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Asynchronous Switching Control for Continuous-time Switched Linear
Systems with Output-feedback
Zhiyong Jiang and Peng Yan*

Abstract: This paper investigates the asynchronous switching control problem for continuous-time switched linear
systems via dynamic output-feedback, where the dynamic output-feedback controller contains an impulsive reset
law to reset the controller state. A time-varying multiple Lyapunov-like-function (MLF) approach is employed to
analyze the stability and weighted L2-gain of the closed-loop systems. The switching stability criteria for the closed-
loop systems are established in terms of linear matrix inequalities (LMIs), which are dependent on the upper and
lower bounds of the switching interval and the asynchronous delays. The switching logic is designed to guarantee
the closed-loop systems achieving the weighted L2-gain performance. Two numerical examples are provided to
show the effectiveness of the proposed method.
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1. INTRODUCTION

The switched systems have been widely concerned by
various scientific communities during the last decade due
to its wide application in industry, such as biological
systems [1], robotics [2], networked control [3], and so
forth. At present, abundant results on the stability anal-
ysis of switched systems have been published with nu-
merous practical analysis methods [4–6], such as com-
mon quadratic Lyapunov function (CLF) [7], multiple
Lyapunov-like-function (MLF) [8], piecewise Lyapunov-
Razumikhin functions [9], etc. Further, the control syn-
thesis problem of switched systems has been extensively
studied in recent years. The CLF approach was employed
for switched linear systems with state-feedback control in
[10], and a switching state-feedback robust control was
designed in [11]. Moreover, the results on switched sys-
tems with output-feedback control have been published in
recent literature. A hybrid control scheme was given in
[12], and an extended linear-quadratic gaussian (LQG) de-
sign was proposed in [13].

However, the above mentioned results are based on the
synchronous switching between the sub-controller and the
subsystems, which ignores the time lag between the in-
stant of the sub-controller activation and the subsystem
switching instant. Therefore, the obtained results may be
more conservative due to the delay of the sub-controller
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activation without consideration. Note that asynchronous
switching control has received plenty of attention from
researchers [14–18], since the concept of asynchronous
switching was first proposed in [19]. The asynchronous
switching state-feedback control problem for switched
systems with a given maximal asynchronous delay was
addressed in [20]. In addition, the dynamical output-
feedback control problem for discrete-time switched lin-
ear systems was investigated under asynchronous switch-
ing in [21], where an approach was provided to address
the bilinear problem. Note that the asynchronous dynamic
output feedback control problem has been studied in the
literature. However, the existing results, such as [22] and
[23], are conservative and not very applicable for engi-
neering applications, due to the non-convex form of the re-
sults and the conservative methods dealing with the asyn-
chronous delays. In the present paper, we provided an
alternative method with a time-varying MLF, which is ca-
pable of estimating the allowable upper and lower bounds
of the asynchronous delays and decouples the bilinear ma-
trix inequalities in asynchronous output feedback control
design. The overall conservativeness is reduced theoreti-
cally, which is also verified by two numerical examples.

It is noticeable that the switching controllers with state
reset exhibit more flexibility and potential advantages
on controller solvability and performance improvement.
Switching control with state reset has been extensively
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studied in recent literatures such as [12,21,24], where such
approach has been also reported with applications to F-16
aircraft [24]. Also note that the design of switching dy-
namic output feedback controller for the switched system
without state reset may lead to non-convex control synthe-
sis conditions, whereas the introduction of controller state
reset for such problem can help to establish control syn-
thesis conditions in terms of LMIs [12] more applicable
for computations. With these motivations, we consider
the design problem of a switching dynamic output feed-
back controller with state reset for switched linear sys-
tems. Moreover, a common assumption is that the upper
bound of the asynchronous delays is given in advance in
the current literature. How to determine the range of asyn-
chronous delays is also a challenging problem.

In this paper, the asynchronous switching dynamic
output-feedback control problem for continuous-time
switched linear systems with average dwell time (ADT)
is solved. A time-varying MLF is constructed to establish
the control synthesis conditions that guarantee the closed-
loop systems with the weighted L2-gain performance.
Note that the established conditions are dependent on the
upper and lower bounds of the asynchronous delays and
the switching interval, and the upper and lower bounds of
the asynchronous delays can be estimated by solving the
established control synthesis conditions.

The arrangement of this paper is as follows. The model
of switched linear systems and the problem description are
formulated in Section 2. The main theoretical results are
presented in Section 3. Two numerical examples and con-
clusions are given in Section 4 and Section 5, respectively.

Notation: The following notations will be used in this
paper. R+, Rn and Rn×m denote the set of the nonneg-
ative real numbers, the n-dimensional Euclidean space
and the set of all n×m matrices, respectively. The Eu-
clidean vector norm is represented by ∥ · ∥. The notation
N represents the set of the nonnegative integers. For a
real matrix M, MT is said to be the transpose of M, and
He{M}= M+MT. Further, if M is a real symmetric ma-
trix, the symbol M > (≥,<,≤)0 is expressed as a posi-
tive definite (positive semi-definite, negative definite, neg-
ative semi-definite) matrix. In, Im×n, 0n and 0m×n are de-
fined as the n× n identity matrix, m× n identity matrix,
n×n zero matrix and m×n zero matrix, respectively. The
notation I[N1,N2] is defined as the positive integers set
{N1,N1 + 1, · · · ,N2} for two positive integers N1,N2 with
N1 < N2. For two positive scalars δ1,δ2 with δ1 ≤ δ2, let
S(δ1,δ2) be the set of switching time sequences {tk} sat-
isfying δ1 ≤ tk+1 − tk ≤ δ2 for ∀k ∈ N.

