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Distributed Fixed-time Attitude Synchronization Control for Multiple
Rigid Spacecraft
Wei-Shun Sui* ■ , Guang-Ren Duan, Ming-Zhe Hou, and Mao-Rui Zhang

Abstract: This paper investigates the distributed fixed-time attitude synchronization control problem for multi-
ple rigid spacecraft system with external disturbances. Based on sliding-mode estimators, the authors remove the
requirement of neighbours’ input control information. Using the fixed-time-based terminal sliding mode, the dis-
tributed adaptive control laws are developed to guarantee the attitude tracking errors converge to the regions in fixed
time independent of initial conditions, and adaptive laws are employed to deal with external disturbances. Finally,
numerical simulations are presented to illustrate the performance of the proposed controllers.

Keywords: Attitude synchronization, distributed adaptive control, fixed-time-based terminal sliding mode, sliding-
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1. INTRODUCTION

With the development of aerospace technology, vari-
ous spacecraft are becoming more and more complex and
costly. To replace a large and costly spacecraft with a
group of smaller, less-expensive, and cooperative space-
craft, the concept of spacecraft formation flying (SFF) is
presented. As part of SFF, distributed attitude synchro-
nization control of multi-spacecraft becomes a new tech-
nology for many missions such as Terrestrial Planet Finder
[1], synthetic aperture imaging [2], and in-orbit servicing
and maintenance of spacecraft. Due to the above advan-
tages, research on distributed attitude synchronization has
received considerable attention over the last decade.

The attitude synchronization control of rotating rigid
bodies is studied in [3], where the leader tracks a pre-
defined orientation and the followers’ orientations track
the leader. In [4, 5], the synchronization attitude control
problem for a group of spacecraft without velocity mea-
surements is studied. Abdessameud [6] considered the
attitude synchronization control problem with communi-
cation delays, while Zou [7] considered this problem with
input saturation. However, all these aforementioned litera-
tures only gain asymptotic convergence, and can’t provide
finite-time control which is more significant in practical
application. In the SFF attitude synchronization control,
the finite-time control can provide faster convergence rate
and better disturbance rejection properties, therefore, it is
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highly desirable to develop a distributed finite-time atti-
tude synchronization control approach.

It is well known that terminal sliding mode control
(TSMC) is an effective finite-time control scheme, espe-
cially for systems with uncertainties and disturbances [8,
9]. Based on terminal sliding mode, two finite-time con-
trollers are developed to drive a rigid spacecraft to track
a desired attitude in finite time in the presence of external
disturbances in [10]. Based on the behaviour approach,
a class of continuous sliding mode control schemes were
developed in [11], which achieved finite-time conver-
gence of spacecraft attitude under arbitrary communica-
tion topologies. For spacecraft formation problem under
uncertain time-varying topologies, [12] proposed a class
of decentralized attitude control schemes by using termi-
nal sliding mode control. However, the input control sig-
nal of each follower need the input control information of
the neighbours in most literatures, and the controllers are
indeed not a distributed, but a decentralised one. In this
situation, the communication flow among neighbors in-
creases and an algebraic loop yields. In addition, in order
to overcome slow convergence problem existing in TSM,
the fast terminal sliding mode (FTSM) is proposed by Yu
and Man [13]. Zou [14] proposed a distributed attitude
coordination control scheme using FTSM for a group of
spacecraft in the presence of external disturbances, which
achieved finite-time stability of the overall closed-loop
system. Furthermore, in order to eliminate the singular-

c⃝ICROS, KIEE and Springer 2019

http://www.springer.com/12555
https://orcid.org/0000-0002-5346-6248


1118 Wei-Shun Sui, Guang-Ren Duan, Ming-Zhe Hou, and Mao-Rui Zhang

ity problem existing in FTSM, a novel concept of nonsin-
gular fast TSM (NFTSM) is proposed in [15]. Based on
NFTSM, a decentralized adaptive control scheme is devel-
oped under inertia uncertainties and external disturbances
with unknown bounds in [17], which can guarantee the
attitude tracking errors converge to the regions contain-
ing the origin in finite time. Although there are fruitful
results on finite-time approaches for attitude synchroniza-
tion control of multi-spacecraft system, the settling time of
all above control approaches are dependent of initial con-
ditions, implying that the convergence time will be long
if initial state of the system is far away from the desired
state. However, the time indexes are predefined in many
practical engineering applications, and the corresponding
required time could not be satisfied if the settling time are
dependent of initial conditions.

To address above mentioned problems, the concept of
fixed-time convergence was proposed in [18], which con-
fined the settling time independent of initial conditions,
but only related to design parameters. Inspired by the
above discussions, in this paper, we investigate the fixed-
time attitude synchronization control problem for SFF
in the presence of external disturbances with unknown
bounds. We construct a sliding-mode estimator and based
on which, a distributed fixed-time controller without us-
ing the input control information of the neighbours is pro-
posed. The main contributions of this paper are stated as
follows:

1) A fixed-time-based sliding manifold based on atti-
tude state errors is proposed for the attitude synchroniza-
tion control of multiple rigid spacecraft. Comparing with
TSM employed in [14] and [17], the settling time of the
fixed-time-based sliding manifold is independent of initial
conditions. By choosing suitable parameters, the settling
time can be designed to satisfy the requirements in practi-
cal application.

2) Based on the concept of fixed-time convergence, a
novel sliding mode estimator is constructed. In contrast
to [19], which provides finite-time estimate of the leader’s
attitude state and angular velocity, we propose the fixed-
time sliding mode estimator which can provide the accu-
rate estimate of the leader’s state. It is clear that the fixed-
time sliding mode estimator is more effective in practical
application.

3) By combining the sliding-mode estimator and adap-
tive control, the distributed control laws employing fixed-
time-based sliding manifold are proposed for multiple
rigid spacecraft with external disturbances. The proposed
controller can achieve the attitude synchronization control
of multiple rigid spacecraft in fixed-time. In contrast to
[17], using the sliding-mode estimator, we remove the re-
quirement that all the follower spacecraft need the infor-
mation of the leader and the input torques of the neigh-
bours, then avoiding the algebraic loop problem. To the
best of our knowledge, this paper is the first to deal with

the distributed attitude synchronization control problem
in fixed-time without using the input information of the
neighbours.

The remaining of this paper is organized as follows: In
Section 2, the dynamics of rigid spacecraft attitude, al-
gebraic graph theory and some lemmas adopting in main
results are briefly described. The main result is presented
in Section 3. Simulation results are shown in Section 4
and the conclusion follows in Section 5.

The following notations will be used throughout the
paper. R stands for the set of real numbers. R+ rep-
resents the set of positive real numbers. Rn is the n-
dimensional real vector space. Rn×n denotes the set of
n× n matrices. λmin(A) represents the minimum eigen-
value of matrix A. ∥·∥ is the standard Euclidean vec-
tor norm. Let sigax ≜ sign(x) |x|a , where a > 0, x ∈ R,
sign(x) is sign function, and |·| refers to the absolute
value. Furthermore, we define sigaz = [sigaz1, . . . ,sigazn]

T

and sign(z) = [sign(z1) , . . . ,sign(zn)]
T , where z ∈Rn and

z = [z1, . . . ,zn]
T .

2. BACKGROUND AND PRELIMINARIES

2.1. Dynamics of rigid spacecraft attitude
We consider a multiple rigid spacecraft system consist-

ing of n followers indexed by 1 to n, and one leader in-
dexed by 0. The attitude of every follower is represented
by Modified Rodriguez Parameters (MRPs) given by [20]

qi(t) = ρi tan
(

ϕi(t)
4

)
, ϕi ∈ [0,2π) rad, (1)

where qi ∈ R3 is the MRPs denoting the rotation from the
body frame of the ith rigid body to the inertial frame, ρi

and ϕi denote the Eular eigenaxis and eigenangle of the
attitude of the ith rigid body. As shown in [21], since the
shadow set of MRPs qS

i =− qi

∥qi∥2 represents the same atti-
tude as qi, we can always keep the magnitude of the MRPs
vector from exceeding unity by switching to the shadow
MRPs. From [17], we have ∥qi∥≤ 1 by switching between
MRPs qi and its shadow counterpart qS

i . Attitude kinemat-
ics and dynamics of the ith spacecraft in the formation are
given by [17]

Jiω̇i =−ω×
i Jiωi +ui +di, (2)

q̇i = Ti(qi)ωi, i = 1, . . . ,n, (3)

where Ji ∈ R3×3 is the symmetric inertia matrix of the ith
spacecraft, ωi ∈R3 is the angular velocity of the ith space-
craft with respect to the inertial frame, ui ∈ R3 is the con-
trol torque in the formation, di ∈R3 is the unknown exter-
nal disturbance torque. ω×

i is the skew-symmetric matrix
with the form

ω×
i =

 0 −ωi3 ωi2

ωi3 0 −ωi1

−ωi2 ωi1 0

 . (4)
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The Jacobian matrix Ti(qi) ∈ R3×3 is given by [21]

Ti(qi) =
1
2

(
1−qT

i qi

2
I3 +q×i +qiqT

i

)
, (5)

where I3 ∈ R3×3 denotes the identity matrix.
The attitude of the leader is the time-varying reference

attitude qd for the whole group. In order to facilitate the
control development, the following assumptions with re-
spect to the reference trajectory qd and external distur-
bances are given.

