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A Multi-step Output Feedback Robust MPC Approach for LPV Systems
with Bounded Parameter Changes and Disturbance
Xu-Bin Ping*, Peng Wang, and Jia-Feng Zhang

Abstract: This paper considers a multi-step output feedback robust model predictive control (OFRMPC) approach
for the linear parameter varying (LPV) systems with bounded changes of scheduling parameters and bounded
disturbance. Less conservative bounds of future estimation error sets and system parametric uncertain sets are
predicted by considering bounded changes of scheduling parameters in LPV systems. In the multi-step OFRMPC
approach, an optimization problem is solved to obtain a sequence of controller gains, which considers predictions of
future bounds of estimation error sets and system parametric uncertain sets. The optimized sequence of controller
gains corresponding to a sequence of Lyaponov matrices have less constraint conditions and also introduce more
degree of freedom for the optimization. The proposed multi-step OFRMPC guarantees robust uniform ultimately
bounded of the estimation error and robust stability of the observer system. A numerical example is given to
demonstrate the effectiveness of the approach.
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1. INTRODUCTION

Robust model predictive control (RMPC) approaches
that consider system uncertainty and guarantee robust sta-
bility of controlled systems have been extensively stud-
ied [1–6]. At each sampling time, the prediction of sys-
tem future states and physical constraints are considered
in the on-line RMPC optimization problem to obtain op-
timal control inputs. At the next sampling time, sys-
tem measurements are updated and the prediction horizon
is shifted one step forward, then the optimization prob-
lem is repeated. With the growing interest of RMPC in
industry and academic community, results on MPC re-
search mainly concentrate on issues such as robust stabil-
ity against system uncertainty [7–9], reduction on the con-
servatism in controller design [10–16] and on-line compu-
tational burden [17, 18], and enlargement of feasible sets
for constraint optimization problems [12, 19].

For real nonlinear dynamic systems, e.g., hydropower
system [20, 21], modeling of nonlinear systems and en-
suring stability of controlled systems are important. In
RMPC approaches, model parametric uncertainty and sys-
tem nonlinear dynamics can be described by linear param-
eter varying (LPV) systems. In the on-line RMPC opti-
mization problem, in order to optimize the controller, at
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each sampling time, the min-max optimization that often
considers all the possible realization of future model para-
metric uncertainty is solved to optimize an optimal con-
troller. The quasi-min-max optimization problem is con-
sidered in [10, 11], which extends the approach in [7] and
introduces a free control input for the on-line optimiza-
tion problem. A periodic invariance method is proposed
in [12], in which the state is allowed to leave a set tem-
porarily but returns into it in finite steps. As a result, com-
pared with [7], a larger feasible set for the optimization
problem is obtained and also the control performance is
improved. In [13–15, 19], the multi-step state feedback
RMPC method optimizes a sequence of control inputs to
steer the system state from one ellipsoidal set to another
one and finally into a robust positively invariant (RPI) set.
References [13, 14] and [15, 19] improve the control per-
formance in [11] and [7, 12], respectively. Furthermore,
bounded parameter changes are considered in [13, 14],
which reduce the conservatism of future model parame-
ter prediction in the multi-step state feedback RMPC op-
timization problem.

For real processes that true states are unmeasurable
and disturbance exists, the output feedback RMPC
(OFRMPC) is necessary for real applications. A com-
mon approach to OFRMPC problem is the combination
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of a state observer and the feedback controller based on es-
timated states. However, it is not trivial since the separate
design of the observer system and the feedback controller
based on the estimated state cannot guarantee the robust
stability of the controlled system [22]. The current and fu-
ture system states in [9, 16, 23, 24] are constrained in one
RPI set, where all possible realizations of future system
parametric uncertain sets and bounds of estimation error
sets after the current sampling time are considered. A two-
stage control mechanism for quasi-min-max OFRMPC is
developed in [25], where the state is firstly driven into a
prescribed neighborhood of the origin (terminal region),
then the off-line controller gain corresponding to the ter-
minal region makes the state converge to the origin.

