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Circumnavigation of a Moving Target in 3D by Multi-agent Systems with
Collision Avoidance: An Orthogonal Vector Fields-based Approach
Hang Zhong, Yaonan Wang, Zhiqiang Miao*, Jianhao Tan, Ling Li, Hui Zhang, and Rafael Fierro

Abstract: The problem of circumnavigating a moving target in a three dimensional setting by a network of agents
while avoiding inter-agent collisions is addressed in this paper. A distributed control strategy is proposed for the
multi-agent system to achieve three objectives: reaching the target plane with predesigned orientation, circulating
around the target with prescribed radius, and avoiding collisions among agents. After representing the control
objectives by three potential functions, the gradient fields of which are orthogonal to each other, the control law
then is developed using the gradient vector field-based approach. The novelty of the proposed controller lies in the
orthogonality of the vector fields, which decouples the control objectives and ensures global asymptotic convergence
to the desired motion, subject to some mild initial condition constraints. The stability and convergence analysis are
presented using Lyapunov tools, and the effectiveness of the proposed control strategy is demonstrated through
numerical simulations.

Keywords: Circumnavigation, collision avoidance, multi-agent systems, potential function, target track-
ing/enclosing, vector fields.

1. INTRODUCTION

The past decade, there has been a growing research in-
terest in the distributed coordination and cooperative con-
trol of the multi-agent system(MAS) [1–12]. Compared
with a single agent, MAS provides increased efficiency,
scalability, and robustness. In multi-robot coordination,
one of the fundamental problems is the formation control,
in which MAS aims to maintain a prescribed geometric
pattern. The formation control problem can be classified
as position-based control [13–15], distance-based control
[16–30], and bearing-based control [31–33], depending on
what relative quantity is used for specifying the desired
geometric pattern. In position-based control, the desired
geometric pattern is specified by relative positions among
agents, and agents actively control relative positions. Af-
ter an appropriate coordinate transformation, the position-
based formation control problem can be reduced to a con-
sensus problem. Hence, linear protocols can be developed
to achieve global asymptotic convergence of the desired
formation. On the other hand, in distance-based control or
bearing-based control, agents actively control inter-agent
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distances or bearings. Due to the inherent nonlinearity
of distance and bearing, nonlinear feedback control laws
have been proposed, and the associated stability analy-
sis relies on the concept of graph distance rigidity [20]
or bearing rigidity [33].

Recently, considerable research efforts have been de-
voted to the development of distributed control strategies
to achieve circular or enclosing formation of MAS. This
is motivated by various civil and military applications like
monitoring, surveillance, sampling and mapping of un-
known or partially unknown environment by mobile sen-
sor networks [34–37]. The MAS is more suitable for
sensing the environment than an individual robot because
it can gather multiple simultaneous measurements over a
large area. In [38–44], some strategies were proposed for
MAS to achieve the collective circular motion. The cen-
ter of the circular formation is determined by all the initial
states of MAS, thus it cannot be pre-specified. However,
in some applications, MAS is expected to circle around
certain specific target or area. In these target-involved
missions, the goal is to circumnavigate a target of interest
with specific radius by a network of autonomous agents.
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This problem will be referred as the circumnavigation
problem, which has been studied in [45] and [46] for a
single agent, and some related topics are collective circu-
lar motion with a beacon or virtual leader in [47–52], and
standoff tracking of target in [53–55].