Assumption 1: The reference trajectory qd is con-
structed to avoid the kinematic singular associate with the
modified Rodrigues parameters.

Assumption 2: The reference trajectory qd and its first
two derivatives q̇d and q̈d are assumed to be bounded.

Assumption 3: There exists an unknown constant d0

such that the external disturbance di satisfies

∥di(t)∥ ≤ d0. (6)

In addition, we assume the inertia matrix Ji of each space-
craft keep constant and can be measured precisely, thus
the norm of the inertia matrix ∥Ji∥ is a known positive
constant.

2.2. Attitude dynamics in Lagrange expression
We first denote Ti(qi)

−1 = Pi(qi), then the ith spacecraft
attitude dynamics (2) and kinematics (3) can be trans-
formed into the Lagrange expression [22]

Mi(qi)q̈i +Ci(qi, q̇i)q̇i = PT
i ui +PT

i di, (7)

where Mi(qi)=PT
i JiPi, Ci(qi, q̇i)=−MiṪiPi−PT

i (JiPiq̇i)
×Pi.

By appropriate procedures, we can have

q̈i = hi + ūi +gi, (8)

where hi =
[
ṪiPi +TiJ−1

i (JiPiq̇i)
×Pi
]

q̇i, ūi = TiJ−1
i ui, and

gi = TiJ−1
i di.

Note that the approaches developed in this paper are
based on Lagrange expression (7), therefore the control
scheme in this paper can be applied to other mechani-
cal systems as long as those representations can be trans-
formed in a Lagrange form, such as the rigid-link robot
manipulator.

2.3. Algebraic graph theory
Graphs can be used to represent the topology of the in-

formation flow between spacecraft in the formation. Let
G = (V,ε,A) be a undirected weighted graph, in which
V = {v1, . . . ,vN} is a nonempty set of spacecraft nodes
and ε = V ×V is a set of edges. An edge of undirected
graph G is defined as ei j = (vi,v j) denoting that the node
v j can receive the state of node vi and vice versa, i.e.,
ei j ∈ ε ⇔ e ji ∈ ε. The adjacency matrix A = [ai j] ∈ RN×N

of graph G is defined such that adjacency elements ai j

satisfy ai j = 1 if e ji ∈ ε and e ji = 0 otherwise. Mor-
ever, we exclude the self-loop case, i.e., aii = 0 for all
i ∈ {1,2, . . . ,n} . Let Ni = {v j ∈V : (vi,v j) ∈ ε} be the
neighbours set of spacecraft vi. For any two nodes i and j,
if there exists a path between them, then graph G is called
a connected graph. In this paper, the graph G is undirected
connected graph.

The in-degree diagonal matrix is defined as D =
diag(d1, . . . ,dn) , whose diagonal elements are given by
di = ∑

j∈Ni

ai j.Then the Laplacian matrix L of the weighted

graph G is defined by L = D−A. When the multiple rigid
spacecraft system consists of a leader, we use Ḡ to repre-
sent the topology in this case. Leader adjacency matrix is
defined as B = diag{b1,b2, . . . ,bn} , where bi = 1 if space-
craft vi is connected to the leader and bi = 0 otherwise. We
also denote H = L+B.

2.4. Definitions and Lemmas
Consider the following system:

ż = g(t,z), z(0) = z0, (9)

where z ∈ Rn and g : R+×Rn −→ Rn is a nonlinear func-
tion which may be discontinuous, the solutions of (9) are
understood in the sense of Filippov [23]. Assume the ori-
gin is an equilibrium point of (9).

Definition 1 [18]: The origin of (9) is said to be glob-
ally finite-time stable if it is globally asymptotically sta-
ble and any solution z(t,z0) of (9) reaches the equilibria
at some finite time moment, i.e., z(t,z0) = 0, ∀t ≥ T (z0) ,
where T : Rn −→ R+∪{0} is the settling-time function.

Definition 2 [18]: The origin of (9) is said to be fixed-
time stable if it is globally finite-time stable and the
settling-time function T (z0) is bounded, i.e., ∃Tmax > 0 :
T (z0)≤ Tmax, ∀z0 ∈ Rn.

Before giving the main result, some lemmas are intro-
duced which will contribute much to proof of stability.

Lemma 1 [25]: Let ξ1,ξ2, . . . ,ξN ≥ 0. Then

N

∑
i=1

ξ p
i ≥

(
N

∑
i=1

ξi

)p

, if 0 < p ≤ 1, (10)

N

∑
i=1

ξ p
i ≥ N1−p

(
N

∑
i=1

ξi

)p

, if 1 < p < ∞. (11)

Denote D∗φ (t) by the upper right-hand derivative of a
function φ (t) , D∗φ (t) = lim

h→0+
sup φ(t+h)−φ(t)

h .

Lemma 2 [27]: Consider the system (9), if there exists
a continuous radially unbounded function V :Rn −→R+∪
{0} such that

1) V (z) = 0 ⇔ z = 0;
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2) any solution z(t) of (9) satisfies the inequal-
ity D∗V (z(t)) ≤ −(αV p(z(t)) + βV q(z(t)))k for some
α,β , p,q,k > 0 : pk < 1, qk > 1,
then the origin is globally fixed-time stable for system (9)
and the following estimate holds:

T (z0)≤
1

αk(1− pk)
+

1
β k(qk−1)

∀z0 ∈ Rn (12)

Lemma 3 [28]: For any positive scalar ν > 1
2 , ãâ ≤

−(2ν−1)
2ν ã2 + ν

2 a2 with ã = a− â.

Lemma 4 [14]: If Ḡ is connected, then the matrix H
associated with Ḡ is symmetric and positive definite.

2.5. Problem formulation
The attitude state error of an individual spacecraft with

respect to the reference attitude state is denoted as

e1i = qi −qd , (13)

e2i = q̇i − q̇d , i = 1, . . . ,n. (14)

The dynamic equations for the attitude state errors of the
ith spacecraft in the formation can be expressed as

ė1i = e2i, (15)

ė2i = hi − q̈d + ūi +gi, i = 1, . . . ,n. (16)

The goal of this paper is to design distributed attitude con-
trol law ui for the n rigid spacecraft such that all spacecraft
attitudes reach synchronization, meanwhile track the ref-
erence attitude in fixed time.

3. MAIN RESULT

3.1. Fixed-time-based sliding mode surface design
In many researches, the terminal sliding mode (TSM)

and the nonsingular TSM (NTSM) are commonly used
for rigid spacecraft attitude control. In order to improve
convergence rate, fast terminal sliding mode (FTSM) and
nonsingular FTSM (NFTSM) are adopted by [14] and [17]
respectively. The expressions can be defined by the fol-
lowing differential equations:

FTSM: s = ẋ+σ1x+σ2xp/q, (17)

NFTSM: s = x+σ1sigγ1 x+σ2sigγ2 ẋ, (18)

where sigγ1 x = sign(x) |x|γ1 , sigγ2 ẋ = sign(ẋ) |ẋ|γ2 , and
sign(x) is defined as

sign(x) =


1, x > 0,

0, x = 0,

−1, x < 0,

besides, σ1 and σ2 are positive constants respectively, the
positive odd integers p, q are chosen such that 1

2 < p/q <
1, and 1 < γ2 < 2, γ2 < γ1.

Remark 1: As shown in [16], since p,q are positive
odd integers, FTSM (17) can be rewritten as s = ẋ+σ1x+
σ2sigp/qx. It is found that if the sliding manifold (17) s= 0
is reached, x = 0 will be reached in a finite time deter-
mined by

Tf =
q

σ1(q− p)
ln

σ1x(0)
q−p

q +σ2

σ2
. (19)

Furthermore, the time derivative of the sliding manifold s
defined by (17) is given by

ṡ = ẍ+σ1ẋ+
pσ2

q
xp/q−1ẋ. (20)

Unfortunately, due to p/q−1 < 0, the singularity will oc-
cur if x = 0 and ẋ ̸= 0. In order to overcome the drawback,
NFTSM (18) is put forward. And the time derivative of
the sliding manifold s defined by (18) is given by

ṡ = ẋ+σ1γ1 |x|γ1−1 ẋ+σ2γ2 |ẋ|γ2−1 ẍ. (21)

It is found that singularity dose not occur in this situa-
tion since 1 < γ2 < γ1. For any given initial state x(0) on
NFTSM surface, the system state converges to x = 0 in
finite time [17]

Tn =
γ2 |x(0)|1−

1
γ2

σ1 (γ2 −1)
F

(
1
γ2
,

γ2 −1
(γ1 −1)γ2

;1+
γ2 −1

(γ1 −1)γ2
;

−σ1 |x(0)|γ1−1

)
, (22)

where F(·) denotes Gauss’ Hypergeometric function (see
[29] for further details). Usually, the exact form of
F(·) varies with the involved parameters. For example,
F(−n,b;b;−z) = (1+ z)n; F(1,1;2;−z) = ln(1+z)

z .
Obviously, the convergence time of above two sliding

mode surfaces are dependent of initial state x(0), imply-
ing that the convergence time will be long if initial state
x(0) is far away from the equilibrium point x = 0. In this
situation, the required settling time could not be satisfied
in practical application. In the design of the control sys-
tem, we expect to obtain the fixed upper bound of the set-
tling time. Thus, the fixed-time convergence concept is
proposed by Polyakov [18].