2. PROBLEM STATEMENT

Consider continuous-time switched linear systems of
the following form:


ẋp(t) = Aσ xp(t)+B1,σ u(t)+H1,σ w(t),

z(t) =C1,σ xp(t)+B2,σ u(t)+H2,σ w(t),

y(t) =C2,σ xp(t)+H3,σ w(t),

(1)

where xp(t) ∈ Rn is the plant state, u(t) is the control
input, z(t) is the controlled output, y(t) is the measure-
ment output, w(t) ∈ Lp

2 [0,∞) is the disturbance input. The
switching signal σ(t), a piecewise constant function, takes
positive integer value belonging to the finite set I[1,Np]
in the interval [tk−1, tk),k ∈ N, where Np > 1 is the num-
ber of subsystems. {tk,k ∈ N} is a switching time se-
quence of σ(t) satisfying 0 ≤ t0 < t1 < · · ·< tk < · · · , and
lim

k→+∞
tk =+∞. In addition, Ai ∈Rn×n, B1,i ∈Rn×nu , B2,i ∈

Rp×nu , C1,i ∈ Rp×n, C2,i ∈ Rq×n, H1,i ∈ Rn×nw , H2,i ∈
Rp×nw , H3,i ∈ Rq×nw , i ∈ I[1,Np] are known constant ma-
trices. Similar to [12], we make the following assumption
for each subsystem.

(A1) The triple (Ai,B1,i,C2,i) is stabilizable and de-
tectable for ∀i ∈ I[1,Np].

In this paper, our objective is to design a dynamical
output-feedback switching controller with controller state
reset and an admissible switching signal for the switched
linear systems (1) such that the closed-loop systems is
exponentially stable and has a weighted L2-gain perfor-
mance.

The dynamic output-feedback switching controller with
controller state reset is designed of the form:

ẋc(t) = Ac,σ̄ xc(t)+Bc,σ̄ y(t),

u(t) =Cc,σ̄ xc(t)+Dc,σ̄ y(t),

xc(t) = Ei jxc(t−), t = tc
k ,

(2)

where xc(t) ∈ Rn is the controller state. Ei j ∈ Rn×n, i, j ∈
I[1,Np], i ̸= j are defined as the controller reset matrices,
which need to be designed. The subscript {i j} is ex-
pressed as the switching from the sub-controller i to the
sub-controller j. σ̄(t) is the switching signal of the con-
troller (2). {tc

k ,k ∈ N} is the switching time sequence of
σ̄(t). Moreover, assume that the solution of the controller
(2) is right continuous, namely, xc(tk) = xc(t+k ),k ∈N. For
the convenience of description, the notation Kc,σ̄ is defines
as

Kc,σ̄ =

[
Ac,σ̄ Bc,σ̄
Cc,σ̄ Dc,σ̄

]
.

It is noted that the controller takes some time to iden-
tify and match the new subsystem when the subsystem
switching occurs. Therefore, the switching time sequence
of σ̄(t) can be expressed as tc

k = tk +△k,k ∈ N, where
△k is asynchronous delay satisfying △0 = 0 and 0 <
△k < tk+1 − tk for ∀k ∈ N\{0}. Assume that there ex-
ist positive scalars δc,l ,δp,l , l = 1,2 satisfying 0 < δc,1 ≤
δc,2 < max{tk+1 − tk,k ∈ N} and 0 < δp,1 ≤ δp,2, such
that δc,1 ≤ tc

k − tk ≤ δc,2 and δp,1 ≤ tk+1 − tc
k ≤ δp,2 hold
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for ∀k ∈ N. Then we have δ1 ≜ δc,1 + δp,1 ≤ tk+1 − tk ≤
δp,2 + δc,2 ≜ δ2, k ∈ N. For the system switching instant
tk, let σ(t−k ) = i and σ(tk) = j. Thus, we have σ̄(tc−

k ) = i
and σ̄(tc

k ) = j for the controller switching instant tc
k .

Different from the synchronous switching control, the
interval [tk, tk+1) is divided into the intervals [tk, tc

k ) and
[tc

k , tk+1) in the asynchronous switching control for all k ∈
N, where [tk, tc

k ) represents the unmatched interval of the
sub-controller and subsystem, and the other is the matched
interval of the sub-controller and subsystem. We do not
require the Lyapunov function to decrease monotonically
in the unmatched interval, and allow it to increase with a
bounded increasing rate. In order to facilitate the presenta-
tion, let T↑(ts, t) be the length of the increasing interval of
Lyapunov function within the interval [ts, t), for example,
T↑(tk, tk+1) =△k,∀k ∈ N.

The closed-loop systems can be described in the follow-
ing form by combining (1) and (2):

ẋ(t) = Aσ ,σ̄ x(t)+Bσ ,σ̄ w(t),

z(t) =Cσ ,σ̄ x(t)+Dσ ,σ̄ w(t),

x(t) = Ẽi jx(t−), t = tc
k ,

(3)

where x = col(xp,xc). The matrices Aσ ,σ̄ ,Bσ ,σ̄ ,Cσ ,σ̄ ,Dσ ,σ̄
and Ẽi j, i ̸= j, i, j ∈ I[1,Np] are formulated as follows:

Aσ ,σ̄ = Ãσ + B̃1,σ Kc,σ̄C̃2,σ ,

Bσ ,σ̄ = H̃1,σ + B̃1,σ Kc,σ̄ H̃3,σ ,

Cσ ,σ̄ = C̃1,σ + B̃2,σ Kc,σ̄C̃2,σ ,

Dσ ,σ̄ = H̃2,σ + B̃2,σ Kc,σ̄ H̃3,σ ,

Ẽi j = diag{In,Ei j}, i ̸= j, i, j ∈ I[1,Np],

where

Ãσ =

[
Aσ 0n

0n 0n

]
, B̃1,σ =

[
0n B1,σ
In 0n×nu

]
, H̃3,σ =

[
0n×nw

H3,σ

]
,

C̃2,σ =

[
0n In

C2,σ 0q×n

]
, H̃1,σ =

[
H1,σ
0n×nw

]
, H̃2,σ = H2,σ ,

C̃1,σ =
[
C1,σ 0p×n

]
, B̃2,σ =

[
0p×n B2,σ

]
.

According to the properties of the switching signal, the
closed-loop systems (3) can be rewritten as

[
ẋ(t)
z(t)

]
=

[
Ai,i Bi,i

Ci,i Di,i

][
x(t)
w(t)

]
, t ∈ [tc

k−1, tk),[
ẋ(t)
z(t)

]
=

[
A j,i B j,i

C j,i D j,i

][
x(t)
w(t)

]
, t ∈ [tk, tc

k ),

x(tc
k ) = Ẽi jx(tc−

k ), k ∈ N.