Among the abundant literature on the circumnaviga-
tion problem, the approaches to address this problem can
be mainly classified as the self-propelled particles-based
approach [47–52], vector field-based approach [53–56],
and cyclic pursuit-based approach [57–59]. In the self-
propelled particles-based approach, each agent is modeled
as a Newtonian particle that moves at a constant speed
subject to steering controls. The case where agents move
in plane was studied in [47–50] and [51], [52] for the 3D
case. Under the assumption that the target is stationary,
asymptotic convergence to the desired formation can be
guaranteed. However, if the target is moving, it can be
shown that it is impossible for agents with constant lin-
ear velocities to asymptotically circumnavigate the mov-
ing target. In the vector field-based approach, the essen-
tial idea is constructing a vector field to globally attract
agents to a limit cycle around the target. This approach
stems from the artificial potential field work in mobile
robotics, in the sense that the vector field can be created
by adding circulation to the gradient field of a potential
function, so that it would produce circular motions instead
of ultimately stationary behaviors. In [53], General tech-
niques for constructing Lyapunov vector fields that gen-
erate circular pattern attractors in 3D were developed for
a single unmanned aircraft. In [54], Lyapunov guidance
vector fields were utilized for two unmanned aircrafts to
standoff tracking a moving target with constant speed. In
[53], a guidance law was proposed to tracking a mov-
ing target with multiple aircrafts in leader-follower forma-
tion. In [56], a method for computation of artificial vec-
tor fields that enable a robot to converge to and circulate
around generic time-varying curves specified in n dimen-
sional spaces was proposed. The vector field-based ap-
proach is attractive due to its simplicity, ease of implemen-
tation, and robustness to external disturbances. However,
the aforementioned studies on the applications of vector
field-based approach to the circumnavigation problem fo-
cus more on one single agent, except for some simple
multi-agent system cases like two-robot system and robots
in the leader-follower formation. In the cyclic pursuit-
based approach, n identical agents are ordered such that
agent i pursues agent i+ 1 (modulo n) to form a directed
ring interaction topology. In [57], a methodology based
on cyclic pursuit strategy was proposed for group coor-
dination and cooperative control of n agents to achieve a
target-capturing task in 3D space. In [58], cyclic pursuit
control laws were developed for spacecrafts in three di-
mensions to achieve a circular formation with fixed center.
In [59], a control framework for achieving encirclement of
a target moving in 3D with MAS was presented based on a

generalized cyclic pursuit strategy, where agent i pursues
agents i−1 and i+1 (modulo n) to form a undirected ring
structure. The cyclic pursuit strategy inherently is decen-
tralized and requires a small number of communication
links. However, the strategy requires agents to be ordered,
which is not a common setting in many engineering appli-
cations.

The vector field-based approach was extended to solve
the circumnavigation problem in 3D with MAS in our pa-
per [60]. A distributed control strategy was proposed for
the robots to achieve a circular formation with prescribed
radius and inter-agent distances around a moving target.
Following the work in [60], here we take into account the
collision avoidance issues, and consider the problem of
circumnavigating a moving target in 3D with a network of
agents while avoiding inter-agent collisions. The goal for
the MAS is to achieve three objectives: reaching the tar-
get plane with predesigned orientation, circulating around
the target with prescribed radius, and avoiding collisions
among agents. The proposed vector field-based controller
is easy to implement, and robust to external disturbances.
The communication topology of agents is distance-based
and time-varying, without the requirement of ring struc-
ture as in the cyclic pursuit strategy. The target can be
stationary or moving with variable speed in 3D environ-
ments. Due to the orthogonality of the vector fields, the
stability and convergence of the closed-loop system are
guaranteed under some mild initial condition constraints.

The remainder of this paper is organized as follows: In
Section 2, some mathematical preliminaries first are pre-
sented. Problem is formulated in Section 3. In Section 4,
a control law based on three orthogonal gradient fields is
proposed and main results is stated. Simulation results for
illustrating the effectiveness of the proposed strategy are
presented in Section 5. Section 6 concludes the paper.

The standard notations are used throughout this paper.
R denotes the sets of real numbers, and Rn is the set of
n-tuples for which all components belong to R. For vector
x ∈Rn, ∥x∥ is the Euclidian 2-norm of x. Let In ∈Rn×n be
the n-dimensional identity matrix. For matrix A ∈ Rm×n,
denote AT ∈ Rn×m as the transpose of A. For the conve-
nience of the reader, the main symbols to be used in this
paper are summarized in Table 1.

2. MATHEMATICAL PRELIMINARIES

2.1. Multivariable calculus and vector analysis
In this subsection, some elements and results on multi-

variable calculus and vector analysis that will be used in
the subsequent development are presented. These materi-
als are mainly based on the formulations in [61, 62].

First, the definition and some useful properties on the
derivative of vector functions, orthogonal projection ma-
trix and cross product are introduced.

Definition 1: Let f (x) = [ f1(x), f2(x), . . . , fm(x)]T ∈
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Table 1. Main symbols used in the paper.