Inspired by the work of [18,30], a fixed-time-based slid-
ing manifold is proposed as

s = sig
1

k1 ẋ+σ3sigp1 x+σ4sigg1 x, (23)

where σ3 > 0, σ4 > 0, 1
2 < k1 < 1, 1 < p1 < g1, p1k1 < 1,

g1k1 > 1.

Remark 2: It can be noted that sliding manifold (23)
is a transformation expression of NTSM in [30]. The ad-
vantage of (23) is that the range of the power p1, g1, k1
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is larger than that of the power mi, ni, i = 1, 2, 3 in [30],
which is not restricted to positive odd integers. The time
derivative of (23) is given by

ṡ =
1
k1

|ẋ|
1

k1
−1 ẍ+σ3 p1 |x|p1−1 ẋ+σ4g1 |x|g1−1 ẋ. (24)

Due to 1 < 1
k1
, 1 < p1 < g1, the singularity will not occur,

and the fixed-time-based sliding mode is nonsingular. By
a similar analysis in [30], we conclude that any given ini-
tial state can converge to x= 0 in fixed time, with a settling
time

Tf t =
1

σ k1
3 (1− p1k1)

+
1

σ k1
4 (g1k1 −1)

. (25)

It is obvious that Tf t is independent of initial state x(0),
and only with regard to parameters which can be designed
in advance. Therefore the upper bound of the settling time
could be estimated without requiring knowledge of the ini-
tial conditions, and the settling time could be shorter than
that of FTSM (17) and NFTSM (18) when initial state is
far away from x = 0.

3.2. Construction of the fixed-time sliding-mode esti-
mator

In most literatures, all the followers need the information
of the leader and the input control torques of neighbours,
which increases the communication flow among neighbor
spacecraft in the formation and the cost of SFF task, mean-
while yields an algebraic loop problem existing in the con-
troller presented in [31]. In order to solve these problems,
two distributed fixed-time sliding-mode estimators are in-
troduced in the following discussion, which are used to
obtain the accurate estimates of qd and q̇d , respectively.
The expressions are given as

˙̂qi =−β
− 1

a2
1 sig

1
a2

[
∑
j∈Ni

ai j(q̂i − q̂ j)+bi(q̂i −qd)

+α1siga1

(
∑
j∈Ni

ai j(q̂i − q̂ j)+bi(q̂i −qd)

)]

−λ1sign

[
∑
j∈Ni

ai j(q̂i − q̂ j)+bi(q̂i −qd)

]
, (26)

˙̂vi =−β
− 1

a2
1 sig

1
a2

[
∑
j∈Ni

ai j(v̂i − v̂ j)+bi(v̂i − q̇d)

+α1siga1

(
∑
j∈Ni

ai j(v̂i − v̂ j)+bi(v̂i − q̇d)

)]

−λ2sign

[
∑
j∈Ni

ai j(v̂i − v̂ j)+bi(v̂i − q̇d)

]
, (27)

where q̂i and v̂i are respectively the estimate of qd and q̇d ,
α1 > 0, β1 > 0, 1 < a2 < 2, a1 > a2, λ1 and λ2 are positive
constants.

Two proofs of two estimators are similar, so we choose
to proof the first estimator.

Proposition 1: Consider a multiple spacecraft system
modeled as (2)-(3) under Assumptions 1 and 2, and a dis-
tributed sliding-mode estimator is designed as (26) for the
ith follower. If λ1 > ϑ1 = sup |q̇dm|, m = 1, 2, 3, then
q̂i −qd converges to zero in fixed time.

Proof: Let eqi = q̂i − qd , eq = [eT
q1, . . . ,e

T
qn]

T, then we
have

ėqi =−β
− 1

a2
1 sig

1
a2

[
∑
j∈Ni

ai j(eqi − eq j)+bieqi

+α1siga1

(
∑
j∈Ni

ai j(eqi − eq j)+bieqi

)]

−λ1sign

[
∑
j∈Ni

ai j(eqi − eq j)+bieqi

]
− q̇d , (28)

and the vector form can be written as

ėq =−β
− 1

a2
1 sig

1
a2 [(H ⊗ I3)eq +α1siga1((H ⊗ I3)eq)]

−λ1sign((H ⊗ I3)eq)−1N ⊗ q̇d , (29)

where ⊗ denotes the Kronecker product and 1N =
[1, . . . ,1]T .

Based on Lemma 4 and the property of Kronecker prod-
uct, we obtain that H ⊗ I3 is positive definite. Then we de-
fine a Lyapunov function as Vq =

1
2 eT

q (H ⊗ I3)eq, and let
ρ = (H ⊗ I3)eq, i.e., ρ = [ρ11,ρ12, . . . ,ρn2,ρn3]

T, then tak-
ing the time derivative of Vq, we obtain

V̇q =−β
− 1

a2
1

n

∑
i=1

3

∑
m=1

ρimsign(ρim +α1sign(ρim))

×||ρim|sign(ρim)+α1sign(ρim) |ρim|a1 |
1

a2

−λ1

n

∑
i=1

3

∑
m=1

|ρim|−
n

∑
i=1

3

∑
m=1

ρimq̇dm

≤−β
− 1

a2
1

n

∑
i=1

3

∑
m=1

|ρa2
im|

1
a2 (|ρim|+α1 |ρim|a1)

1
a2

− (λ1 −ϑ1)
n

∑
i=1

3

∑
m=1

|ρim|

≤−β
− 1

a2
1

(
n

∑
i=1

3

∑
m=1

(
ρ2

im

) a2+1
2 +

n

∑
i=1

3

∑
m=1

α1
(
ρ2

im

) a1+a2
2

) 1
a2

≤−β
− 1

a2
1 [(3N)

1−a2
2

(
n

∑
i=1

3

∑
m=1

ρ2
im

) a2+1
2

+α1(3N)
2−a1−a2

2

(
n

∑
i=1

3

∑
m=1

ρ2
im

) a1+a2
2

]
1

a2

≤−
(

ς1

β1
V

a2+1
2

q +
α1

β1
ς2V

a1+a2
2

q

) 1
a2

, (30)
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where ς1 = (3N)
1−a2

2 (2λmin(H))
a2+1

2 , and ς2 = (3N)
2−a1−a2

2

×(2λmin(H))
a1+a2

2 , and Lemma 1 has been used in above
inequality. Due to a2+1

2 · 1
a2

< 1, a1+a2
2 · 1

a2
> 1, and from

Lemma 2, we conclude that Vq and consequently eqi con-
verge to zero in fixed-time, with a settling time

T0 ≤
2a2β

1
a2

1

ς
1

a2
1 (a2 −1)

+
2a2β

1
a2

1

(α1ς2)
1

a2 (a1 −a2)
. (31)

□

Remark 3: It is clear that the settling time is indepen-
dent of initial conditions eqi(0), that is to say, whatever
the initial estimate error q̂i − qd is, q̂i always track qd in
T0. Similarly, v̂i also tracks q̇d in T0. Therefore, based on
the sliding-mode estimator, the attitude state errors can be
rewritten as

θ1i = qi − q̂i, (32)

θ2i = q̇i − v̂i, i = 1, . . . ,n. (33)

In addition, θ1i and θ2i are equal to e1i and e2i after T0

respectively. Based on the sliding manifold given by (23),
the sliding manifold si ∈ R3 for the ith spacecraft in the
formation is defined as

si = sig
1

k1 θ2i +σ3isigp1 θ1i +σ4isigg1 θ1i, i = 1, . . . ,n,
(34)

where σ3i and σ4i are positive constants, respectively,
sigp1 θ1i = [sigp1 θ1i1,sigp1 θ1i2,sigp1 θ1i3]

T , sig
1

k1 θ2i =[
sig

1
k1 θ2i1,sig

1
k1 θ2i2,sig

1
k1 θ2i3

]T
. After T0, the sliding

manifold si is equivalent to

si = sig
1

k1 e2i +σ3isigp1 e1i +σ4isigg1 e1i, i = 1, . . . ,n.
(35)

3.3. Design and stability analysis of the controller
In this section, the distributed fixed-time controllers

will be designed for n rigid spacecraft in the presence of
external disturbances, such that attitude errors e1 and e2

can converge to small regions in fixed time respectively.
It follows from (8) that ∥gi∥≤ ∥Ti∥·

∥∥J−1
i

∥∥ ·∥di∥ . In ad-
dition, according to Assumption 3, (5), and ∥qi∥ ≤ 1, we
can conclude that there exists a positive but unknown con-
stant ηi such that ∥gi∥ ≤ ηi. In order to estimate the upper
bound parameter ηi, the adaptive update law is introduced
as

˙̂ηi =
1

2ci

(
−2δiη̂i +

1
k1

3

∑
m=1

|θ2im|
1

k1
−1 |sim|

)
,

i = 1, . . . ,n, (36)

where η̂i is the estimate of ηi, and ci =
δi(2σ−1)

2σ , σ > 0,
δi > 0 are design parameters.