(4)

The following definitions and lemmas will be used in
this paper.

Definition 1 [19]: For a switching signal σ(t) and two
positive scalars s1,s2 with t0 ≤ s1 ≤ s2, Nσ(t)(s1,s2) is de-
fined as the switching number of σ(t) over the interval

[s1,s2). If there exist nonnegative integer N0 and scalar
τa > 0 such that Nσ(t)(s1,s2) ≤ N0 + (s2 − s1)/τa holds,
then τa and N0 are called the ADT and the chatter bound,
respectively.

Definition 2: Let x(t, t0,x(t0)) be the state trajectory
of the closed-loop systems (4) with w(t) ≡ 0 through
(t0,x(t0)). Given a class S(δ1,δ2) of switching time
sequences, the closed-loop systems (4) with w(t) ≡ 0
is uniformly globally exponentially stable (UGES) over
S(δ1,δ2), if there exist positive constants ε and K such
that the following inequality holds:

∥x(t, t0,x0)∥ ≤ K∥x(t0)∥e−ε(t−t0), t ≥ t0 ≥ 0.

Definition 3: For given positive scalars α0 and γ , the
closed-loop systems (4) is said to be internally UGES and
has a weighted L2-gain less than γ , if the closed-loop sys-
tems (4) with w(t)≡ 0 is UGES and under the zero initial
condition, the controlled output z(t) and the disturbance
input w(t) satisfy∫ ∞

t0
e−α0(s−t0)zT(s)z(s)ds ≤ γ2

∫ ∞

t0
wT(s)w(s)ds, t0 ≥ 0.

Lemma 1: Consider the closed-loop systems (4) satis-
fying (A1). For given scalars α > 0, β ≥ 0, γ > 0, γl ≥ 1,
µl ∈ (0,1], l = 1,2, nonnegative integer N0, and a class
S(δ1,δ2) of switching time sequences with the ADT τa,
the closed-loop systems (4) is internally UGES and has a
weighted L2-gain less than γ over S(δ1,δ2), if there exist
functions Vi(t,x(t)) : R+×R2n → R+ with Vσ(t0)(t0,x0)≡
0 and Vi j(t,x(t)) : R+ ×R2n → R+, i, j ∈ I[1,Np], i ̸= j
such that for ∀i, j ∈ I[1,Np], i ̸= j, one has{

V̇i(t,x(t))≤−αVi(t,x(t))−Γ(t), t ∈ [tc
k−1, tk),

V̇i j(t,x(t))≤ βVi j(t,x(t))−Γ(t), t ∈ [tk, tc
k ),

(5)

and

Vi j(tk,x(tk))≤ γ1Vi(t−k ,x(t
−
k )),

Vi(tc
k ,x(t

c
k ))≤ γ2Vi j(tc−

k ,x(tc−
k ), k ∈ N, (6)

where Γ(t) = φ(t)( 1
γ zT(t)z(t) − θγwT(t)w(t)), θ =

µ0e−N0(ln(γ1γ2)+δc,2(α+β ))+
δc,1 lnγ2

τa , and

τa =
ln(γ1γ2)+(α +β )δc,2

α0
, (7)

φ(t) =

{
φ1(t), t ∈ [tc

k−1, tk),

φ2(t), t ∈ [tk, tc
k ),

in which φ1(t) and φ2(t) are defined in (14), µ0 =
min{µ1,µ2}, and α0 ∈ (0,α).

The proof of Lemma 1 is presented in Appendix A.
Remark 1: The notations δ1 and δ2 in switching time

sequence S(δ1,δ2) represent the minimum and maximum
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dwell time of the switching signal σ(t), respectively. Then
the ADT τa needs to satisfy δ1 ≤ τa ≤ δ2. Obviously, τa

also satisfies τa > τ∗
a ≜ ln(γ1γ2)+(α+β )δc,2

α .
Lemma 2: For matrices E =ET ∈Rn×n, B∈Rn×m, K ∈

Rm×p, X ∈ Rp×n, p ≤ n, if there exist S ∈ Rp×p and pos-
itive scalar ε such that the following matrix inequality
holds:[

E +He{BKS[Ip Ĩ]} XT − [Ip Ĩ]TST + εBKS
∗ −εHe{S}

]
≤ 0,

(8)

where Ĩ = Ip×(n−p). Then we have

E +BKX +(BKX)T ≤ 0. (9)

The proof of Lemma 2 is given in Appendix A.
Lemma 3: ( [25]) For any matrices P > 0, U of ap-

propriate dimensions, and positive scalar ν , the following
matrix inequality holds:

UP−1UT ≥ ν(U +UT)−ν2P.

3. MAIN RESULTS

In this section, we employ different time-varying MLFs
for the matched interval and the unmatched interval to an-
alyze the stability and weighted L2-gain of the closed-loop
systems (4), which is less conservative than only con-
structing an identical MLFs. In the following, we intro-
duce several piecewise auxiliary functions [25] in combi-
nation with switching time sequences {tk,k ∈ N} to con-
struct the time-varying MLFs.

For t ∈ [tc
k−1, tk), we define ρ̄1(t) = 1

tk−tc
k−1

, and

ρ1(t) = (t − tc
k−1)ρ̄1(t), ρ2(t) = (tk − t)ρ̄1(t), k ∈ N.

It follows that

ρ1(t−k ) = ρ2(tc
k−1) = 1, ρ1(tc

k−1) = ρ2(t−k ) = 0. (10)

Let

ρ12(t) =


1/δp,1 − ρ̄1(t)
1/δp,1 −1/δp,2

, δp,2 > δp,1,

0, δp,2 = δp,1,

and ρ11(t) = 1−ρ12(t). We have

ρ̄1(t) =
1

δp,1
ρ11(t)+

1
δp,2

ρ12(t). (11)

Similarly, for t ∈ [tk, tc
k ), we define ρ̄2(t) = 1

tc
k−tk

, and

ρ̃1(t) = (t − tk)ρ̄2(t), ρ̃2(t) = 1− ρ̃1(t), k ∈ N.