The present paper considers a multi-step OFRMPC ap-
proach for LPV systems with bounded changes of the
scheduling parameters and bounded disturbance. Differ-
ent from the multi-step state feedback RMPC methods in
[13–15,19], true states are unmeasurable and therefore the
uncertainty of the estimation error set and bounded distur-
bance should be considered in the optimization problem.
Compared with the OFRMPC methods in [9,16,23,24], by
considering bounded changes of scheduling parameters in
LPV systems, more less conservative future system para-
metric uncertain sets and bounds of future estimation er-
ror sets are predicted. The proposed multi-step OFRMPC
optimizes a sequence of controller gains, where the pre-
diction of bounds of future estimation error sets and para-
metric uncertain sets are considered. The optimized multi-
step controller gains steer the estimated state from one el-
lipsoidal set to another one and finally into an RPI set. In
the multi-step OFRMPC approach, the estimation error is
robust uniform ultimately bounded (UUB) [30] with re-
spect to the minimal RPI set, and the observer system is
robust stability. The sequence of controller gains in the
multi-step OFRMPC approach are associated with the se-
quence of Lyapunov matrices. Therefore, compared with
the OFRMPC methods based on one common Lyaponov
matrix in [23,24], the multi-step controllers have less con-
straints and also introduce more degree of freedom for the
optimization. The proposed multi-step OFRMPC method
is advantageous for reducing the conservatism in the out-
put feedback controller design and enlarging the region of
attraction for robust optimization.

The rest of paper is organized as follows. In Section 2,
the system model and the main goal of the paper are given.
Furthermore, future system parameters are predicted by
considering bounded changes of scheduling parameters
in the LPV system. In Section 3, an off-line observer is
designed to predict bounds of the future estimation error
sets. The multi-step OFRMPC approach optimizing a se-
quence of controller gains to guarantee the robust stability
of the observer system is given in Section 4. The over-
all algorithm with the proof of recursive feasibility and
robust stability is summarized in Section 5. The compu-

tational burden of the proposed algorithm compared with
other related methods is shown in Section 6. Simulation
results are given in Section 7 to show the advantages of
the method. Finally some conclusions and future work are
summarized in Section 8.

Notations: Let R, R+ Z and Z+ denote the set of real
numbers, the set of non-negative real numbers, the set of
integer numbers, and the set of non-negative integers, re-
spectively. Z[s,k] and Z[s,∞) denote the set of non-negative
integers from s to k, and the set of non-negative integers
that are greater than or equal to s, where s,k ∈ Z+. For
any vector x and positive-definite matrix P, ∥x∥2

P ≜ xTPx.
x(i|k) is the value of x at time k + i, predicted at time
k. x(0|k) is the current value of x(k). I is the identity
matrix with appropriate dimension. Denote i+ ≜ i + 1,
and εM ≜ {ξ |ξ TMξ ≤ 1} the ellipsoid associated with the
symmetric positive-definite matrix M. All vector inequal-
ities are interpreted in an element-wise sense. An element
belonging to Co{·} means that it is a convex combination
of the elements in {·}, with the scalar combing coefficients
nonnegative and their sum equal to 1. The symbol “⋆” in-
duces a symmetric structure in the matrix inequalities. A
value with superscript “∗” means that it is the optimal so-
lution of the optimization problem. The time-dependence
of the MPC decision variable is often omitted for brevity.

2. PROBLEM STATEMENT AND PREDICTION
OF SYSTEM PARAMETRIC UNCERTAIN SETS

2.1. Problem statement
Consider the following discrete-time LPV system

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k), (1)

y(k) =C(k)x(k)+E(k)w(k), (2)

where x ∈ Rnx , u ∈ Rnu , w ∈ Rnw and y ∈ Rny are the sys-
tem state, input, disturbance and output, respectively. The
disturbance is bounded and satisfies w(k) ∈ εPw , where Pw

is the shape matrix of the ellipsoidal set for the bounded
disturbance. The control input and system state should
satisfy

−ū ≤ u(k)≤ ū,−ψ̄ ≤ Ψx(k)≤ ψ̄, (3)

where ū = [ū1, ū2, . . . , ūnu ]
T, ūs > 0, s ∈ Z[1,nu]; Ψ ∈

Rq×nx , ψ̄ = [ψ̄1, ψ̄2, . . . , ψ̄q]
T, ψ̄ j > 0, j ∈ Z[1,q]. At

each time k, model parameters [A|B|C|D|E](k) ∈
Ω0 = Co{[Al |Bl |Cl |Dl |El ], l ∈ Z[1,L], and satisfying
[A|B|C|D|E](k) = ∑L

l=1 λl(k)[Al |Bl |Cl |Dl |El ], λl(k) ≥ 0,
∑L

l=1 λl(k) = 1, where λ (k) = [λ1(k), . . . ,λL(k)] is the
scheduling parameter of the LPV system at time k.

The present paper considers that the system state and
disturbance are unmeasurable, the system output and the
scheduling parameter are known at time k, while future
scheduling parameters of the LPV system are uncertain
and have bounded rate of their changes. The future system
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parametric uncertain sets are predicted by considering the
bounded changes of the scheduling parameters in the LPV
system. To stabilize the controlled system, an observer
system is off-line designed to estimate the true state, and
then a multi-step OFRMPC approach is proposed to guar-
antee robust stability of the observer system. As a result, a
sequence of optimized controller gains are obtained such
that the estimated state is steered to a neighborhood of the
origin, and the true state will accordingly converge to a
neighborhood of the origin.