Based on the fixed-time sliding mode, the fixed-time
sliding-mode estimator and the adaptive update law, the
distributed control law with boundary layer for the ith
spacecraft is now given as follows:

ui =JiPiūi,

ūi =−hi + ˙̂vi −σ3ik1 p1diag
{

sig2− 1
k1 (θ2i)

}
|θ1i|p1−1

−σ4ik1g1diag
{

sig2− 1
k1 (θ2i)

}
|θ1i|g1−1 − l1sigp2 si

− l2sigg2 si −uiadp, (37)

where si takes the form of (34), l1 > 0, l2 > 0 are the reach-
ing law parameters, p2, g2 are positive constants satisfying
p2 > 1, g2 < 1, and

sig2− 1
k1 (θ2i)

=
[
sig2− 1

k1 (θ2i1) , sig2− 1
k1 (θ2i2) , sig2− 1

k1 (θ2i3)
]T

,

|θ1i|p1−1 =
[
|θ1i1|p1−1 , |θ1i2|p1−1 , |θ1i3|p1−1

]T
,

|θ1i|g1−1 =
[
|θ1i1|g1−1 , |θ1i2|g1−1 , |θ1i3|g1−1

]T
,

sigp2 si = [sigp2 si1, sigp2 si2, sigp2 si3]
T ,

sigg2 si = [sigg2 si1, sigg2 si2, sigg2 si3]
T .

The adaptive law uiadp = [uiadp1, uiadp2, uiadp3]
T estimates

the upper bound parameter of the external disturbances,
which is designed as

uiadpm =


sim

|sim|
η̂i, |sim|> εi,

sim

εi
|θ2im|

1
k1
−1 η̂2

i , |sim| ≤ εi,
m = 1,2,3,

(38)

where εi > 0 is the design parameter.
Inspired by the controller design of [16, 17] and [28],

we can have the following theorem.

Theorem 1: For a group of spacecraft described by (2)-
(3), if Assumptions 1-3 are satisfied and the control laws
are designed as (37), the sliding manifold si will converge
to the region |sim| ≤ φi ≜ ∆1 ∪∆2, i = 1, . . . ,n,m = 1,2,3
in fixed time Ts = T0 +T1, where T0 is given in (31), and

T1 = max(T11,T12), T11 = 2
τm(p2−1) +

2
g2+1

2

δm(1−g2)
and T12 =

1
l1(p2−1) +

1
l2(1−g2)

, and

∆1 = min

√
2
(

ζ0

τm

) 1
p2+1

,
√

2

(
ζ0

21− g2+1
2 δm

) 1
g2+1

 ,

∆2 = min

((
ψ2

l1

) 1
p2

,

(
ψ2

l2

) 1
g2

)
,

τm = min
(

2
p2+1

2 τm1,1
)
,
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δm = min
(

2
g1+1

2 ·3
1−g2

2 τm2,1
)
,

τm1 = min
(

l1
k1

|e2i|
1

k1
−1
)
,

τm2 = min
(

l2
k1

|e2i|
1

k1
−1
)
,

ζ0 =


σδiη2

i , ψ1 ≤
√

1
ci
,

σδiη2
i +(ciψ2

1 )
g2+1

2 − ciψ2
1 , ψ1 >

√
1
ci
,

where ψ1,ψ2 are two small positive constants. Further-
more, the attitude state error e1i and e2i will converge to
the regions |e1im| ≤ Φi = ∆3 ∪ ∆5, |e2im| ≤ ∆4 in fixed
time Tr = Ts + T2, where T2 = 1

σ k1
3i (1−p1k1)

+ 1
σ k1

4i (g1k1−1)
,

∆3 = min
((

µi
σ3i

) 1
p1 ,
(

µi
σ4i

) 1
g1

)
, ∆4 = ∆k1

1 +σ k1
3i (∆3)

p1k1 +

σ k1
4i (∆3)

g1k1 , ∆5 = min
((

∆2
σ3i

) 1
p1 ,
(

∆2
σ4i

) 1
g1

)
, |µi| ≤ ∆1 is a

design parameter.

Proof: With the distributed fixed-time sliding-mode
estimators, qd and q̇d can be estimated in fixed time, thus
θ1i and θ2i are equivalent to e1i and e2i after T0 respec-
tively. Next we will design distributed attitude control law
ui for (15)-(16). Furthermore, the sliding manifold si can
be rewritten as (35), and the distributed control law ūi can
be rewritten as

ūi =−hi + ˙̂vi −σ3ik1 p1diag
{

sig2− 1
k1 (e2i)

}
|e1i|p1−1

−σ4ik1g1diag
{

sig2− 1
k1 (e2i)

}
|e1i|g1−1−l1sigp2 si

− l2sigg2 si −uiadp, (39)

and the corresponding θ2i in (36) and (38) are transformed
as e2i after T0.

For each spacecraft, consider the following Lyapunov
function candidate

Vi =
1
2

sT
i si + ciη̃2

i , (40)

where η̃i = ηi − η̂i.
Taking the time derivative of the Lyapunov function Vi,

we have

V̇i =sT
i [−

1
k1

diag{|e2i|
1

k1
−1}(l1sigp2 si + l2sigg2 si)

− 1
k1

diag{|e2i|
1

k1
−1}uiadp +

1
k1

diag{|e2i|
1

k1
−1}gi]

−2ciη̃i
˙̂ηi

≤− l1
k1

3

∑
m=1

|e2im|
1

k1
−1|sim|p2+1− 1

k1
diag{|e2i|

1
k1
−1}uiadp

− l2
k1

3

∑
m=1

|e2im|
1

k1
−1|sim|g2+1+

ηi

k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|

−2ciη̃i
˙̂ηi. (41)

For the case of |sim|> εi, substituting uiadp and (36) into
(41) results in

V̇i ≤− l1
k1

3

∑
m=1

|e2im|
1

k1
−1|sim|p2+1+

η̃i

k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|

− l2
k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|g2+1− η̃i

k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|

+2δiη̃iη̂i

≤− τm1 ·2
p2+1

2

(
3

∑
m=1

1
2

s2
im

) p2+1
2

− (ciη̃2
i )

p2+1
2

− τm2 ·2
g2+1

2 3
1−g2

2

(
3

∑
m=1

1
2

s2
im

) g2+1
2

− (ciη̃2
i )

g2+1
2

+(ciη̃2
i )

p2+1
2 +(ciη̃2

i )
g2+1

2 +2δiη̃iη̂i

≤− τmV
p2+1

2
i −2

1−g2
2 δmV

g2+1
2

i +ζ0. (42)

It follows from Lemma 3 that

δiη̃iη̂i ≤−δi(2σ −1)
2σ

η̃2
i +

σδi

2
η2

i , (43)

if δi(2σ−1)
2σ η̃2

i > 1, that is ciη̃2
i > 1, we have

ζ0 =(ciη̃2
i )

p2+1
2 +(ciη̃2

i )
g2+1

2

− ciη̃2
i +

σδi

2
η2

i − ciη̃2
i +

σδi

2
η2

i

≤(ciη̃2
i )

g2+1
2 − ciη̃2

i +σδiη2
i . (44)

Moreover, assume that there exists an unknown constant
ψ1 and a compact set D such that {η̃i ||η̃i| ≤ ψ1 }. Then
we have

ζ0 ≤ σδiη2
i +(ciψ2

1 )
g2+1

2 − ciψ2
1 , (45)

if δi(2σ−1)
2σ η̃2

i ≤ 1, that is ciη̃2
i ≤ 1, we have

(ciη̃2
i )

p2+1
2

∣∣∣ciη̃2
i ≤1 < (ciη̃2

i )
p2+1

2

∣∣∣ciη̃2
i >1 . (46)