Then, we obtain

ρ̃1(tc−
k ) = ρ̃2(tk) = 1, ρ̃1(tk) = ρ̃2(tc−

k ) = 0. (12)

Let

ρ̃12(t) =


1/δc,1 − ρ̄2(t)
1/δc,1 −1/δc,2

, δc,2 > δc,1,

0, δc,2 = δc,1,

and ρ̃11(t) = 1− ρ̃12(t). It implies that

ρ̄2(t) =
1

δc,1
ρ̃11(t)+

1
δc,2

ρ̃12(t). (13)

Based on the introduction of auxiliary functions,
we construct the following time-varying MLFs for
t ∈ [tc

k−1, t
c
k ),k ∈ N,{

Vi(t,x(t)) = φ1(t)xT(t)Pi(t)x(t), t ∈ [tc
k−1, tk),

Vi j(t,x(t)) = φ2(t)xT(t)Pi j(t)x(t), t ∈ [tk, tc
k ),

(14)

where φ1(t) = µρ1(t)
1 , Pi(t) = ρ1(t)Pi1 +ρ2(t)Pi2, φ2(t) =

µ ρ̃1(t)
2 , Pi j(t) = ρ̃1(t)Pi j1 + ρ̃2(t)Pi j2, in which 0 < µl ≤

1, Pil > 0,Pi jl > 0, l = 1,2, i, j ∈ I[1,Np].
A sufficient condition is derived in the following theo-

rem by the constructed time-varying MLFs (14) to guaran-
tee the weighted L2-gain performance for the closed-loop
systems (4).

Theorem 1: Consider the closed-loop systems (4)
satisfying (A1). Given scalars γ1 ≥ 1, γ2 ≥ 1, α > 0, β ≥
0, nonnegative integer N0, and a class S(δ1,δ2) of switch-
ing time sequences with the ADT τa satisfying (7), the
closed-loop systems (4) is internally UGES and has a
weighted L2-gain less than γ over S(δ1,δ2), if for pre-
scribed positive scalars εil , εi jl , νi, νi j, ηi j and µl ∈ (0,1],
there exist matrices K̄i, Ēi j, Si, Fi j, Xil > 0, Xi jl > 0 of ap-
propriate dimensions, and positive scalar γ , such that the
following LMIs hold:

Φi1h ≤ 0,
[

Φi2h Xi2

∗ −δp,hXi1

]
≤ 0, (15)

Φi j1h ≤ 0,
[

Φi j2h Xi j2

∗ −δc,hXi j1

]
≤ 0, (16) −µ2γ2Xi j1

Xi j1I1+
I3ĒT

i jIT
2

Xi j1I2 −I3FT
i j

∗ −X j2 ηi jI2Ēi j

∗ ∗ −ηi jHe{Fi j}

≤ 0,

(17)

Xi1 ≤ µ1γ1Xi j2, i, j ∈ I[1,Np], i ̸= j, l,h = 1,2,
(18)

where

Φilh =

[
Σilh+He{BiK̄iI} XilHT

i −ITST
i +εilBiK̄i

∗ −εilHe{Si}

]
,

Φi jlh=

[
Σi jlh+He{B jK̄iI} Xi jlHT

j−ITST
i +εi jlB jK̄i

∗ −εi jlHe{Si}

]
,
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Σilh =

Ωilh H̃1,i XilC̃T
1,i

∗ −θγInw H̃T
2,i

∗ ∗ −γIp

 ,

Σi jlh =

Ωi jlh H̃1, j Xi jlC̃T
1, j

∗ −θγInw H̃T
2, j

∗ ∗ −γIp

 ,

and Ωi1h = ( ln µ1+1−2νi
δp,h

+ α)Xi1 + ν2
i

δp,h
Xi2 + He{ÃiXi1},

Ωi2h =( ln µ1−1
δp,h

+α)Xi2+He{ÃiXi2}, Ωi j1h =(
ln µ2+1−2νi j

δc,h
−

β )Xi j1 +
ν2

i j

δc,h
Xi j2 + He{Ã jXi j1}, Ωi j2h = ( ln µ2−1

δc,h
−

β )Xi j2 + He{Ã jXi j2}, Bi = [B̃T
1,i 0 B̃T

2,i]
T, I = [In+q Ĩ],

I1 = diag{In 0n}, I2 = [0n In]
T, I3 = [In In]

T,
Xil = diag{Xil , Inw , Ip}, Xi jl = diag{Xi jl , Inw , Ip}, Xi2 =
[Xi2,0]T, Xi j2 = [Xi j2,0]T, Hi = [C̃2,i H̃3,i 0], θ =

µ0e−N0(ln(γ1γ2)+δc,2(α+β ))+
δc,1 lnγ2

τa , µ0 = min{µ1,µ2}, Ĩ =
I(n+q)×(n+nw+p−q). Furthermore, the gain matrices and
reset matrices are presented as follows:

Kc,i = K̄iS−1
i , Ei j = Ēi jF−1

i j , i, j ∈ I[1,Np], i ̸= j.

Proof: Before the next processing, set Pil = X−1
il ,

Pi jl = X−1
i jl , i, j ∈ I[1,Np], i ̸= j, l = 1,2. If the left inequal-

ity of (15) holds, it follows by Lemma 2 that

Σi1h +He{BiKc,iHiXi1} ≤ 0,

which is equivalent toΩ̃i1h Bi,i Xi1CT
i,i

∗ −θγInw DT
i,i

∗ ∗ −γIp

≤ 0, (19)

where Ω̃i1h =Ωi1h+He{Ai,iXi1}−He{ÃiXi1}. By Lemma
3, it follows from (19) thatΩ̄i1h Bi,i Xi1CT

i,i
∗ −θγInw DT

i,i
∗ ∗ −γIp

≤ 0, (20)

where Ω̄i1h =( ln µ1+1
δp,h

+α)Xi1− 1
δp,h

Xi1Pi2Xi1+He{Ai,iXi1}.
Pre-multiplying and Post-multiplying matrix diag{Pi1,

Inw , Ip} on both sides of inequality (20), we have

Ξi1h =

Ω̂i1h Pi1Bi,i CT
i,i

∗ −θγInw DT
i,i

∗ ∗ −γIp

≤ 0, (21)

where Ω̂i1h = ( ln µ1
δp,h

+α)Pi1 +
1

δp,h
(Pi1 −Pi2)+He{Pi1Ai,i}.