Symbol Interpretation
(∂ f/∂x) ∈ Rm×n derivative of f (x) ∈ Rm to x ∈ Rn

∇x f ∈ Rn gradient of f (x) ∈ R to x ∈ Rn

φx ∈ Rn bearing of vector x ∈ Rn

Px ∈ Rn×n orthogonal projection matrix of
x ∈ Rn

(a×b) ∈ R3 cross product of a,b ∈ R3

Ω(a) ∈ R3×3 skew symmetric matrix associated
with a ∈ R3

pi ∈ R3 position of robot i
ui ∈ R3 control input of robot i
pt ∈ R3 position of target
ut ∈ R3 velocity of target
α ∈ R3 orientation of the target plane

ρ > 0 prescribed distance between the robot
and target

δ0 > 0 minimum distance between robots

Rm be a differentiable vector function depending on x =
[x1,x2, . . . ,xn]

T ∈ Rn, then the derivative of f (x) with re-
spect to x is defined as

∂ f
∂x

=


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

. . . ∂ fm
∂xn


m×n

. (1)

Specifically, if f (x) ∈ R is a scalar function, then
(∂ f/∂x) is a row vector. Later we may use the gradi-
ent vector ∇x f = (∂ f/∂x)T to transform it into a column
vector.

Property 1: Given any constant matrix A ∈ Rm×n, if
∥Ax∥ ̸= 0, then

∂ (Ax/∥Ax∥)
∂x

=
1

∥Ax∥
(I − AxxT AT

∥Ax∥2 )A. (2)

Definition 2: Given any nonzero vector x ∈ Rn, the
bearing of vector x is denoted as φx = x/∥x∥, and the as-
sociated orthogonal projection matrix is given by

Px = I −φxφT
x , (3)

where I is the identity matrix with appropriate dimensions.
Property 2: For any nonzero vector x, the orthogonal

projection matrix Px satisfies

Pxx = 0; PT
x = Px; P2

x = Px. (4)

Moreover, matrix Px is positive semi-definite with eigen-
values {0,1,1 . . . ,1}.

Definition 3: For any two vectors a = [a1,a2,a3]
T ∈

R3,b = [b1,b2,b3]
T ∈ R3, the cross product of a and b is

the vector

a×b =

a2b3 −a3b2

a3b1 −a1b3

a1b2 −a2b1

 , (5)

or equivalently,

a×b = Ω(a)b, (6)

where the associated skew symmetric matrix Ω(a) is de-
fined as

Ω(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (7)

Property 3: The vector a× b is orthogonal to both a
and b, i.e., (a×b)T a = (a×b)T b = 0; and the magnitude
of the cross product a×b satisfies

∥a×b∥2 = ∥a∥2∥b∥2 −∥aT b∥2. (8)

Based on the above results, some significant connec-
tions among bearing of vectors, orthogonal projection ma-
trix and cross product now are established.

Property 4: For any two nonzero vectors a and b, we
have

Ω(φa)Ω(φb) = φbφT
a −φT

a φb. (9)

Specifically, if a = b, then

Ω(φa)Ω(φa) =−Pa. (10)

If aT b = 0, then

Ω(φa)Ω(φb) = φbφT
a . (11)

Proof: Using equation (6), we have

∥φa ×φb∥2 =− (φa ×φb)
T (φb ×φa)

=− (Ω(φa)φb)
T Ω(φb)φa

=φT
b Ω(φa)Ω(φb)φa. (12)

On the other hand, using Property 3, we have

∥φa ×φb∥2 =∥φa∥2∥φb∥2 −∥φT
a φb∥2

=φT
b φbφT

a φa −φT
b (φT

a φb)φa

=φT
b (φbφT

a −φT
a φb)φa. (13)

Equations (12) and (13) imply equation (9) holds, which
subsequently yields (10) when a = b, and (11) when
aT b = 0. □

Property 5: For any two nonzero vectors a and b, if a
and b are orthogonal, i.e., aT b = 0, then

(φa ×φb)(φa ×φb)
T = PaPb. (14)
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Proof: Using (6), we have

(φa ×φb)(φa ×φb)
T =−(φa ×φb)(φb ×φa)

T

=−Ω(φa)φb(Ω(φb)φa)
T

= Ω(φa)φbφT
a Ω(φb). (15)

Following equations (10) and (11), we have

PaPb = Ω(φa)Ω(φa)Ω(φb)Ω(φb)

= Ω(φa)φbφT
a Ω(φb). (16)

Equations (15) and (16) imply (14) holds. □

Property 6: Given two nonzero vectors a,x ∈ R3, de-
note φa

x = Pax
∥Pax∥ , where Pa = I − φaφT

a ,φa = a/∥a∥. If
∥Pax∥ ̸= 0, then

∂ (φa
x )

∂x
=

1
∥Pax∥

(φa
x ×φa)(φa

x ×φa)
T . (17)

Proof: Using the Properties 1 and 5 with the fact
φT

a φa
x = 0, the derivative of φa

x with respect to x gives

∂ (φa
x )