2.2. Prediction of system parametric uncertain sets
Assume that λl(k) are available at the current time k,

and their rates of changes are bounded by

|λl(k+1)−λl(k)| ≤ ∆l , l ∈ Z[1,L], (4)

where ∆l ∈ R+ are pre-specified scalars [13, 14]. The fol-
lowing Lemma 1 predicts system parametric uncertain sets
for systems (1) and (2).

Lemma 1 [14]: Considering the uncertain parameters
in Ω0 and bounded changes of the scheduling parame-
ters of the LPV system in (4), the future system uncer-
tain parameters satisfy [A|B|C|D|E](k + i) ∈ Ω(k + i) =
Co{[Al(k, i)|Bl(k, i)|Cl(k, i)|Dl(k, i)|El(k, i)], i ∈ Z[1,∞),
where

[Al(k, i)|Bl(k, i)|Cl(k, i)|Dl(k, i)|El(k, i)]

=
L

∑
t=1

bt(i)[At |Bt |Ct |Dt |Et ]+ (1−
L

∑
t=1

bt(i))×

[Al |Bl |Cl |Dl |El ], t, l ∈ Z[1,L]. (5)

In (5), the scalars bt(1) = max{λt(k)−∆t ,0}; the scalars
{bt(i+ 1)}, i ∈ Z[1,∞), are calculated from the following
iterations:

bt(i+1) = max{(1−
L

∑
l=1

dl(i))+dt(i),bt(i)},

dt(i+1) = min{(1−
L

∑
l=1

bl(i))+bt(i),dt(i)}, (6)

where dt(1) = min{λt(k)+∆t ,1}. Furthermore, the itera-
tion terminates when

dt(i)−bt(i)≤ min{1−
L

∑
t=1

bt(i),
L

∑
t=1

dt(i)−1}. (7)

Based on Lemma 1 in [14], since bt(i) and dt(i), i ∈
Z[1,∞), are nondecreasing and non-increasing scalars, re-
spectively, the convex sets satisfy Ω(k + i) ⊆ Ω(k + i+
h) ⊆ Ω0, i ∈ Z[1,∞), h ∈ Z[1,∞) [14]. In the following Sec-
tions 3 and 4, the above predicted future system para-
metric uncertain sets are considered in the prediction of
bounds of future estimation error sets and the multi-step
OFRMPC optimization.

3. OFF-LINE OBSERVER SYSTEM AND
BOUNDS OF FUTURE ESTIMATION ERROR

SETS

3.1. Off-line observer system design
Since the true state is unmeasurable, the following ob-

server system is designed:

x̂(k+1) =A(k)x̂(k)+B(k)u(k)+Lp(y(k)

−C(k)x̂(k)), (8)

where x̂(k) ∈Rnx is the estimated state, Lp is the off-line
observer gain. The estimation error is defined as e(k) ≜
x(k)− x̂(k). Based on the predictions of systems (1), (8),
and the definition of the estimation error,

e(i+1|k) =
L

∑
l=1

λl(k+ i)[(Al(k, i)−LpCl(k, i))e(i|k)

+(Dl(k, i)−LpEl(k, i))w(k+ i)], (9)
L

∑
l=1

λl(k+ i) = 1, i ∈ Z+.

3.2. Preliminary definitions
Let X and S be two compact subsets of state space Rnx ,

which contains the origin as an interior point.

Definition 1 (minimal RPI set [26, 27]): At time k, if
for any e(k) ∈ S ⊆ Rnx and any disturbance w(k + i) ∈
εPw , i ∈ Z+, the condition e(k+ i) ∈ S holds for i ∈ Z[1,∞),
then the set S is said to be an RPI set for system (9). The
set S is said to be the minimal RPI set for system (9) if S
is included in all possible closed RPI sets.

Definition 2 (Robust uniformly ultimately bounded
(UUB) [30]): Suppose that X ⊂S, if for every initial con-
dition e(k)∈ S and any disturbance w(k+ i)∈ εPw , i ∈Z+,
there exits an instant K > 0 such that e(k + ĩ) ∈ X for
∀ĩ ≥ K, then system (9) is robust UUB.

Definition 3 (Quadratic boundedness [28,29]): System
(9) is quadratically bounded with a common Lyapunov
matrix Pe , if

eT(i|k)Pee(i|k)≥ 1

=⇒ eT(i|k)Pee(i|k)≥ eT(i+1|k)Pee(i+1|k),
i ∈ Z+. (10)

For system (9), the following Lemma 2 optimizes an
off-line observer gain and a minimal RPI set. The proof
of Lemma 2 is given in Appendix A.1.