Let I= [I2n 02n×nw 02n×p]. Applying Schur complement
and Lemma 2 for the right inequality of (15), we have

Σi2h +
1

δp,h
ITXi2Pi1Xi2I+He{BiKc,iHiXi2} ≤ 0,

which is equivalent toΩ̃i2h Bi,i Xi2CT
i,i

∗ −θγInw DT
i,i

∗ ∗ −γIp

≤ 0, (22)

where Ω̃i2h =( ln µ1−1
δp,h

+α)Xi2+
1

δp,h
Xi2Pi1Xi2+He{Ai,iXi2}.

Multiplying matrix diag{Pi2, Inw , Ip} to the right and left
of the inequality (22), we obtain

Ξi2h =

Ω̂i2h Pi2Bi,i CT
i,i

∗ −θγInw DT
i,i

∗ ∗ −γIp

≤ 0, (23)

where Ω̂i2h = ( ln µ1
δp,h

+α)Pi2 +
1

δp,h
(Pi1 −Pi2)+He{Pi2Ai,i}.

Analogous to the inequalities (21) and (23) derived
from (15), the following inequality can be derived from
the inequalities (16),

Ξi jlh =

Ω̂i jlh Pi jlB j,i CT
j,i

∗ −θγInw DT
j,i

∗ ∗ −γIp

≤ 0, (24)

where Ω̂i jlh = ( ln µ2
δc,h

− β )Pi jl + 1
δc,h

(Pi j1 − Pi j2) +

He{Pi jlA j,i}.
According to the convex combination technique, the

following inequalities are easy to be obtained from (21)
and (23),

Ξi(t) =
2

∑
l,h=1

ρl(t)ρ1h(t)Ξilh ≤ 0, i ∈ I[1,Np].

Then, we have

Ξi(t) =

Ψi(t) Pi(t)Bi,i CT
i,i

∗ −θγInw DT
i,i

∗ ∗ −γIp

≤ 0, (25)

where Ψi(t) = (ρ̄1(t) ln µ1 +α)Pi(t) + ρ̄1(t)(Pi1 − Pi2) +
He{Pi(t)Ai,i}. Using Schur complement, we can conclude
that (25) is equivalent to

Ξ̃i(t) =
[

Ψi(t) Pi(t)Bi,i

∗ −θγInw

]
+

1
γ

[
CT

i,i
DT

i,i

]
[Ci,i Di,i]≤ 0.

(26)

Moreover, it is easy to obtain from inequality (24) that[
Ψi j(t) Pi j(t)B j,i

∗ −θγInw

]
+

1
γ

[
CT

j,i
DT

j,i

]
[C j,i D j,i]≤ 0, (27)

where Ψi j(t) = (ρ̄2(t) ln µ2 − β )Pi j(t) + ρ̄2(t)(Pi j1 −
Pi j2)+He{Pi j(t)A j,i}.

In addition, it means from inequality (17) combined
with Lemma 2 that[

−µ2γ2Xi j1 Xi j1ẼT
i j

∗ −X j2

]
≤ 0, i, j ∈ I[1,Np], i ̸= j. (28)
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Pre-multiplying and Post-multiplying diag{Pi j1,Pj2} on
both sides of inequality (28), and using Schur comple-
ment, we can derive the following matrix inequalities,

ẼT
i jPj2Ẽi j ≤ µ2γ2Pi j1, i, j ∈ I[1,Np], i ̸= j. (29)

Furthermore, the following inequalities can be derived
from inequality (18),

Pi j2 ≤ µ1γ1Pi1, i, j ∈ I[1,Np], i ̸= j. (30)

Let Vi(t) = Vi(t,x(t)), Vi j(t) = Vi j(t,x(t)) and ξ (t) =
[xT(t) wT(t)]T, where Vi(t,x(t)) and Vi j(t,x(t)) are defined
in (14). For t ∈ [tc

k−1, tk), taking the derivative of Vi(t)
along the trajectory of the closed-loop systems (4), we
have

V̇i(t)+αVi(t)+φ1(t)(
1
γ

zT(t)z(t)−θγwT(t)w(t))

= φ1(t)ξ T(t)Ξ̃i(t)ξ (t).

It is easy to derive from (26) that

V̇i(t)≤−αVi(t)−φ1(t)(
1
γ

zT(t)z(t)−θγwT(t)w(t)),

which satisfies the condition (5) of Lemma 1.
In the following, we take the derivative of Vi j(t) along

the trajectory of the closed-loop systems (4) for t ∈ [tk, tc
k ).

It implies from inequality (27) that

V̇i j(t)≤ βVi j(t)−φ2(t)(
1
γ

zT(t)z(t)−θγwT(t)w(t)),

which, obviously, satisfies the condition (5) of Lemma 1.
On the other hand, by the properties (10) and (12) of the

auxiliary functions, the following inequalities are derived
from inequalities (29) and (30),

Vi j(tk)≤ γ1Vi(t−k ), Vi(tc
k )≤ γ2Vi j(tc−

k ),

which satisfies the condition (6) of Lemma 1.
Hence, all the conditions of Lemma 1 are satisfied.

Namely, the closed-loop systems (4) is internally UGES
and has a weighted L2-gain less than γ over S(δ1,δ2). □

Note that the control synthesis conditions presented in
Theorem 1 are with a form of LMIs, as opposite to the
form of bilinear matrix inequalities in the existing re-
sults such as [22, 23]. Meanwhile, a time-varying mul-
tiple Lyapunov-like-function approach is employed in the
present work such that the control synthesis conditions are
established dependent on the upper and lower bounds of
the switching interval. Therefore, more precise control
synthesis conditions are obtained for different switching
signals, which helps to reduce the conservativeness of the
results.