∂x
=

1
∥Pax∥

Pa
x Pa

=
1

∥Pax∥
(φa

x ×φa)(φa
x ×φa)

T , (18)

where Pa
x = I −φa

x (φa
x )

T is the associated orthogonal pro-
jection matrix with φa

x . □

2.2. Algebraic graph theory
Information exchange between agents can be repre-

sented as a graph. Let G = {V,E} be a digraph with a
node set V = {1,2, . . . ,n}, an edge set E ⊆ V ×V . A di-
rected edge denoted by (i, j) means that node i has ac-
cess to node j, i.e., node i can receive information from
node j. The adjacency matrix A = [ai j]n×n of the graph is
defined as follows: If there is a directed link from node
j to i ( j ̸= i), then ai j > 0; otherwise, ai j = 0. We as-
sume that aii = 0 for all i. A graph is called undirected if
ai j > 0 implies a ji > 0 for all i, j ∈ V . On the other hand,
if ai j = a ji for all i, j ∈ V , then the weights are called sym-
metric. Clearly, if a graph has symmetric weights, then it
is also undirected. The neighbor set of agent i is defined as
Ni = { j ∈ V | (i, j) ∈ E}, which in the case of undirected
graphs results in a mutual adjacency relationship between
nodes, i.e., i ∈ N j ⇐⇒ j ∈ Ni.

3. PROBLEM FORMULATION

Consider a multi-agent system that consists of n agents
moving in a 3D space with dynamics given by

ṗi = ui, i ∈ N = {1,2, . . . ,n}, (19)

Fig. 1. Circumnavigation problem in MAS.

where pi ∈ R3 and ui ∈ R3 are respectively the state and
control input for agent i. It is assumed that each agent is
equipped with a range sensor and wireless communication
capabilities. The agent can sense and communicate with
other agents within a distance d > 0. Thus, the communi-
cation neighbor for each agent i is defined as

Ni = { j ∈ N, j ̸= i | ∥pi − p j∥ ≤ d}. (20)

The inter-agent communications can be represented as a
undirected graph G = {V,E}, which consists of a set of
vertices V = {1,2, . . . ,n} indexed by the group members,
and a set of edges E = {(i, j) ∈V ×V | j ∈ Ni} represent-
ing inter-agent communications.

Given a moving target with position pt ∈ R3, and ve-
locity ṗt = ut , we assume that the position and velocity
of the target are known to each agent. Although this as-
sumption seems strong, in practice, filtering techniques
can be used to estimate the state of the target at each sam-
pled time (see for instance [45] and [46]). Here we focus
on the control problem, and the estimation of the target’s
state is not within the scope of this paper. The control
problem for the MRS considered here is to circumnavigate
the moving target pt while avoiding inter-robot collisions.
The circumnavigation task requires that the robots circu-
late around the target with prescribed radius and within the
same target plane passing through pt , whose orientation is
pre-assigned, as shown in Fig. 1. Specifically, the goal is
to design a distributed control law such that the agent team

1) Reach the target plane:

lim
t→∞

αT (pt − pi) = 0, ∀i ∈ N, (21)

where α ∈R3 is a constant vector which represents the
orientation of the target plane and satisfies ∥α∥= 1.

2) Circulate around the target with prescribed radius:

lim
t→∞

∥pt − pi∥= ρ, ∀i ∈ N, (22)
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where ρ > 0 is the desired distance between agent and
target.

3) Avoid inter-agent collisions:

∥pi(t)− p j(t)∥> δ0, ∀i ∈ N, j ∈ Ni, t ≥ 0, (23)

where 0 < δ0 < d is the minimum distance between
agents.

4. MAIN RESULTS

In this section, vector field-based control law for the cir-
cumnavigation task is designed, and the stability analysis
of the closed-loop system is presented.