Lemma 2: If there exist matrices Pe, Ye ≜ PeLp and
θ ∈ (0,1), satisfying (12), then (10) holds. Further by
maximizing the trace of matrix Pe subject to (12), equa-
tion (10) is guaranteed for Lp = P−1

e0 Y 0
e , where Pe0 and Y 0

e
are the matrices optimized from problem (11)-(12). As a
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result, εPe0 is the minimal RPI set with respect to the esti-
mation error and bounded disturbance.

max
Ye,Pe

(trace(Pe)), (11)

s.t.

 (1−θ)Pe ⋆ ⋆
0 θPw ⋆

PeAl −YeCl PeDl −PeEl Pe

≥ 0. (12)

3.3. Prediction of bounds of future estimation error
sets

Suppose that at time k, the bounds of the estimation error
are known. The following Lemma 3 predicts the bounds
of future estimation error sets at time k+ i+1, i∈Z+. The
proof of Lemma 3 is given in Appendix A.2.

Lemma 3: Suppose that at time k, the estimation error
satisfies eT(i|k)Pe0e(i|k)≤ η(k+ i), η(k+ i)> 1, i ∈ Z+.
Considering the predicted system parametric uncertain
sets in (5) and bounded disturbance, the bounds of future
estimation error sets satisfies eT(i + 1|k)Pe0e(i + 1|k) ≤
η(k+ i+1), where η(k+ i+1) are calculated by

min
η(k+i+1),ϕ1(i)≥0,ϕ2(i)≥0

η(k+ i+1), (13)

s.t.
L

∑
l=1

λl(k+ i)×
Λ1 ⋆ ⋆ ⋆
0 ϕ2(i)Pe0 ⋆ ⋆
0 0 ϕ1(i)Pw ⋆
0 Λ2l Λ3l P−1

e0

≥ 0, (14)

Λ1 = η(k+ i+1)−ϕ1(i)−ϕ2(i)η(k+ i),

Λ2l = Al(k, i)−LpCl(k, i),Λ3l = Dl(k, i)−LpEl(k, i),

when eT(i|k)Pe0e(i|k) ≤ η(k+ i) ≤ 1, eT(i+ 1|k)Pe0e(i+
1|k)≤ 1 always holds and the estimation error stays in the
set εPe0 thereafter.

At the current time k, λl are available, and the estima-
tion error satisfies eT(0|k)Pe0e(0|k)≤ η(k). By iteratively
solving problem (13)-(14), the scalars η(k+ i+1), i∈Z+,
related to future bounds of estimation error sets can be
obtained. Replace the matrix Pe in (A.2) by Pe0, and con-
sider ||w(k + i)||2Pw

≤ 1, eT(i|k)Pe0e(i|k) ≤ η(k + i), then
for i ∈ Z+,

eT(i+1|k)Pe0e(i+1|k)
≤ (1−θ)eT(i|k)Pe0e(i|k)+θ ||w(k+ i)||2Pw

≤ 1+(1−θ)(η(k+ i)−1). (15)

According to (15), since θ ∈ (0,1), when η(k + i) > 1,
the bounds of future estimation error sets will decrease
with the evolution of time; when η(k+ i)≤ 1, it is easy to
see that eT(i+1|k)Pe0e(i+1|k)≤ 1 always holds, i.e., the
estimation error converges within the set εPe0 and will stay
in it thereafter. In this case, let η(k+ i+1) = 1, i ∈ Z[1,∞).

4. MULTI-STEP OFRMPC APPROACH

In this section, the multi-step OFRMPC approach opti-
mizes the following sequence of controller gains:

u(i|k) =

{
F(k+ i)x̂(i|k), i ∈ Z[0,N−1],

F(k+N)x̂(i|k), i ∈ Z[N,∞),
(16)

where F(k+ i), i ∈ Z[0,N], is the controller gain at time k+
i. After time k+N, the controller gain is always F(k+N).

For i ∈ Z+, the prediction models for systems (1) and
(8) based on (9) and (16) are (17) and (18), respectively.

x̂(i+1|k) =
L

∑
l=1

λl(k+ i)[Φl(k, i)x̂(i|k)+LpCl(k, i)

× e(i|k)+LpEl(k, i)w(k+ i)],

x̂(k+1) = x̂(1|k), (17)

x(i+1|k) =
L

∑
l=1

λl(k+ i)[Φl(k, i)x̂(i|k)+Al(k, i)

× e(i|k)+Dl(k, i)w(k+ i)],

Φl(k, i) = Al(k, i)+Bl(k, i)F(k+ i). (18)

Define the ellipsoidal sets εQ−1
c (k,i), i ∈ Z[0,N], as the se-

quence of ellipsoidal sets that contain the current and pre-
dicted future estimated states. At the current time k, if (19)
holds, the estimated state satisfies x̂(0|k) ∈ εQ−1

c (k,0).[
1 ⋆

x̂(0|k) Qc(k,0)

]
≥ 0. (19)

Theorem 1 guarantees that the estimated state is steered
from one ellipsoidal set to another one and finally into an
RPI set, which considers the prediction of bounds of future
estimation error sets and future parametric uncertain sets.