Remark 2: Note that the above result is based on mode-
independent ADT, where all subsystems have a uniform

maximum, minimum and average dwell time. It is also
possible to investigate the switching signal σ(t) by fol-
lowing the mode-dependent ADT approach such as [6],
where each subsystem has its own allowable maximum,
minimum and average dwell time, expressed as τi2, τi1

and τia, i ∈ I[1,Np], respectively. Extension of the present
work to model-dependent ADT deserves separate studies
in the future.

Remark 3: The LMIs of (15), (16) and (17)-(18) are the
control synthesis conditions when the controller matches
the subsystem, when the controller does not match the
subsystem, and at the switching instant, respectively. Note
that we assume that (Ai,B1,i,C2,i) is stabilizable and de-
tectable. Thus, there exists a set of parameters (K̄i,Si,Xil)
such that the conditions (15) are solvable. Moreover, we
can ensure that the conditions (16) and (17)-(18) hold by
choosing β , γ1 and γ2 sufficiently large.

It is interesting to consider a special case of Theorem
1, where the time-varying MLFs (14) is reconstructed as a
time-invariant MLFs as follows:{

Vi(x(t)) = xT(t)Pix(t), t ∈ [tc
k−1, tk),

Vi j(x(t)) = xT(t)Pi jx(t), t ∈ [tk, tc
k ),

where Pi > 0, Pi j > 0, i, j ∈ [1,Np], i ̸= j. Let Xi = P−1
i ,

Xi j = P−1
i j , i, j ∈ [1,Np], i ̸= j. Then, we can obtain the

following corollary for the closed-loop systems (4).
Corollary 1: Consider the closed-loop systems (4) sat-

isfying (A1). Given scalars γ1 ≥ 1, γ2 ≥ 1, α > 0, β ≥ 0,
nonnegative integer N0, and a class of switching signal
σ(t) with the ADT τa satisfying (7), the closed-loop sys-
tems (4) is internally UGES and has a weighted L2-gain
less than γ , if for prescribed positive scalars εi, εi j, and
ηi j, there exist matrices K̄i, Ēi j, Si, Fi j, Xi > 0, Xi j > 0
of appropriate dimensions, and positive scalar γ , such that
the following LMIs hold:[

Σi +He{BiK̄iI} XiHT
i −ITST

i + εiBiK̄i

∗ −εiHe{Si}

]
≤ 0,[

Σi j +He{B jK̄iI} Xi jHT
j −ITST

i + εi jB jK̄i

∗ −εi jHe{Si}

]
≤ 0,−γ2Xi j Xi jI1 +I3ĒT

i jIT
2 Xi jI2 −I3FT

i j
∗ −X j ηi jI2Ēi j

∗ ∗ −ηi jHe{Fi j}

≤ 0,

Xi ≤ γ1Xi j, i, j ∈ I[1,Np], i ̸= j,

where

Σi =

Ωi H̃1,i XiC̃T
1,i

∗ −θ̄ γInw H̃T
2,i

∗ ∗ −γIp

 ,

Σi j =

Ωi j H̃1, j Xi jC̃T
1, j

∗ −θ̄ γInw H̃T
2, j

∗ ∗ −γIp

 ,
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and Ωi = αXi + He{ÃiXi}, Ωi j = −βXi j + He{Ã jXi j},
Xi = diag{Xi, Inw , Ip}, Xi j = diag{Xi j, Inw , Ip}, θ̄ = θ

µ0
.

Bi, I, I1, I2, I3, and Hi are defined as Theorem 1. Fur-
thermore, the gain matrices and reset matrices are pre-
sented as follows:

Kc,i = K̄iS−1
i , Ei j = Ēi jF−1

i j , i, j ∈ I[1,Np], i ̸= j.

The proof of Corollary 1 is similar to the proof of The-
orem 1, and thus omitted here.

Based on the above analysis, we establish the con-
trol synthesis conditions in Theorem 1 and Corollary 1,
which guarantee the switched linear systems (1) to achieve
a weighted L2-gain less than γ under the asynchronous
switching controller (2). The control synthesis problem
is reduced to an LMIs optimization problem to obtain the
minimum γ . For given scalars α,β ,γ1 and γ2, the LMIs
optimization problem is expressed as follows:

Minimize γ,
subject to (15)− (18). (31)

4. NUMERICAL EXAMPLES

We consider the following two examples to demonstrate
the effectiveness of our theoretical results.

Example 1: Consider the continuous-time switched
linear systems (1) with Np = 2, where the system matri-
ces are given as follows

A1 =

−0.2274 −0.0594 0.53
−0.2667 −0.883 0.081

0.133 −0.74 0.1

 ,

A2 =

−0.1135 0.3756 −0.21
0.6404 −0.2835 0.33

0.1 −0.344 −0.1

 ,

H1,1 =−[0.4396 0.6347 0.1]T, H2,1 = H2,2 = 0,

H1,2 = [0.0813 0.6236 0.1]T, H3,1 = H3,2 = 0.01,

C1,1 = [0.01 0.06 0.02], B1,2 =−[0.886 1.725 2.5]T,

C2,1 = [−0.05 0.02 0.05], C1,2 = [0.01 0.02 0.05],

B1,1 =−[1.8555 1.204 2.2]T, B2,1 = B2,2 = 0.1,

C2,2 = [−0.08 0.15 −0.01].

The disturbance input w(t) is considered as follows:

w(t) =


0.5, t ∈ [2.9,6]s,

−2, t ∈ [10,10.5]s,

0, otherwise.

It is easy to verify from Fig. 1 that the two subsystems
of the open-loop systems (1) are unstable. In the follow-
ing, we design a dynamic output-feedback switching con-
troller with controller state reset to achieve the weighted
L2-gain performance of the closed-loop systems.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

time (sec.)

P
la

n
t 

s
ta

te
s

 

 

The state ||x|| of the 1th subsystem
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Fig. 1. The state trajectories of open-loop system.

Table 1. The weighted L2-gain γ for different choices of
α , β , µ1, δp,1 and δp,2.