Denote pit = pi − pt ,φi = pit/∥pit∥, and define

φα
i =

Pα pit

∥Pα pit∥
=

Pα φi

∥Pα φi∥
, (24)

where Pα = I −ααT . For the three objectives presented
by equations (21)-(23), consider the following potential
functions

V1 =
1
2 ∑

i
(αT pit)

2, (25)

V2 =
1
2 ∑

i
(∥Pα pit∥−ρ)2, (26)

V3 =
1
2 ∑

i
∑
j∈Ni

ai jξ (∥φα
i −φα

j ∥2), (27)

where ai j = a ji > 0, and ξ is a scalar function which sat-
isfies

i) ξ is smooth in (δ ,+∞);
ii) ξ → ∞ whenever ∥φα

i −φα
j ∥→ δ ;

where δ > 0 is a design parameter.
The gradients of these three functions are defined as

∇iVk = (∂Vk/∂ pit)
T ,k = 1,2,3. Through some simple cal-

culations, the gradient of functions V1 and V2 can be easily
obtained as

∇iV1 = αT pitα, (28)

∇iV2 = (∥Pα pit∥−ρ)φα
i . (29)

Since αT Pα = αT (I −ααT ) = 0, it can be checked that
αT φα

i = 0, and hence (∇iV1)
T ∇iV2 = 0. While for the

gradient of V3, we have the following results.

Lemma 1: The gradient ∇iV3 can be written in the
form

∇iV3 =
1

∥Pα pit∥ ∑
j∈Ni

γi j(φα
i ,φα

j )(α ×φα
i ), (30)

where γi j(φα
i ,φα

j ) is a scalar function given by

γi j = ai jξ ′(∥φα
i −φα

j ∥2)(α ×φα
i )

T (φα
i −φα

j ). (31)

Moreover, ∇iV3 and γi j possess the following properties

a) Gradient ∇iV3 is orthogonal to both ∇iV1 and ∇iV2, i.e.,
(∇iV1)

T (∇iV3) = 0, (∇iV2)
T (∇iV3) = 0.

b) Function γi j is anticommutative regarding i and j, i.e.,
γi j(φα

i ,φα
j ) =−γ ji(φα

j ,φα
i ).

Proof: Using the definition, the gradient of V3 is

∇iV3 = (
∂V3

∂ pit
)T = (

∂V3

∂φα
i

∂φα
i

∂ pit
)T = (

∂φα
i

∂ pit
)T (

∂V3

∂φα
i
)T ,

(32)

and applying Property 6, we have

∂φα
i

∂ pit
=

1
∥Pα pit∥

(α ×φα
i )(α ×φα

i )
T . (33)

The derivative of V3 with respect to φα
i gives

∂V3

∂φα
i
=

∂V3

∂ (∥φα
i −φα

j ∥2)

∂ (∥φα
i −φα

j ∥2)

∂φα
i

= ∑
j∈Ni

ai j
∂ξ

∂ (∥φα
i −φα

j ∥2)
(φα

i −φα
j )

T

= ∑
j∈Ni

ai jξ ′(∥φα
i −φα

j ∥2)(φα
i −φα

j )
T . (34)

Then it can be easily checked that ∇iV3 satisfies equation
(30) with γi j defined by equation (31). Because in equa-
tion (30) γi j is a scalar function, then it can be obtained
that (∇iV1)

T (∇iV3) = 0, (∇iV2)
T (∇iV3) = 0 using the fact

that (α ×φα
i ) are orthogonal to both α and φα

i .
Now, we move to the second point. Since γi j satisfies

equation (31), and α ×φα
i = Ω(α)φα

i , ΩT (α) =−Ω(α),
then γi j can be rewritten as

γi j = ai jξ ′(∥φα
i −φα

j ∥2)(φα
i )

T Ω(α)φα
j , (35)

and γ ji can be presented by

γ ji = a jiξ ′(∥φα
j −φα

i ∥2)(φα
j )

T Ω(α)φα
i . (36)

Because (φα
i )

T Ω(α)φα
j is a scalar, and Ω(α) is

skew symmetric, (φα
i )

T Ω(α)φα
j = [(φα

i )
T Ω(α)φα

j ]
T =

−(φα
j )

T Ω(α)φα
i . With the facts ai j = a ji, we hence have

γi j =−γ ji. This completes the proof. □

Based on the gradient fields of V1, V2 and V3, we con-
sider the control law as

ui = u1
i +u2

i +u3
i +ut , (37)

u1
i =−k1∇iV1, (38)

u2
i =−k2∇iV2 + k0∥Pα pit∥(α ×φα

i ), (39)

u3
i =−k3∥Pα pit∥∇iV3, (40)

where k1, k2, and k3 are positive gains, and k0 is a constant
representing the angular velocity of the circular motion.

To facilitate the following analysis, it is assumed that
the initial conditions of the MAS satisfy:
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Assumption 1: There exist two positive constants ε,δ ,
such that for all i, j ∈ N, ∥Pα pit(0)∥ ≥ ε , ∥φα

i (0) −
φα

j (0)∥> δ , and δ satisfies δ ≥ δ0/min{ε,ρ}.
Now we are ready to state the main result:

Theorem 1: Consider the system (19) with control law
(37). If the initial condition satisfies Assumption 1, then
the closed-loop system is stable, and ultimately the objec-
tives in (21)-(23) will be achieved.