Theorem 1: For the uncertain system (17), suppose
that at time k, x̂(i|k)∈ εQ−1

c (k,i), i ∈Z[0,N], ||w(k+ i)||2Pw
≤ 1

and eT(i|k) Pe0
η(k+i)e(i|k) ≤ 1, where η(k) is known at time

k, η(k+ i), i ∈ Z[1,N], are obtained from Lemma 3. Con-
sidering the exactly known scheduling parameter at the
current time k, and the predicted system parametric un-
certain sets in (5), suppose that there exist positive scalars
{α1,α2} ∈ (0,1), γ > 0, and Y (k+ i) = F(k+ i)Qc(k, i),
such that (19) and the following conditions (20)-(25) are
satisfied,

ϒc(k, i) =
L

∑
l=1

λl(k+ i)ϒ̃C
l (k, i)≥ 0, i ∈ Z[0,N−1], (20)

ϒ̃c
l (k, i) =

 ∆1i ⋆ ⋆
0 α2Pw 0

∆2li ∆3li ∆4i

≥ 0, (21)

∆1i =

[
(1−α1)Qc(k, i) ⋆

0 (α1 −α2)
Pe0

η(k+i)

]
,
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∆2li =

 ∆21li LpCl(k, i)
Q1/2ClQc(k, i) Q1/2Cl(k, i)
Q1/2Y (k+ i) 0

 ,

∆21li = Al(k, i)Qc(k, i)+Bl(k, i)Y (k+ i),

∆3li =

 LpEl(k, i)
Q1/2El(k, i)

0

 ,

∆4i =

 Qc(k, i+1) ⋆ ⋆
0 γI ⋆
0 0 γI

 .

ϒI(k,N) =
L

∑
l=1

λl(k+N)ϒ̃I
l(k,N)≥ 0, (22)

ϒ̃I
l(k,N) =

 ∆5l ⋆ ⋆
0 α2Pw 0

∆6l ∆7l ∆8

≥ 0, (23)

∆5l =

[
(1−α1)Qc(k,N) ⋆

0 (α1 −α2)
Pe0

η(k+N)

]
,

∆6l =

 ∆61l LpCl(k,N)

Q1/2ClQc(k,N) Q1/2Cl(k,N)

Q1/2Y (k+N) 0

 ,

∆61l = Al(k,N)Qc(k,N)+Bl(k,N)Y (k+N),

∆7l =

 LpEl(k,N)

Q1/2El(k,N)
0

 ,

∆8 =

 Qc(k,N) ⋆ ⋆
0 γI ⋆
0 0 γI

 .

Qc(k, i)≥ Qc(k, i+1), i ∈ Z[0,N−1], (24)

1−α1 −α2 ≥ 0. (25)

As a result, the controller gains are F(k + i) = Y (k +
i)Q−1

c (k, i), i ∈ Z[0,N], which steer the estimated state
x̂(0|k) from εQ−1

c (k,0) → εQ−1
c (k,1) → ··· → εQ−1

c (k,N), and fi-
nally the future estimated states stay in the set εQ−1

c (k,N)

thereafter under the controller gain F(k+N).

Proof: When x̂(i|k) ∈ εQ−1
c (k,i), eT(i|k) Pe0

η(k+i)e(i|k) ≤ 1,
and ||w(k+ i)||2Pw

≤ 1, i ∈ Z[0,N−1], the convergence of the
future estimated state is guaranteed if there exist positive
scalars α1,α2 and γ such that

x̂T(i|k)Q−1
c (k, i)x̂(i|k)− x̂T(i+|k)Q−1

c (k, i+)x̂(i+|k)

−α1[x̂T(i|k)Q−1
c (k, i)x̂(i|k)− eT(i|k) Pe0

η(k+ i)
e(i|k)]

−α2[eT(i|k) Pe0

η(k+ i)
e(i|k)−wT(k+ i)Pww(k+ i)]

≥ 1
γ
[
∥y(i|k)∥2

Q +∥u(i|k)∥2
R

]
, i ∈ Z[0,N−1]. (26)

Rearrange (26), it can be obtained that

(1−α1)xT
c (i|k)Q−1

c (k, i)xc(i|k)+(α1 −α2)eT(i|k)

× Pe0

η(k+ i)
e(i|k)+α2wT(k+ i)Pww(k+ i)