So

ζ0 =(ciη̃2
i )

p2+1
2 +(ciη̃2

i )
g2+1

2

− ciη̃2
i +

σδi

2
η2

i − ciη̃2
i +

σδi

2
η2

i

≤σδiη2
i . (47)

Then, we have

V̇i ≤−τmV
p2+1

2
i −21− g2+1

2 δmV
g2+1

2
i +ζ0, (48)

where

ζ0 =


σδiη2

i , ψ1 ≤
√

1
ci
,

σδiη2
i +(ciψ2

1 )
g2+1

2 − ciψ2
1 , ψ1 >

√
1
ci
.
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For the case of |sim|< εi, substituting uiadp and (36) into
(41) results in

V̇i ≤− l1
k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|p2+1

− l2
k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|g2+1

− η̂2
i

k1εi

3

∑
m=1

s2
im

(
|e2im|

1
k1
−1
)2

+
ηi

k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|

− η̃i

(
−2δiη̃i +

1
k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|

)

=− l1
k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|p2+1

− l2
k1

3

∑
m=1

|e2im|
1

k1
−1 |sim|g2+1

− 1
k1

3

∑
m=1

(
η̂i |sim| · |e2im|

1
k1
−1

√
εi

−
√

εi

2

)2

+
3εi

4k1
+2δiη̃iη̂i

≤− τmV
p2+1

2
i −2

1−g2
2 δmV

g2+1
2

i +ζ1. (49)

So

ζ1 = ζ0 +
3εi

4k1
> ζ0. (50)

Therefore, according to the analysis of two cases, we can
obtain

V̇i ≤−τmV
p2+1

2
i −2

1−g2
2 δmV

g2+1
2

i +ζ0. (51)

Then, equation (51) can be rewritten as the following two
forms:

V̇i ≤−

τm − ζ0

V
p2+1

2
i

V
p2+1

2
i −2

1−g2
2 δmV

g2+1
2

i , (52)

V̇i ≤−τmV
p2+1

2
i −

2
1−g2

2 δm − ζ0

V
g2+1

2
i

V
g2+1

2
i . (53)

Similar to the analysis of [16, 17] and [28], next it will be
discussed in two cases.

Case 1: For the case e2im ̸= 0, from (52) if τm− ζ0

V
p2+1

2
i

>

0, then the fixed-time stability is still guaranteed, and
hence, by using Lemma 2, the sliding manifold si for ith
spacecraft will converge to the region

|sim| ≤
√

2
(

ζ0

τm

) 1
p2+1

(54)

in fixed time T11 = 2
τm(p2−1) +

2
g2+1

2

δm(1−g2)
. From (53) if

2
1−g2

2 δm − ζ0

V
g2+1

2
i

> 0, then the sliding manifold si for ith

spacecraft will converge to the region

|sim| ≤
√

2

(
ζ0

21− g2+1
2 δm

) 1
g2+1

(55)

in fixed time T11. Therefore all the sliding modes si can
converge to the region |sim| ≤ ∆1 in fixed time T11, with

∆1 = min

√
2
(

ζ0

τm

) 1
p2+1

,
√

2

(
ζ0

21− g2+1
2 δm

) 1
g2+1

 .

Case 2: For the case e2im = 0, ūi degenerates into the
following form

ūi =−hi + ˙̂vi − l1sigp2 si − l2sigg2 si −uiadp. (56)

Substituting (56) into (16), we have

ė2i =−l1sigp2 si − l2sigg2 si −uiadp +gi. (57)

Let ḡi = gi − uiadp, the upper bound of ḡim is assumed

as ψ2, i.e., |ḡim| ≤ ψ2. Then we have |sim| < (ψ2
l1
)

1
p2 or

|sim| < (ψ2
l2
)

1
g2 in fixed time T12 =

1
l1(p2−1) +

1
l2(1−g2)

. Fur-
thermore, for any e2im = 0 and sim /∈ (|sim| ≤ ∆2) , it fol-
lows that ė2im ̸= 0.

Therefore, according to the analysis of Case 1 and
Case 2, once sim /∈ (|sim| ≤ ∆1 ∪∆2) , all the sliding modes
si can converge to the region |sim| ≤ φi in fixed time
T1 = max(T11,T12).

For the case e2im ̸= 0, |sim| ≤∆1, from (35), we conclude
that

sig
1

k1 e2im+σ3isigp1 e1im+σ4isigg1 e1im=µi, |µi|≤∆1.
(58)

The preceding equation can be rewritten in the following
two forms:

sig
1

k1 e2im +

(
σ3i −

µi

sigp1 e1im

)
sigp1 e1im

+σ4isigg1 e1im = 0, (59)

sig
1

k1 e2im +σ3isigp1 e1im

+

(
σ4i −

µi

sigg1 e1im

)
sigg1 e1im = 0. (60)

From (59), if σ3i − µi
sigp1 e1im

> 0, then the fixed-time-based
SM is still kept, and hence, the state error e1i for ith space-
craft will converge to the region

|e1im|<
(

µi

σ3i

) 1
p1

(61)
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in fixed time T2 = 1
σ k1

3i (1−p1k1)
+ 1

σ k1
4i (g1k1−1)

. From (60), if

σ4i − µi
sigg1 e1im

> 0, then the fixed-time-based SM is still
kept, and hence, the state error e1i for ith spacecraft will
converge to the region

|e1im|<
(

µi

σ4i

) 1
g1

(62)

in fixed time T2. Therefore, the state error e1i will converge

to the region ∆3 = min
((

µi
σ3i

) 1
p1 ,
(

µi
σ4i

) 1
g1

)
in fixed time

T2. Furthermore, the state error e2i converge to the region

|e2im| ≤ ∆k1
1 +σ k1

3i (∆3)
p1k1 +σ k1

4i (∆3)
g1k1 = ∆4 (63)

in fixed time T2.
For e2im = 0, |sim| ≤ ∆2, the state error e1i will converge

to the region

|e1im| ≤ min

((
∆2

σ3i

) 1
p1

,

(
∆2

σ4i

) 1
g1

)
= ∆5. (64)

Therefore, according to the analysis of two cases, the state
error e1i and the state error e2i will converge to the region
|e1im| ≤ Φi = ∆3 ∪∆5 and the region |e2im| ≤ ∆4 in fixed
time T2.

From the above analysis, we conclude that using the
distributed fixed-time sliding-mode estimators (26)-(27)
and the control input (37), the sliding manifold si will
converge to the region |sim| ≤ φi ≜ ∆1 ∪∆2 in fixed time
Ts = T0 +T1, furthermore, the attitude state error e1i and
e2i will converge to the regions |e1im| ≤ Φi = ∆3 ∪ ∆5,
|e2im| ≤ ∆4 in fixed time Tr = Ts +T2.

The proof is completed. □

Remark 4: Since the sliding mode estimator is em-
ployed in the design of controller, the adaptation law is
only required to estimate the upper bound parameter of
external disturbances existing in each spacecraft itself. In
contrast to estimating the upper bound parameter of total
external disturbances

∥∥∑n
j=1 li jg j +bigi

∥∥ in [17], the adap-
tation law in the proposed controller only estimates ∥gi∥
for each spacecraft. Since the upper bound of estimation
is largely decreased, the convergence rate and estimate ac-
curacy of the closed-loop system are improved.

Remark 5: Based on the fixed-time sliding mode and
sliding-mode estimator, this paper proposes the distributed
fixed-time control laws. Compared with [19], the con-
structed sliding-mode estimators (26) and (27) provide
fixed settling time independent of initial conditions, which
improves the convergence rate especially when the ini-
tial state is far away from the equilibrium. Furthermore,
in contrast to the dynamics without disturbances in [19],
our paper studies the synchronization problem of multi-
spacecraft systems with external disturbances. Compared

with [17], the proposed control laws (37) have the follow-
ing advantages: First, all the follower spacecraft in [17]
need the real time state information qd and q̇d of the leader,
while our controller based on fixed-time sliding-mode es-
timator only requires that the followers connected to the
leader directly can get the real time state of the leader and
meanwhile other followers only require the constant up-
per bound of the leader’s state, which reduces the com-
munication interaction between each spacecraft; second,
the control laws (37) require no input information of the
neighbour spacecraft, therefore avoid the algebraic loop
problem; third, the tracking errors converge to the regions
in fixed time independent of initial states.

4. SIMULATION RESULTS

In this section, numerical simulations are carried out to
verify the effectiveness of the proposed fixed-time SM and
attitude synchronization control strategy. Firstly, compar-
isons are made to show the faster convergence of Fixed-
time SM. Then, we compare the performance of the pro-
posed sliding-mode estimator and the finite-time sliding-
mode estimator. Thirdly, simulations for comparisons of
convergence rate and performance of the control laws are
given.