Proof: The closed-loop system of (19) and (37) is

ṗit = u1
i +u2

i +u3
i . (41)

Take the Lyapunov function

V =V1 +V2 +V3, (42)

where V1, V2 and V3 are defined by (25)-(27). Because
∇iV1, ∇iV2 and ∇iV3 (or α ×φα

i ) are orthogonal to each
other, the time derivative of V1 and V2 along (41) can be
obtained as

V̇1 = ∑
i
(∇iV1)

T (u1
i +u2

i +u3
i ) =−k1 ∑

i
∥∇iV1∥2,

(43)

V̇2 = ∑
i
(∇iV2)

T (u1
i +u2

i +u3
i ) =−k2 ∑

i
∥∇iV2∥2.

(44)

The time derivative of V3 along (42) is

V̇3 =∑
i
(∇iV3)

T ṗit +∑
j
(∇ jV3)

T ṗ jt

=2∑
i
(∇iV3)

T ṗit

=2∑
i
(∇iV3)

T (u1
i +u2

i +u3
i )

=2∑
i
∥Pα pit∥(∇iV3)

T (k0(α ×φα
i )− k3∇iV3)

=−2k3 ∑
i
∥Pα pit∥∥∇iV3∥2

+2k0 ∑
i
∥Pα pit∥(∇iV3)

T (α ×φα
i ). (45)

Substituting the expression of ∇iV3 in equation (30) into
equation (45), and using the fact (α ×φα

i )
T (α ×φα

i ) = 1,
as well as γi j =−γ ji, we have

V̇3 =−2k3 ∑
i
∥Pα pit∥∥∇iV3∥2

+2k0 ∑
i

∑
j∈Ni

γi j(φα
i ,φα

j )(α ×φα
i )

T (α ×φα
i )

=−2k3 ∑
i
∥Pα pit∥∥∇iV3∥2 +2k0 ∑

i
∑
j∈Ni

γi j

=−2k3 ∑
i
∥Pα pit∥∥∇iV3∥2

+ k0 ∑
i

∑
j∈Ni

γi j(φα
i ,φα

j )+ k0 ∑
i

∑
j∈Ni

γ ji(φα
j ,φα

i )

=−2k3 ∑
i
∥Pα pit∥∥∇iV3∥2. (46)

Following equation (44) it can be concluded that if
∥Pα pit(0)∥ ≥ ε > ρ , then ∥Pα pit(t)∥ is decreasing with
time and converge to ρ; if ε ≤ ∥Pα pit(0)∥ < ρ , then
∥Pα pit(t)∥ is increasing with time and converge to ρ .
Hence we have ∥Pα pit(t)∥ ≥ min{ε,ρ} > 0, t ≥ 0. Be-
cause ∥Pα pit(t)∥ > 0 for all t ≥ 0, we have V̇ ≤ 0 fol-
lowing equations (43), (44) and (46), which implies the
closed-loop system is stable. Equations (43) and (44) also
yield for all i, ∇iV1 = 0 and ∇iV2 = 0 when t tends to
infinity, which imply limt→∞ αT (pi(t)− pt(t)) = 0, and
limt→∞ ∥Pα pit(t)∥ = limt→∞ ∥pit(t)∥ = ρ for all i. Thus
the objectives (21) and (22) are achieved.

In the following, we will show the validity of equa-
tion (23). Since V̇3 ≤ 0, V3(t) ≤ V3(0) < ∞,∀t ≥ 0; and
if ∥φα

i −φα
j ∥ → δ for at least one agent pair (i, j) ∈ E,

then ξ → ∞ and hence V3 → ∞. It can be easily concluded
that for all i, j ∈ N, t ≥ 0, ∥φα

i (t)−φα
j (t)∥> δ , or

F(t) =
∥∥∥∥ Pα pit(t)
∥Pα pit(t)∥

−
Pα p jt(t)
∥Pα p jt(t)∥

∥∥∥∥> δ , (47)

and the function F satisfies

F2 = 2−
2pT

it Pa p jt

∥Pα pit∥∥Pα p jt∥
. (48)