− xT
c (i

+|k)Q−1
c (k, i+)xc(i+|k)

≥ 1
γ
[
∥y(i|k)∥2

Q +∥u(i|k)∥2
R

]
, i ∈ Z[0,N−1]. (27)

The sufficient and necessary condition for (27) is

∆9i −∆T
10liQ

−1
c (k, i+)∆10li

≥ 1
γ
[∆T

11liQ∆11li +∆T
12iR∆12i], (28)

∆9i =

(1−α1)Q−1
c (k, i) ⋆ ⋆

0 (α1 −α2)
Pe0

η(k+i) ⋆

0 0 α2Pw

 ,

∆10li =
[

Φl(k, i),LpCl(k, i),LpEl(k, i)
]
,

∆11li =
[

I,Cl(k, i),El(k, i)
]
,

∆12i =
[

F(k, i),0,0
]
, i ∈ Z[0,N−1].

By applying the Schur complement, and the conver-
gence transformation via diag{Qc(k, i), I}, then letting
Y (k + i) = F(k + i)Qc(k, i), one can obtain (20). The
controller gains corresponding to the sets εQ−1

c (k,i) are
F(k+ i) = Y (k+ i)Q−1

c (k, i), i ∈ Z[0,N−1]. By simultane-
ously satisfying (19), (20), (24) and (25), it can be in-
ferred that x̂(i|k)∈ εQ−1

c (k,i), i ∈Z[0,N]. The controller gains
F(k+ i), i ∈ Z[0,N−1], steer the estimated state x̂(0|k) from
εQ−1

c (k,0) → εQ−1
c (k,1) → ··· → εQ−1

c (k,N), where εQ−1
c (k,0) ⊇

εQ−1
c (k,1) ⊇ ·· · ⊇ εQ−1

c (k,N) due to the consideration of (24).
Once the estimated state is steered into the set εQ−1

c (k,N),
the future estimated state will be RPI in the set εQ−1

c (k,N) if

x̂T(i|k)Q−1
c (k,N)x̂(i|k)− x̂T(i+|k)Q−1

c (k,N)x̂(i+|k)

−α1[x̂T(i|k)Q−1
c (k,N)x̂(i|k)−eT(i|k) Pe0

η(k+N)
e(i|k)]

−α2[eT(i|k) Pe0

η(k+N)
e(i|k)−wT(k+ i)Pww(k+ i)]

≥ 1
γ
[
∥y(i|k)∥2

Q +∥u(i|k)∥2
R

]
, i ∈ Z[N,∞). (29)

Rearrange (29), then it can be obtained that

(1−α1)xT
c (i|k)Q−1

c (k,N)xc(i|k)+(α1 −α2)eT(i|k)

× Pe0

η(k+N)
e(i|k)+α2wT(k+ i)Pww(k+ i)−xT

c(i
+|k)

×Q−1
c (k,N)xc(i+|k)≥

1
γ
[
∥y(i|k)∥2

Q +∥u(i|k)∥2
R

]
,

i ∈ Z[N,∞). (30)

Similar to the procedure for obtaining (20), equation (30)
is guaranteed by (22). □

Lemma 4 deals with the input and state constraints in
(3). The proof is given in Appendix A.3.
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Lemma 4: Considering system (18) and the controller
gains in (16), the constraints on the control input and true
state in (3) are satisfied if there exist symmetric positive-
definite matrices Qc(k, i) and Y (k+ i) = F(k+ i)Qc(k, i),
i ∈ Z[0,N], such that (19), (20), (22), (24), (25), and the
following conditions are satisfied:

ϒ̃U(k, i) =
[

Qc(k, i) ⋆
ξsY (k+ i) ū2

s

]
≥ 0, (31)

s ∈ Z[0,nu], i ∈ Z[0,N],

ϒS(k, i) =
L

∑
l=1

λl(k+ i)ϒ̃S
l (k, i)≥ 0, ϒ̃S

l (k, i) = (32)
Qc(k, i) ⋆ ⋆ ⋆

0 Pe0
η(k+i) ⋆ ⋆

0 0 Pw ⋆

∆
√

3ΨtAl(k, i)
√

3ΨtDl(k, i) ψ̄2
t

 ,

∆ =
√

3Ψt [Al(k, i)Qc(k, i)+Al(k, i)Y (k+ i)],

i ∈ Z[0,N], t ∈ Z[0,q],

where ξs is the s-th row of the nu-order identity matrix,
and Ψt is the t-th row of the matrix Ψ.