In the simulation, we consider a scenario with four
follower spacecraft which are governed by (2)-(3) and
one virtual leader. The communication topology for four
spacecraft and the virtual leader is shown in Fig. 1, thus
corresponding Laplacian matrix L and leader adjacency
matrix B can be respectively described as:

L =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

 ,
and B = diag{1,1,0,0}. The spacecraft in the formation
are considered to nanosatellites, the inertia matrix for each
spacecraft is chosen from [32]

J1 = [1 0.1 0.1;0.1 0.1 0.1;0.1 0.1 0.9] kg·m2,

J2 = [1.5 0.2 0.3;0.2 0.9 0.4;0.3 0.4 2.0] kg·m2,

J3 = [0.8 0.1 0.2;0.1 0.7 0.3;0.2 0.3 1.1] kg·m2,

J4 = [1.2 0.3 0.7;0.3 0.9 0.2;0.7 0.2 1.4] kg·m2.

0

1

2

3

4

Fig. 1. Communication topology for spacecraft formation.
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Table 1. Initial states and parameters of estimators.

Parameter name Value
Initial states q̂1 = [0,−0.2,0]T

q̂2 = [0.4,0.2,0.6]T

q̂3 = [0.1,0.1,0.15]T

q̂4 = [0.3,−0.08,0.45]T

v̂1 = [−0.1,0.05,0.15]T

v̂2 = [0.1,0,0.3]T

v̂3 = [−0.05,0.2,−0.2]T

v̂4 = [0.04,−0.04,−0.1]T

Desired trajectory qd = [0.2cos(0.5t),0.2sin(0.5t),0.3]T

Estimator
parameters

a1 = 2,a2 =
5
3 ,

α1 = β1 = 1,
λ1 = 0.05,λ2 = 0.06

Table 2. Numerical simulation parameters.

Parameter name Value
Initial states q1(0) = [2.2,2.0,−2.2]T

q2(0) = [−1.9,2.0,2.9]T

q3(0) = [−1.9,−2.3,2.55]T

q4(0) = [−1.5,2.72,−1.25]T

Initial angular
velocity

ωi(0) = [0,0,0]T, i = 1, . . . ,4

External
disturbance

di = 0.01 [sin(2t),cos(2t),sin(4t)]T

Control
parameters

σ3i = σ4i = 0.3,

k1 =
3
5 ,εi = 0.5

p1 =
7
5 ,g1 =

7
3

p2 =
9
7 ,g2 =

3
5

l1 = 0.5, l2 = 0.5
δi = 2,σ = 1

η̂i (0) = 0, i = 1, . . . ,4

The initial states and numerical parameters of the fixed-
time sliding-mode estimator are selected in Table 1. The
initial attitude of each spacecraft in the formation and
other numerical parameters are given in Table 2.

4.1. Faster convergence illustration of fixed-time SM
In order to verify the faster convergence performance

of fixed-time SM comparing with FTSM and NFTSM, we
consider the following sliding modes:

FTSM: s1 = ẋ1 + x1 + sig
3
5 x1,

NFTSM: s2 = x2 +0.01sig
7
3 x2 +0.01sig

5
3 ẋ2,

Fixed-timeSM: s3 = sig
5
3 ẋ3 +100sig

7
5 x3 + sig

7
3 x3

with the initial state xi(0) = 20 and xi(0) = 200, i = 1, 2,
3. Let all above sliding modes equal to zero, then we have

FTSM: ẋ1 =−sig
3
5 x1 − x1,
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x
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Fig. 2. Comparison of FTSM, NFTSM and fixed-time SM
when x(0) = 20.
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Fig. 3. Comparison of FTSM, NFTSM and fixed-time SM
when x(0) = 200.

NFTSM: ẋ2 =−sig
3
5

(
100x2 + sig

7
3 x2

)
,

Fixed-timeSM: ẋ3 =−sig
3
5

(
100sig

7
5 x3 + sig

7
3 x3

)
.

The convergence curves of FTSM, NFTSM and fixed-time
SM are shown in Fig. 2 and Fig. 3 when the initial states
are 20 and 200 respectively. It can be seen from Fig. 2
and Fig. 3 that fixed-time SM have better convergence rate
than FTSM and NFTSM. Furthermore, whatever the ini-
tial state is, the initial state of fixed-time SM can converge
to zero in 0.6s, implying that the upper bound of the set-
tling time is independent of the initial state.

4.2. Fixed-time tracking of sliding-mode estimator
In this section, the performance comparison between

the proposed sliding-mode estimators and the finite-time
sliding-mode estimators is studied. For this example, the
finite-time sliding-mode estimators proposed in [33] are
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Fig. 4. The estimates of qd . (a) Fixed-time sliding-mode
estimator in (26). (b) Finite-time sliding-mode es-
timator in [33].

defined as

˙̂qi =−λ1sign

[
∑
j∈Ni

ai j(q̂i − q̂ j)+bi(q̂i −qd)

]
, (65)

˙̂vi =−λ2sign

[
∑
j∈Ni

ai j(v̂i − v̂ j)+bi(v̂i − q̇d)

]
. (66)

All parameters of the finite-time sliding-mode estimators
are chosen the same as those given in Table 1. It can be
seen from Fig. 4 and Fig. 5 that the estimates q̂i and v̂i

of our sliding-mode estimators precisely coincide with qd

and q̇d in 1 s, while the estimates q̂i and v̂i in (65) and (66)
coincide with qd and q̇d in 5 s approximately. The simu-
lation results validate the faster convergence performance
of the fixed-time sliding-mode estimators comparing with
the sliding-mode estimators in [33].

4.3. Simulations for attitude synchronization
In this section, simulations for attitude synchronization

are given. With the proposed controller (39), the response
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Fig. 5. The estimates of q̇d . (a) Fixed-time sliding-mode
estimator in (27). (b) Finite-time sliding-mode es-
timator in [33].

curves are shown in Fig. 6 and Fig. 7. Fig. 6 shows the
response curves of attitude tracking errors e1i (i = 1, . . .,
4) for each spacecraft. It is clear that all attitude tracking
errors converge to the neighborhood around zero in fixed
time even in the presence of external disturbances, which
validates the effectiveness of the controller (39). The re-
sponse curves of control torque for each spacecraft are
shown in Fig. 7. It is observed that chattering is avoided
since the bounded-layer is implemented. These simulation
results imply that the proposed controller (39) provide the
fixed time control and good robustness.

In order to investigate the performance of the pro-
posed controller on attitude synchronization, station-
keeping attitude error and overall control effort metrics
are employed. The station-keeping attitude error metric
(SKAEM) is defined as [14]

SKAEM =

√
n

∑
i=1

∥e1i∥2, (67)
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and the overall control effort metric (OCEM) exerted by
the spacecraft in the formation is defined as

OCEM =

√
n

∑
i=1

∥ui∥2. (68)

In order to meet the spacecraft application require-
ments, we consider the multiple rigid spacecraft system
under actuator saturation, and the dynamic (2) for the ith
spacecraft is expressed as

Jiω̇i =−ω×
i Jiωi + sat(ui)+di, i = 1, . . . ,n, (69)

where sat(ui) = [sat(ui1) ,sat(ui2) ,sat(ui3)]
T is the vector

of actual control torque and sat(uim) (m = 1,2,3) is de-
fined as

sat(uim) =


Θ, if uim > Θ,

uim, if |uim| ≤ Θ,

−Θ, if uim <−Θ,

with the input limit Θ = 1 Nm.
For the multiple spacecraft system under actuator sat-

uration (69), the performance of the proposed controller,
the NFTSM-based controller (NFTSMC) and the FTSM-
based controller (FTSMC) are compared next. For this
example, the NFTSM si is defined as

si = e1i +σ3isigg1 e1i +σ4isig
1

k1 e2i, (70)

and the FTSM si is defined as

si = e2i +σ3ie1i +σ4isigk1 e1i. (71)

All parameters of the NFTSM and the FTSM are cho-
sen as the same as those given in Table 1 and 2, and
the corresponding distributed controllers are chosen as
those in [17] and [14]. The response of SKAEM and
OCEM for the proposed controller, the NFTSMC and the
FTSMC are shown in Fig. 8 and Fig. 9. It can be seen
that the fixed-time-based controller can provide faster con-
vergence and higher attitude synchronization performance
than the NFTSM-based controller and the FTSM-based
controller.

5. CONCLUSION

In this paper, the distributed fixed-time attitude syn-
chronization control problem is studied using fixed-time-
based TSM associated with sliding-mode estimators. A
novel fixed-time TSM is constructed based on the atti-
tude state error for each spacecraft, whose settling time
is independent of initial conditions. Then, based on the
fixed-time sliding-mode estimators, the distributed adap-
tive controllers with boundary layer are proposed, which
can force the attitude state errors to small regions contain-
ing the origin in fixed time. Moreover, the proposed con-
trollers are chattering free and avoid the algebraic loop
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Fig. 6. Attitude tracking errors. (a) e1i1, (b) e1i2, (c) e1i3

(i = 1, . . ., 4).
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problem. The performance of the proposed controller is
examined through numerical simulation, which shows that
the proposed controller can provide faster convergence
and higher accuracy than the existing controller. In future
work, the extension of the fixed-time controller to output
feedback control without velocity measurements will be
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investigated.