Using Property 2, we have

∥Pa pit −Pa p jt∥ ≤ λmax(Pa)∥pit − p jt∥ ≤ ∥pit − p jt∥,
(49)

where λmax(Pa) is the largest eigenvalue of Pa. This gives

∥pit − p jt∥2 ≥∥Pa pit −Pa p jt∥2

=∥Pa pit∥2 +∥Pa p jt∥2 −2pT
it Pa p jt

=∥Pa pit∥2 +∥Pa p jt∥2

+(F2 −2)∥Pa pit∥∥Pa p jt∥
≥F2∥Pa pit∥∥Pa p jt∥, (50)

which implies ∥pit − p jt∥ > δ0 with the fact F2 > δ 2,
∥Pα pit(t)∥≥min{ε,ρ}> 0, t ≥ 0 and δ ≥ δ0/min{ε,ρ}.
This completes the proof. □

Because the convergence and collision avoidance anal-
ysis of the closed-loop system are provided with the Lya-
punov method, they are robustness to external distur-
bances. Take the property of collision avoidance for ex-
ample, the artificial potential field-based approach is uti-
lized, which has been demonstrated to be a robust method
for collision avoidance in numerous literature. If the is-
sue of robustness is not considered, we have the following
result:

Corollary 1: Theorem 1 still holds under Assumption
1 if k3 = 0 in the control law (37).
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Proof: When k3 = 0 in the control law (37), the argu-
ments and conclusions on V̇1 and V̇2 still hold, the conver-
gence of (21) and (22) are guaranteed. Moreover, with the
control law (37), we have for ∀i ∈ N,

φ̇α
i = (k0 −

k3

∥Pa pit∥ ∑
j∈Ni

γi j)(α ×φα
i ). (51)

If k3 = 0, then φ̇α
i − φ̇α

j = k0(α × (φα
i − φα

j )), ∀i, j ∈
N. Thus, d(∥φα

i −φα
j ∥)/dt = 0, and ∥φα

i (t)−φα
j (t)∥ =

∥φα
i (0)− φα

j (0)∥, ∀t ≥ 0. Under Assumption 1, we
have ∥φα

i (t)− φα
j (t)∥ > δ , ∀t ≥ 0, and which implies

∥pit(t)− p jt(t)∥ > δ0, ∀t ≥ 0, using similar arguments in
the proof Theorem 1. □

5. SIMULATION RESULTS

In this section, we carry out some numerical simula-
tions to illustrate the validity of the proposed strategy.
First a simple case is considered to show the robustness of
the proposed controller by comparing the performances of
the control law (37) setting k3 = 0 with that setting k3 > 0.
In the first case, a multi-agent system of 3 agents is ex-
pected to circumnavigate a constant moving target. The
initial positions of agents and target are given by

p1(0) = [−1,2,0]T m, p2(0) = [1,2,−0.5]T m,

p3(0) = [2,2,−1]T m, pt(0) = [0,0,0]T m.

The parameters related to the control objectives are:

ut = [2,0,0]T m/s, α = [1,0,0]T ,

ρ = 1 m, δ0 = 0.2 m.

Specifically, the velocity of target to be circled is ut =
[2,0,0]T m/s; the orientation of the target plane is spec-
ified as the vertical axis, that is, α = [1,0,0]T . The de-
sired radius of the circle is ρ = 1 m, and δ0 = 0.2 m is the
minimum inter-agent distance.

In the controller implementation, the communication
distance between agents is set as d = 0.5 m, and ai j = 1
if ∥pi − p j∥ ≤ 0.5, otherwise ai j = 0. The nonlinear func-
tion ξ =− ln(∥φα

i −φα
j ∥2−δ 2) with δ = 0.2. The control

gains in the control law (37) are selected as k0 = 3,k1 =
2,k2 = 8, and k3 = 2 as well as k3 = 0 are simulated to
compare their performance. Noting that if k3 = 0, the term
for inter-agent collision avoidance is not incorporated in
the control law, then there are no interactions among
agents, and each agent moves independently. In the sim-
ulation, the multi-agent system is numerically simulated
for 20 sec, and a disturbance ud = [0.1sin(2t),0.3,0]T is
added to the dynamics of each agent after 10 seconds. The
simulation results for control with k3 = 0 and k3 = 2 are
shown in Fig. 2 and Fig. 3, respectively. As seen from
Figs. 2(a)-2(c) and Figs. 3(a)-3(c), the objectives specified
in (21) and (22) can be achieved for both k3 = 0 and k3 = 2,