α β µ1 δp,1 δp,2 τ∗
a γ

1.0 0.1 0.737 0.2 0.2630 0.2828 5.1990
1.0 0.2 0.735 0.2 0.2650 0.2848 9.4938
1.0 0.3 0.733 0.2 0.2669 0.2868 44.0420
1.5 0.1 0.761 0.1 0.1754 0.1952 0.7137
1.5 0.2 0.760 0.1 0.1767 0.1965 0.7473
1.5 0.3 0.758 0.1 0.1781 0.1979 0.7946
2.0 0.1 0.769 0.1 0.1316 0.1514 0.5593
2.0 0.2 0.767 0.1 0.1326 0.1524 0.5838
2.0 0.3 0.766 0.1 0.1336 0.1534 0.6104

We fix parameters γ1 = 1.18, γ2 = 1.1, µ2 = 1 and
εil = 1, εi jl = 1, νi j = 1, νi = 1, ηi j = 1, i, j ∈ I[1,Np], i ̸=
j, l = 1,2. Moreover, we select the maximum and min-
imum values of asynchronous delays as δc,2 = 0.02 and
δc,1 = 0.01, respectively. By solving the optimization
problem (31), we obtain the minimum value of γ for dif-
ferent choices of (α, β , µ1, δp,1, δp,2) as listed in Table 1.
We can see that the value of γ decreases as the value of α
increases, and increases with the increase of the value of
β .

For simulation studies, we choose the parameters α =
2, β = 0.1, µ1 = 0.764, δp,1 = 0.1 and δp,2 = 0.135 to
verify the validity of the theoretical results. Solving the
optimization problem (31) with the above given parame-
ters, we obtain that the minimum value of γ is 1.1417.

We design the switching time signals σ(t) and σ̄(t)
to guarantee the ADT τa satisfying τ∗

a = 0.1514 ≤ τa ≤
0.1550 = δc,2 +δp,2. The designed switching time signals
σ(t) and σ̄(t) are displayed in Fig. 2. The time evolution
curves of the control input u(t) and the controlled output
z(t) are shown in Fig. 3. It illustrates from Fig. 3 that
the designed switching controller (2) guarantee the closed-
loop systems (4) achieving the weighted L2-gain less than
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Fig. 2. The switching signal σ(t) and σ̄(t).
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Fig. 3. The time response curves of the control input u(t)
and the controlled output z(t) under the designed
switching signal.

1.1417 under asynchronous switching with maximum de-
lay 0.02s.

For the purpose of comparison with [22, 23], we con-
sider the following numerical example to demonstrate the

Table 2. The weighted L2-gain γ and the minimum ADT
τ∗

a for different choices of (α,µ1, δp,2).

α µ1 δp,2 γ τ∗
a

0.10 0.34 3.0 6.6271 2.6482
0.25 0.31 1.5 1.4675 1.0713
0.50 0.35 0.6 0.1825 0.5456
0.75 0.38 0.5 0.1427 0.3704
1.00 0.44 0.4 0.1020 0.2828
1.50 0.55 0.3 0.0782 0.1952
2.00 0.76 0.2 0.0550 0.1514

effectiveness of the main results in this paper.
Example 2: Consider the continuous-time switched

linear systems (1) with the following system matrices

A1 =

[
−9 0.2
0.3 −2

]
, A2 =

[
−5 0
0 −2

]
,

H1,1 = [−0.4 −0.1]T, C1,1 = [0 1], C1,2 = [0.5 0.1],

H1,2 = [−0.1 0.1]T, C2,1 = [1 0], C2,2 = [0.5 0.1],

B1,1 = [−0.5 0.1]T, B1,2 = [−0.1 0.2]T,

H2,1 = H2,2 = 0, B2,1 = B2,2 = 0.1,

H3,1 = H3,2 = 0.01.

The disturbance input w(t) is considered as follows:

w(t) =


0.5, t ∈ [2.9,6]s,

−1, t ∈ [10,10.5]s,

0, otherwise.

In the following, a dynamic output-feedback switching
controller with controller state reset is designed to achieve
the weighted L2-gain performance of the closed-loop sys-
tems.

The parameters γl , µ2, δc,1, δc,2 and εil , εi jl , νi j, νi, ηi j,
i, j ∈ I[1,Np], i ̸= j, l = 1, 2 are given as Example 1. With-
out loss of generality, we choose β = 0.1 and δp,1 = 0.1.
By solving the optimization problem (31), we obtain the
minimum value of γ and the minimum ADT τ∗

a for differ-
ent choices of (α, µ1, δp,2) as presented in Table 2.

For comparison purposes, we establish the control syn-
thesis conditions of the closed-loop systems by the method
in [22, 23]. Based on the algorithm provided in [22, 23],
the minimum ADT τ̄∗

a for different choices of (α, γ) can
be obtained by solving the established control synthesis
conditions, as shown in Table 3. It is easy to see from Ta-
ble 2 and 3 that a smaller minimum ADT can be obtained
by the proposed method in the present paper when the
same weighted L2-gain performance is achieved. There-
fore, the proposed method is less conservative than the
results proposed in [22, 23].

For simulation studies, we choose the parameters α =
1, µ1 = 0.44, and δp,2 = 0.4 to illustrate the effectiveness
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(a) The switching signals of the plant and the controller with the
method proposed in this paper.
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method in [22, 23].

Fig. 4. The switching signals of the plant and the con-
troller.

Table 3. The minimum ADT τ̄∗
a for different choices of

(α,γ).

α γ β γ1 γ2 τ̄∗
a

0.10 6.6271 4.5200 1.5207 1.0054 5.1694
0.25 1.4675 13.7961 1.6693 1.0046 3.1914
0.50 0.1825 7.0088 2.5013 1.0190 2.1716
0.75 0.1427 9.8454 3.6924 1.0104 2.0380
1.00 0.1020 73.1115 2.4587 1.0141 2.3959
1.50 0.0782 87.4341 55.9393 1.1408 3.9564
2.00 0.0550 237.2338 31.6316 1.0576 4.1476

of the theoretical results. We obtain from Table 2 that the
minimum value of γ and the minimum ADT τ∗

a are γ =
0.1020 and τ∗

a = 0.2828, respectively.
Here, we design the switching signal σ(t) of the plant

to guarantee the ADT τa satisfying τ∗
a = 0.2828 ≤ τa ≤
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Fig. 5. The time response curves of the control input u(t)
and the controlled output z(t).