REFERENCES

[1] J. Y. Tien, J. M. Srinivasan, L. E. Young, and G. H. Pur-
cell, “Formation acquisition sensor for the terrestrial planet
finder (TPF) mission,” Proc. of the 2004 IEEE Aerospace
Conference, pp. 2680-2690, 2004.

[2] W. H. Kang and H. Yeh, “Coordinated attitude control
of multisatellite systems,” International Journal of Robust
and Nonlinear Control, vol. 12, pp. 185-205, 2002.

[3] D. V. Dimarogonas, P. Tsiotras, and K. J. Kyriakopoulos,
“Leader-follower cooperative attitude control of multiple
rigid bodies,” Systems & Control Letters, vol. 58, no. 6, pp.
429-435, June 2009.

[4] A. Abdessameud and A. Tayebi, “Attitude synchronization
of a group of spacecraft without velocity measurements,”
IEEE Trans. on Automatic Control, vol. 54, no. 11, pp.
2642-2648, November 2009.

[5] A. M. Zou, K. D. Kumar, and Z. G. Hou, “Attitude coor-
dination control for a group of spacecraft without velocity

measurements,” IEEE Trans. on Control Systems Technol-
ogy, vol. 20, no. 5, pp. 1160-1174, September 2012.

[6] A. Abdessameud, A. Tayebi, and I. G. Polushin, “Attitude
synchronization of multiple rigid bodies with communica-
tion delays,” IEEE Trans. on Automatic Control, vol. 57,
no. 9, pp. 2405-2411, September 2012.

[7] A. M. Zou and K. D. Kumar, “Neural network-based dis-
tributed attitude coordination control for spacecraft forma-
tion flying with input saturation,” IEEE Trans. on Neural
Networks and Learning Systems, vol. 23, no. 7, pp. 1155-
1162, July 2012.

[8] Z. Zhu, Y. Xia, and M. Fu, “Attitude stabilization of
rigid spacecraft with finite-time convergence,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 21,
no. 6, pp. 686-702, April 2011.

[9] K. Lu and Y. Xia, “Adaptive attitude tracking control for
rigid spacecraft with finite-time convergence,” Automatica,
vol. 49, no. 12, pp. 3591-3599, December 2013.

[10] E. D. Jin and Z. W. Sun, “Robust controllers design with
finite time convergence for rigid spacecraft attitude track-
ing control,” Aerospace Science and Technology, vol. 12,
no. 4, pp. 324-330, June 2008.

[11] H. Liang, Z. Sun, and J. Wang, “Finite-time attitude syn-
chronization controllers design for spacecraft formations
via behavior-based approach,” Proceedings of the Institu-
tion of Mechanical Engineers Part G: Journal of Aerospace
Engineering, vol. 227, no. 11, pp. 1737-1753, November
2013.

[12] H. Liang, Z. Sun, and J. Wang, “Robust decentralized atti-
tude control of spacecraft formations under time-varying
topologies, model uncertainties and disturbances,” Acta
Astronautica, vol. 81, no. 2, pp. 445-455, December 2012.

[13] X. Yu and Z. Man, “Fast terminal sliding-mode control
design for nonlinear dynamical systems,” IEEE Trans. on
Circuits and Systems I, vol. 49, no. 2, pp. 261-264, Febru-
ary 2002.

[14] A. M. Zou and K. Kumar, “Distributed attitude coordina-
tion control for spacecraft formation flying,” IEEE Trans.
on Aerospace Electronic Systems, vol. 48, no. 2, pp. 1329-
1346, April 2012.

[15] L. Yang and J. Y. Yang, “Nonsingular fast terminal sliding-
mode control for nonlinear dynamical systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 21,
no. 16, pp. 1865-1879, November 2011.

[16] S. H. Yu, X. H. Yu, B. Shirinzadeh, and Z. H. Man, “Con-
tinuous finite-time control for robotic manipulators with
terminal sliding mode,” Automatica, vol. 41, no. 11, pp.
1957-1964, November 2005.

[17] L. Zhao and Y. M. Jia, “Decentralized adaptive attitude
synchronization control for spacecraft formation using
nonsingular fast terminal sliding mode,” Nonlinear Dy-
namics, vol. 78, no. 4, pp. 2779-2794, December 2014.

[18] A. Polyakov, “Nonlinear feedback design for fixed-time
stabilization of linear control systems,” IEEE Trans. on
Automatic Control, vol. 57, no. 8, pp. 2106-2110, August
2012.

http://dx.doi.org/10.1109/AERO.2004.1368063
http://dx.doi.org/10.1109/AERO.2004.1368063
http://dx.doi.org/10.1109/AERO.2004.1368063
http://dx.doi.org/10.1109/AERO.2004.1368063
http://dx.doi.org/10.1002/rnc.682
http://dx.doi.org/10.1002/rnc.682
http://dx.doi.org/10.1002/rnc.682
http://dx.doi.org/10.1016/j.sysconle.2009.02.002
http://dx.doi.org/10.1016/j.sysconle.2009.02.002
http://dx.doi.org/10.1016/j.sysconle.2009.02.002
http://dx.doi.org/10.1016/j.sysconle.2009.02.002
http://dx.doi.org/10.1109/TAC.2009.2031567
http://dx.doi.org/10.1109/TAC.2009.2031567
http://dx.doi.org/10.1109/TAC.2009.2031567
http://dx.doi.org/10.1109/TAC.2009.2031567
http://dx.doi.org/10.1109/TCST.2011.2163312
http://dx.doi.org/10.1109/TCST.2011.2163312
http://dx.doi.org/10.1109/TCST.2011.2163312
http://dx.doi.org/10.1109/TCST.2011.2163312
http://dx.doi.org/10.1109/TAC.2012.2188428
http://dx.doi.org/10.1109/TAC.2012.2188428
http://dx.doi.org/10.1109/TAC.2012.2188428
http://dx.doi.org/10.1109/TAC.2012.2188428
http://dx.doi.org/10.1109/TNNLS.2012.2196710
http://dx.doi.org/10.1109/TNNLS.2012.2196710
http://dx.doi.org/10.1109/TNNLS.2012.2196710
http://dx.doi.org/10.1109/TNNLS.2012.2196710
http://dx.doi.org/10.1109/TNNLS.2012.2196710
http://dx.doi.org/10.1002/rnc.1624
http://dx.doi.org/10.1002/rnc.1624
http://dx.doi.org/10.1002/rnc.1624
http://dx.doi.org/10.1002/rnc.1624
http://dx.doi.org/10.1016/j.automatica.2013.09.001
http://dx.doi.org/10.1016/j.automatica.2013.09.001
http://dx.doi.org/10.1016/j.automatica.2013.09.001
http://dx.doi.org/10.1016/j.ast.2007.08.001
http://dx.doi.org/10.1016/j.ast.2007.08.001
http://dx.doi.org/10.1016/j.ast.2007.08.001
http://dx.doi.org/10.1016/j.ast.2007.08.001
http://dx.doi.org/10.1177/0954410012462508
http://dx.doi.org/10.1177/0954410012462508
http://dx.doi.org/10.1177/0954410012462508
http://dx.doi.org/10.1177/0954410012462508
http://dx.doi.org/10.1177/0954410012462508
http://dx.doi.org/10.1177/0954410012462508
http://dx.doi.org/10.1016/j.actaastro.2012.08.017
http://dx.doi.org/10.1016/j.actaastro.2012.08.017
http://dx.doi.org/10.1016/j.actaastro.2012.08.017
http://dx.doi.org/10.1016/j.actaastro.2012.08.017
http://dx.doi.org/10.1109/81.983876
http://dx.doi.org/10.1109/81.983876
http://dx.doi.org/10.1109/81.983876
http://dx.doi.org/10.1109/81.983876
http://dx.doi.org/10.1109/TAES.2012.6178065
http://dx.doi.org/10.1109/TAES.2012.6178065
http://dx.doi.org/10.1109/TAES.2012.6178065
http://dx.doi.org/10.1109/TAES.2012.6178065
http://dx.doi.org/10.1002/rnc.1666
http://dx.doi.org/10.1002/rnc.1666
http://dx.doi.org/10.1002/rnc.1666
http://dx.doi.org/10.1002/rnc.1666
http://dx.doi.org/10.1016/j.automatica.2005.07.001
http://dx.doi.org/10.1016/j.automatica.2005.07.001
http://dx.doi.org/10.1016/j.automatica.2005.07.001
http://dx.doi.org/10.1016/j.automatica.2005.07.001
http://dx.doi.org/10.1007/s11071-014-1625-5
http://dx.doi.org/10.1007/s11071-014-1625-5
http://dx.doi.org/10.1007/s11071-014-1625-5
http://dx.doi.org/10.1007/s11071-014-1625-5
http://dx.doi.org/10.1109/TAC.2011.2179869
http://dx.doi.org/10.1109/TAC.2011.2179869
http://dx.doi.org/10.1109/TAC.2011.2179869
http://dx.doi.org/10.1109/TAC.2011.2179869


1130 Wei-Shun Sui, Guang-Ren Duan, Ming-Zhe Hou, and Mao-Rui Zhang

[19] L. Ma, S. Wang, H. Min, Y. Liu, and S. Liao, “Distributed
finite-time attitude dynamic tracking control for multiple
rigid spacecraft,” IET Control Theory & Applications, vol.
9, no. 17, pp. 2568-2573, November 2015.