with perfect performance if there is no disturbance, and
tolerable control errors if disturbance exists. However,
this is not true for the collision avoidance objective pre-
sented in (23). In order to show the details, the distances
between agents are draw with different scales for the first
and second ten-second in Fig. 2(d) and Fig. 3(d). For k3 =
0 in the first ten-second, all the inter-agent distances are
greater than δ0 = 0.2, but the distance between agent pair
(2,3) may become less than 0.2 at some points when the
disturbance is imposed, which implies the inter-agent col-
lision would occur. While for k3 = 2, the distances among
agents are always greater than 0.2, even simulated with
disturbance. Comparing Fig. 2(d) and Fig. 3(d), it can be
concluded that inter-agent collision avoidance is ensured
only when k3 = 2, and it is not when k3 = 0, through it does
for the first ten-second. The pseudo-distance between
agents ∥φα

i −φα
j ∥ illustrated in Fig. 2(e) and Fig. 3(e) also

imply this fact, because ∥φα
i −φα

j ∥ > 0.2 is sufficient to
ensure ∥pi − p j∥ > 0.2, and ∥φα

i −φα
j ∥ → ∥pi − p j∥/ρ

when ∥pi − pt∥ → ρ and αT (pi − pt) → 0. In Fig. 2(e),
the pseudo-distances ∥φα

i −φα
j ∥ for all i ̸= j remain un-

changed for the first ten-second, however, ∥φα
2 −φα

3 ∥ fluc-
tuates around 0.2 in the following ten-second. In Fig. 3(e),
∥φα

i −φα
j ∥ > 0.2 for all i ̸= j all the time, which yields

∥pi − p j∥ > 0.2 for all i ̸= j all the time. Compared with
the signals in Figs. 2(d) and 2(e), it should be noted that
there are slight oscillations in the signals of Figs. 3(d) and
3(e) at the beginning of the second ten-second, which are
caused by the control input oscillations at the same time
shown in Fig. 3(f). The comparison results illustrated in
Figs. 2 and 3 demonstrate that it is necessary to address the
issue of inter-agent collision avoidance in the control de-
sign, and the proposed strategy shows robust control per-
formance.

In the following, we consider a more complex case
where 10 agents are controlled to circumnavigate a mov-
ing target with time-varying velocity. The initial positions
of agents and target are given by

p1(0) = [−1,3,0]T m, p2(0) = [−2,1,−1]T m,

p3(0) = [−2,−0.5,−1]T m,

p4(0) = [−0.5,−2,−2]T m, p5(0) = [3,−3,1]T m,

p6(0) = [1,−3,0]T m, p7(0) = [−2,−1,1]T m,

p8(0) = [2,0.5,−1]T m, p9(0) = [0.5,2,−2]T m,

p10(0) = [−3,3,−1]T m, pt(0) = [0,0,0]T m.

The objective-related parameters which have the same
meanings as mentioned in the first case are chosen as

ut = [0.5sin(0.2t), 0.3cos(0.4t), 0.5]T m/s,

α = [0,0,1]T , ρ = 2 m, δ0 = 0.2 m.

The parameters that used in the control development are
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Fig. 2. Simulation results for the first case with k3 = 0.
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Fig. 3. Simulation results for the first case with k3 = 2.
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set as

d = 0.5 m, ai j = 1,

ξ =− ln(∥φα
i −φα

j ∥2 −δ 2), with δ = 0.1;

k0 = 3, k1 = 1, k2 = 3, k3 = 1.

Under these conditions, the simulation results for the sec-
ond case are illustrated in Fig. 4. It can be observed that
for all agents, αT (pi− pt) shown in Fig. 4(b) are converge
to zero; the distances between agents and target presented
in Fig. 4(c) are converge to 2 m, and the inter-agent dis-
tances shown in Fig. 4(d) always great than 0.2 m. The
effectiveness of the proposed control strategy thus is vali-
dated.

6. CONCLUSION

In this paper, distributed control algorithm was pro-
posed for a multi-robot system to circumnavigate a mov-

ing target in 3D while avoiding inter-agent collisions. By
exploiting the orthogonality of vector fields formulated for
each of the control objectives, asymptotic convergence to
the desired motion is guaranteed under some mild initial
condition constraints. Formal stability and convergence
analysis of the closed-loop system were presented explic-
itly using the Lyapunov theory. Future work may include
extension of the proposed strategy to agents with double-
integrator dynamics or even nonholonomic dynamics, and
implementation of the proposed control law on a real
multi-robot test bed to further validate the theoretic re-
sults.
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