From the above derivations, at each time k, the multi-
step OFRMPC optimization problem is solved by

min
α1, α2, γ, Y (k+i),Qc(k,i)

γ,

s.t. (19), (20), (22), (24), (25), (31), (32). (33)

In problem (33), the scalar γ is the optimized objective
function. In problem (33), model parameters in ϒc(k,0)
and ϒS(k,0) (see (20) and (32)) are exactly known since
λl(k), l ∈ Z[0,L], are exactly available at the current time k.
After time k, by considering convexity of the optimization,
vertices of the predicted future system model parametric
uncertain sets in (5) are substituted into problem (33).

Remark 1: Compared with the OFRMPC methods in
[23, 24], at the current and future time, all the possible re-
alizations of model parametric uncertainty and bounds of
estimation error sets are considered, which amount to N =
0, [Al(k, i)|Bl(k, i)|Cl(k, i)|Dl(k, i)|El(k, i)]∈Ω0, i∈Z[0,∞),
and eT(i|k)Pe0e(i|k)≤η(k), i∈Z[0,∞), in the present paper.
When problem (33) is solved, the multi-step controller
gains in (16) are calculated as F(k+ i)=Y (k+ i)Q−1

c (k, i).
The sequence of controller gains F(k + i), i ∈ Z[0,N], in
problem (33) are associated with the Lyapunov matrices
Q−1

c (k, i), i ∈ Z[0,N], which introduce more degree of free-
dom for the optimization. In [23, 24], the controller gains
are related to one common Lyapunov matrix. The larger N
is selected, the less conservative of the system parametric
uncertainty and bounds of estimation error sets will be in-
volved. However, the computational burden will increase
(see Section 6). The selection of N should consider the
trade-off between control performance and computational
burden.

5. OVERALL ALGORITHM, RECURSIVE
FEASIBILITY AND ROBUST STABILITY

5.1. The overall algorithm
The overall algorithm includes the off-line stage to ob-

tain observer gain and a minimal RPI set for the estima-
tion error, the on-line prediction of future parametric un-
certain sets and bounds of estimation error sets, and the
multi-step OFRMPC optimization to obtain the sequence
of controller gains.

Algorithm 1:
Off-line stage: solve problem (11)-(12) to obtain Pe0 and
Lp = P−1

e0 Y 0
e .

On-line stage: Choose the initial estimated state x̂(0|k).
Let η(0) = eT(0|k)Pe0e(0|k). At each time k ≥ 0, perform
the following steps:

1) Predict system parametric uncertain sets by (5) and
bounds of estimation error sets by Lemma 3.

2) Solve problem (33) to obtain the optimal solution
{α1,α2,γ,Y (k+ i),Qc(k, i)}, i ∈ Z[0,N].

3) Calculate the control input by u(0|k) =
Y (k)Q−1

c (k,0)x̂(0|k). Implement u(0|k) to sys-
tem (1), and let x̂(k+1) = A(k)x̂(0|k)+B(k)u(0|k)+
Lp(y(k)−C(k)x̂(0|k)).

In Algorithm 1, problems (11)-(12) and (33) can be
solved via the linear matrix inequality (LMI) toolbox,
where the scalars θ and α1 are linear searched over the
interval (0,1).

5.2. Recursive feasibility and robust stability
Theorem 2: For system (1), Algorithm 1 is performed.

If problem (33) is feasible at time k = 0, then the recur-
sive feasibility of problem (33) and the robust stability of
system (1)-(2) is guaranteed. With the evolution of time,
the scalar γ converges to a constant value, and the system
output and control input converge to a neighborhood of
origin, respectively. The input and state constraints in (3)
are satisfied for all k ≥ 0.

Proof: Suppose that problem (33) is solved
at time k ≥ 0, the optimal solution Σ∗(k) =
{α∗

1 , α∗
2 ,γ∗,Y ∗(k), . . . ,Y ∗(k +N),Q∗

c(k,0), . . . ,Q
∗
c(k,N)}

is obtained. At time k, the control inputs u(i|k) =
Y ∗(k + i)[Q∗

c ]
−1(k, i)x̂(i|k), i ∈ Z[0,N], steer the esti-

mated state x̂(0|k) from ε[Q∗
c ]
−1(k,0) into the sequence of

sets ε[Q∗
c ]
−1(k,i), and finally the estimated state is RPI

in the set ε[Q∗
c ]
−1(k,N). At time k + 1, construct the so-

lution Σ(k + 1) = {α∗
1 , α∗

2 , γ∗,Y ∗(k + 1), . . . ,Y ∗(k +
N),Y ∗(k + N),Q∗

c(k,1), . . . ,Q
∗
c(k,N),Q∗

c(k,N)}. Con-
sidering the non-increasing of scalars η(k+ i) in Lemma
3 and (24), it can be seen that Σ(k + 1) is a feasible
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solution for (20), (22), (25), (31) and (32). By choos-
ing Qc(k + 1,0) = Q∗