[20] P. C. Huges, Spacecraft Attitude Dynamics, Wiley, Hobo-
ken, 1986.

[21] H. Schaub, M. R. Akella, and J. L. Junkins, “Adaptive con-
trol of nonlinear attitude motions realizing linear closed
loop dynamics,” Journal of Guidance Control and Dynam-
ics, vol. 24, no. 1, pp. 95-100, January-February 2001.

[22] J. J. E. Slotine and M. D. D. Benedetto, “Hamiltonian adap-
tive control of spacecraft,” IEEE Trans. on Automatic Con-
trol, vol. 35, no. 7, pp. 848-852, July 1990.

[23] A. F. Filippov, Differential Equations with Discontinuous
Right-Hand Sides, Kluwer Academic, New York, 1988.

[24] C. Song, S. J. Kim, S. H. Kim, and H. S. Nam, “Robust
control of the missile attitude based on quaternion feed-
back,” Control Engineering Practice, vol. 14, no. 7, pp.
811-818, July 2006.

[25] Z. Y. Zuo and L. Tie, “A new class of finite-time nonlin-
ear consensus protocols for multi-agent systems,” Inter-
national Journal of Control, vol. 87, no. 2, pp. 363-370,
February 2014.

[26] Z. Y. Zuo, “Non-singular fixed-time terminal sliding mode
control of non-linear systems,” IET Control Theory & Ap-
plications, vol. 9, no. 4, pp. 545-552, February 2015.

[27] S. Parsegov, A. Polyakov, and P. Shcherbakov, “Nonlinear
fixed-time control protocol for uniform allocation of agents
on a segment,” Proc. of the 51st Conf. Decision and Con-
trol, pp. 7732-7737, 2012.

[28] K. F. Lu and Y. Q. Xia, “Finite-time attitude stabilization
for rigid spacecraft,” International Journal of Robust and
Nonlinear Control, vol. 25, no. 1, pp. 32-51, January 2015.

[29] M. Abramowitz and IA. Stegun, Handbook of Mathemati-
cal Functions: with Formulas, Graphs, and Mathematical
Tables, Dover, New York, 1972.

[30] J. J. Fu and J. Z. Wang, “Fixed-time coordinated tracking
for second-order multi-agent systems with bounded input
uncertainties,” Systems & Control Letters, vol. 93, pp. 1-
12, July 2016.

[31] S. Y. Khoo, L. H. Xie, and Z. H. Man, “Robust finite-
time consensus tracking algorithm for multirobot systems,”
IEEE Trans. on Mechatronics, vol. 14, no. 2, pp. 219-228,
April 2009.

[32] W. Ren, “Distributed attitude alignment in spacecraft for-
mation flying,” International Journal of Adaptive Control
and Signal Processing, vol. 21, no. 2-3, pp. 95-113, March-
April 2007.

[33] J. K. Zhou, Q. L. Hu, and M. I. Friswell, “Decentralized
finite time attitude synchronization control of satellite for-
mation flying,” Journal of Guidance Control and Dynam-
ics, vol. 36, no. 1, pp. 185-195, January-February 2015.

[34] H. B. Du and S. H. Li, “Finite-time attitude stabilization
for a spacecraft using homogeneous method,” Journal of
Guidance Control and Dynamics, vol. 35, no. 3, pp. 740-
748, May-June 2012.

Wei-Shun Sui received his B.S. degree
in Electrical Engineering from Northeast
Forestry University in 2012. Currently, he
is a Ph.D. student in the School of Astro-
nautics at Harbin Institute of Technology.
His research interests include spacecraft
coordination control, adaptive control, and
sliding-mode control.

Guang-Ren Duan received his Ph.D. de-
gree in control systems theory in 1989
from Harbin Institute of Technology,
China. From 1989 to 1991, he was a post-
doctoral researcher at Harbin Institute of
Technology, where he became a profes-
sor of control systems theory in 1991.
He visited the University of Hull, UK,
and the University of Sheffield, UK from

December 1996 to October 1998 and worked at the Queen’s
University of Belfast, UK from October 1998 to October 2002.
Since August 2000, he has been elected as specially employed
professor at Harbin Institute of Technology sponsored by the
Cheung Kong Scholars Program of the Chinese government. He
is currently the director of the Center for Control Theory and
Guidance Technology at Harbin Institute of Technology. He is
a chartered engineer in the UK, a senior member of IEEE and
a fellow of IEE. His research interests include robust control,
eigenstructure assignment, descriptor systems, missile autopilot
design, and spacecraft control.

Ming-Zhe Hou received his B.S. and
Ph.D. degrees in Control Science and En-
gineering from Harbin Institute of Tech-
nology, in 2005 and 2011, respectively.
Since 2017, he has become an associate
professor at Harbin Institute of Technol-
ogy. His research interests include nonlin-
ear filtering and control, aircraft guidance
and control.

Mao-Rui Zhang received his Ph.D. de-
gree in Control Theory and Application
from Harbin Institute of Technology,
China, 1998. He carried out postdoctoral
research at Israel Institute of Technol-
ogy from 2005 to 2007. He is currently
a professor at the School of Astronau-
tics, Harbin Institute of Technology. His
main research interests are optimal con-

trol, time-delay control and special electro-hydraulic servo sys-
tem control.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

http://dx.doi.org/10.1049/iet-cta.2015.0227
http://dx.doi.org/10.1049/iet-cta.2015.0227
http://dx.doi.org/10.1049/iet-cta.2015.0227
http://dx.doi.org/10.1049/iet-cta.2015.0227
http://dx.doi.org/10.2514/2.4680
http://dx.doi.org/10.2514/2.4680
http://dx.doi.org/10.2514/2.4680
http://dx.doi.org/10.2514/2.4680
http://dx.doi.org/10.1109/9.57028
http://dx.doi.org/10.1109/9.57028
http://dx.doi.org/10.1109/9.57028
http://dx.doi.org/10.1016/j.conengprac.2005.04.003
http://dx.doi.org/10.1016/j.conengprac.2005.04.003
http://dx.doi.org/10.1016/j.conengprac.2005.04.003
http://dx.doi.org/10.1016/j.conengprac.2005.04.003
http://dx.doi.org/10.1080/00207179.2013.834484
http://dx.doi.org/10.1080/00207179.2013.834484
http://dx.doi.org/10.1080/00207179.2013.834484
http://dx.doi.org/10.1080/00207179.2013.834484
http://dx.doi.org/10.1049/iet-cta.2014.0202
http://dx.doi.org/10.1049/iet-cta.2014.0202
http://dx.doi.org/10.1049/iet-cta.2014.0202
http://dx.doi.org/10.1109/CDC.2012.6426570
http://dx.doi.org/10.1109/CDC.2012.6426570
http://dx.doi.org/10.1109/CDC.2012.6426570
http://dx.doi.org/10.1109/CDC.2012.6426570
http://dx.doi.org/10.1002/rnc.3071
http://dx.doi.org/10.1002/rnc.3071
http://dx.doi.org/10.1002/rnc.3071
http://dx.doi.org/10.1016/j.sysconle.2016.03.006
http://dx.doi.org/10.1016/j.sysconle.2016.03.006
http://dx.doi.org/10.1016/j.sysconle.2016.03.006
http://dx.doi.org/10.1016/j.sysconle.2016.03.006
http://dx.doi.org/10.1109/TMECH.2009.2014057
http://dx.doi.org/10.1109/TMECH.2009.2014057
http://dx.doi.org/10.1109/TMECH.2009.2014057
http://dx.doi.org/10.1109/TMECH.2009.2014057
http://dx.doi.org/10.1002/acs.916
http://dx.doi.org/10.1002/acs.916
http://dx.doi.org/10.1002/acs.916
http://dx.doi.org/10.1002/acs.916
http://dx.doi.org/10.2514/1.56740
http://dx.doi.org/10.2514/1.56740
http://dx.doi.org/10.2514/1.56740
http://dx.doi.org/10.2514/1.56740
http://dx.doi.org/10.2514/1.56262
http://dx.doi.org/10.2514/1.56262
http://dx.doi.org/10.2514/1.56262
http://dx.doi.org/10.2514/1.56262