0.42 = δc,2 +δp,2, and design the switching signal σ̄(t) of
the controller to satisfy 0.01 ≤ ∆k ≤ 0.02, k ∈ N. In addi-
tion, the switching signals σ(t) and σ̄(t) for the method in
[22, 23] are also designed to satisfy τ∗

a = 2.3959 ≤ τa and
0.01 ≤ ∆k ≤ 0.02, k ∈ N. The designed switching signals
are shown in Fig. 4. The time evolution curves of the con-
trol input u(t) and the controlled output z(t) are shown in
Fig. 5. In Fig. 5, it should be noted that the blue lines rep-
resent the time evolution curves obtained by the method
proposed in this paper, and the red lines indicate the time
evolution curves obtained by the method in [22,23]. It can
be seen from Fig. 5 that the controller designed with all
the methods can achieve the weighted L2-gain less than
0.1020 under asynchronous switching with maximum de-
lay 0.02s, where the method proposed in this paper has a
smaller ADT τa.

5. CONCLUSIONS

In this paper, the asynchronous switching problem for
continuous-time switched linear systems via dynamic out-
put feedback control has been solved. Based on the con-
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vex combination technique, a time-varying MLFs was
constructed to establish the control synthesis conditions
for the closed-loop systems. It is worth noting that the de-
rived conditions are related to the upper and lower bounds
of asynchronous delays. Moreover, the upper and lower
bounds of asynchronous delays can be estimated by solv-
ing the feasibility of LMIs (15)-(18). Finally, two numer-
ical examples are provided to demonstrate the feasibility
of our proposed method.

APPENDIX A

A.1. The proof of Lemma 1
First, let Vi(t) =Vi(t,x(t)) and Vi j(t) =Vi j(t,x(t)). Note

that µ0 < φ(t) ≤ 1, ∀t ∈ [t0,∞). For t ∈ [tc
k−1, tk), we can

obtain from inequalities (5) and (6) that

Vi(t)≤Vi(tc
k−1)e

−α(t−tk−1)+α△k−1 −
∫ t

tc
k−1

e−α(t−s)Γ(s)ds

≤γ2Vi j(tc−
k−1)e

−α(t−tk−1)+α△k−1−
∫ t

tc
k−1

e−α(t−s)Γ(s)ds

≤Vσ (t0)e−α(t−t0)+Π(t0,t)−
∫ t

t0
e−α(t−s)+Π(s,t)Γ

′
(s)ds,

(A.1)

where Π(s, t) = (α + β )T↑(s, t) + Nσ (s, t) lnγ1 +
Nσ̄ (s, t) lnγ2, Γ′

(t) = µ0
γ zT(t)z(t)−θγwT(t)w(t).

Next, we multiply on both sides of (A.1) by e−Π(t0,t) to
obtain

e−Π(t0,t)Vi(t)≤Vσ (t0)eα(t0−t)−
∫ t

t0
e−α(t−s)−Π(t0,s)Γ

′
(s)ds.

Similarly, for t ∈ [tk, tc
k ), we have

e−Π(t0,t)Vi j(t)≤Vσ (t0)eα(t0−t)−
∫ t

t0
e−α(t−s)−Π(t0,s)Γ

′
(s)ds.

It is noted that Vi(t) > 0, Vi j(t) > 0 and Vσ (t0) = 0.
Then, for ∀t > t0, we have∫ t

t0
e−α(t−s)[e−Π(t0,s)zT(s)z(s)− θγ2

µ0
wT(s)w(s)]ds ≤ 0.

In addition, there is a fact that T↑(t0,s)≤ Nσ (t0,s)δc,2 and
Nσ̄ (t0,s)≤ Nσ (t0,s−δc,1). We choose a positive constant
α0 satisfying α0 < α such that the following inequality
holds:

Π(t0,s)≤ ln µ0 − lnθ +α0(s− t0).

Then we can consider the ADT τa taking value as (7).
Thus, we have∫ t

t0
eα(s−t)−α0(s−t0)zT(s)z(s)ds ≤

∫ t

t0
γ2eα(s−t)wT(s)w(s)ds.

We integrate on both sides of the above inequality from
t = t0 to ∞ to get∫ ∞

t0
e−α0(s−t0)zT(s)z(s)ds ≤ γ2

∫ ∞

t0
wT(s)w(s)ds.

Thus, the closed-loop systems (4) can achieve a weighted
L2-gain less than γ over S(δ1,δ2) under the zero initial
condition.

In what follows, we prove that the closed-loop sys-
tems (4) with w(t) = 0 is UGES over S(δ1,δ2). First,
let σ(t0) = i0, i0 ∈ I[1,Np], λ0 = max{λmax(Pi0l), l = 1,2},
λ1 = min{λmin(Pil),λmin(Pi jl), i, j ∈ I[1,Np], l = 1,2}. Let
x(t) ≜ x(t, t0,x(t0)) be the solution of the closed-loop
systems (4) with w(t) = 0 through (t0,x(t0)). For t ∈
[tc

k−1, tk),k ∈ N, by virtue of (A.1), we have

Vi(t)≤Vi0(t0)e
−α(t−t0)+Π(t0,t), i ∈ I[1,Np].

In the same way, for t ∈ [tk, tc
k ),k ∈ N, we obtain

Vi j(t)≤Vi0(t0)e
−α(t−t0)+Π(t0,t), i, j ∈ I[1,Np], i ̸= j.

Hence, for t ∈ [tk, tk+1), k ∈ N, one has

∥x(t)∥2 ≤K2∥x(t0)∥2e−(α−α0)(t−t0),

where K =
√

λ0
λ1θ . It indicates that

∥x(t)∥ ≤ K∥x(t0)∥e−
(α−α0)

2 (t−t0), t ≥ t0.

Thus, the closed-loop systems (4) with w(t) = 0 is UGES
over S(δ1,δ2). □

A.2. The proof of Lemma 2
Multiplying the matrix [In BK] and its transpose to the

left and right sides of inequality (8), respectively, we have
E +BKX +(BKX)T ≤ 0. Thus, inequality (9) can be de-
rived from inequality (8). □
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