectively, while
the conventional RRT is not able to plan an initial path

2)

3)

4)
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Fig. 7. A cluttered space with 70 static obstacles (a), Few
narrow passages with 102 static obstacles (b), A
maze-shaped space with 111 static obstacles (c)
and A combination of convex obstacle, narrow pas-
sage and maze-like space with 120 static obstacles

(d).

by the maximum number of vertices and the required
runtime for path planning is infinite (INF).

5) In the third and fourth test-cases only FG-RRT algo-
rithm is able to plan an initial path, while the greedy
RRT and conventional RRT algorithm are not able to
plan an initial path by the maximum number of ver-

static obstacles: [l
- Valid vertex: #

[ Invalid vertex: O
- -Va“d bmnc;\?:sui\d line

Invalid branches:
thin dash line

T e
thick black line

. Final path
thick red line

w

10

Fig. 8. Path planning in a cluttered space through the FG-

RRT algorithm.

Static obstacles: [l
Locaiies wih less nactar:
Valid vertex: #
Invalid vertex: ©
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thin soid fine:

thin dash lino

Fig. 9. Path planning in a configuration space with few
narrow passages through the FG-RRT algorithm.

static obstacles: [l

Valid vertex: #
Invalid vertex: QO
alid branches:
thin soild line
invalid branches:
thin dast

hline

thick black line

10

Fig. 10. Path planning in a maze-like space through the
FG-RRT algorithm.

tices, Figs. 10-11.

5. CONCLUSIONS

The proposed FG-RRT algorithm consist of a FIS with
two inputs, one output and nine fuzzy rules to reduce the
computational complexity and increase the runtime speed
of path planning in complex configuration spaces. The
first input is a Euclidean function applied in evaluating the
quantity of the selected parent vertex and the second one
is a metaheuristic function applied in evaluating the qual-
ity of selected parent vertex. By applying the first input in
the FG-RRT the search tree growth direction is able to ex-
pand towards the target point and by applying the second
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thick red line

Fig. 11. Path planning in a complex configuration space
with different combination of environmental con-
straints through the FG-RRT algorithm.

one the density of edges in the search tree becomes con-
trollable in exploring appropriate places of configuration
space. Output of FIS in the FG-RRT indicates the com-
petency of selected parent vertex for generating a random
offspring vertex. FG-RRT is implemented on Axiomtek
SBC 84710 through the xPC Target builder and then eval-
uated through PIL tests. For this purpose, four test-cases
are designed with different complexity. The results from
the first and second test-case indicate that FG-RRT plans
an initial path through fewer vertices in comparison with
the conventional and greedy RRT; in the third and fourth
test-cases the FG-RRT is only able to plan an initial path
in the maximum number of vertices.
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