c(k,1), and considering x̂(1|k) ∈
ε[Q∗

c ]
−1(k,1) and ε[Q∗

c ]
−1(k,0) ⊇ ε[Q∗

c ]
−1(k,1), (19) is satisfied at

time k + 1. Therefore, the optimal solution of problem
(33) at time k is a feasible solution for problem (33) at
time k+1, i.e, the recursive feasibility of the optimization
problem is guaranteed. By solving problem (33) at time
k+ 1, it can be obtained that γ∗(k+ 1) ≤ γ∗(k). With the
evolution of time, γ∗(k) will tend to a constant value. By
summing (27) from i = 0 to N −1, and (30) from i = N to
∞, respectively, then adding the summations together and
considering and ||x̂(0|k)||2Qc(k,0)

≤ 1, ||w(k+ i)||2Pw
≤ 1 and

eT(i|k) Pe0
η(k+t)e(i|k)≤ 1, i ∈ Z+, then

J∞(k) =
∞

∑
i=0

[
∥y(i|k)∥2

Q +∥u(i|k)∥2
R

]
< γ∗(k). (34)

Therefore, γ∗(k) is an upper bound of J∞(k) at each time
k. Consider the following nominal systems (35)-(37) (i.e.,
systems (2), (16) and (17) without the consideration of
the uncertainties of estimation error and bounded distur-
bance).

x̂u(i+1|k) =
L

∑
l=1

λl(k+ i)Φl(k, i)x̂u(i|k), (35)

uu(i|k) = F(k+ i)x̂u(i|k), x̂u(0|k) = x̂(0|k), (36)

yu(0|k) =Cx̂u(0|k), i ∈ Z+, (37)

By applying the convergence transformation and the
Schur complement, (20) and (22) also imply (38) and (39),
respectively.

(1−α1)Q−1
c (k, i)−ΦT

l (k, i)Q
−1
c (k, i+1)Φl(k, i)

≥ 1
γ∗(k)

[
CT

l (k, i)QCT
l (k, i)+FT(k+ i)RF(k+ i)

]
,

i ∈ Z[0,N−1], (38)

(1−α1)Q−1
c (k,N)−ΦT

l (k,N)Q−1
c (k,N)Φl(k,N)

≥ 1
γ∗(k)

[
CT

l (k, i)QCT
l (k, i)+FT(k+N)RF(k+N)

]
.

(39)

Since α1 ∈ (0,1), (38) and (39) guarantee that

Q−1
c (k, i)−ΦT

l (k, i)Q
−1
c (k, i+1)Φl(k, i)

>
1

γ∗(k)
[
CT

l (k, i)QCT
l (k, i)+FT(k+ i)RF(k+ i)

]
,

i ∈ Z[0,N−1], (40)

Q−1
c (k,N)−ΦT

l (k,N)Q−1
c (k,N)Φl(k,N)

>
1

γ∗(k)
[
CT

l (k,N)QCT
l (k,N)+FT(k+N)RF(k+N)

]
.

(41)

For system (35)-(37), the above conditions (40) and (41)
guarantee that

x̂T
u (i|k)Q−1

c (k, i)x̂u(i|k)− x̂T
u (i

+|k)Q−1
c (k, i+)x̂u(i+|k)

>
1

γ∗(k)
[
∥yu(i|k)∥2

Q +∥uu(i|k)∥2
R

]
, i ∈ Z[0,N−1],

(42)

x̂T
u (i|k)Q−1

c (k,N)x̂u(i|k)− x̂T
u (i

+|k)Q−1
c (k,N)x̂u(i+|k)

>
1

γ∗(k)
[
∥yu(i|k)∥2

Q +∥uu(i|k)∥2
R

]
, i ∈ Z[N,∞).

(43)

By summing (42) from i = 0 to N−1, and (43) from i = N
to ∞, respectively, and adding the summations together
and applying (19),

∞

∑
i=0

[
∥yu(i|k)∥2

Q +∥uu(i|k)∥2
R

]
< γ∗(k). (44)

With the evolution of time, γ∗(k) will tend to a con-
stant value implies that the system output yu(k) and input
uu(k) will converge to the origin. Since the estimation
error is robust UUB with respect to the minimal RPI set
and bounded disturbance exists, the estimated state and
control input will converge to a neighborhood of origin.
Therefore, the true state will converge to a neighborhood
of origin due to the convergence of estimated states and
the estimation error. The input and state constraints are
satisfied due to (31) and (32), respectively. □

6. THE COMPARISON OF COMPUTATIONAL
BURDEN

We compare Algorithm 1 with Algorithm 1 in [23] and
Algorithm 3 in [24]. The complexity analysis for the
compared algorithms is listed in Table 1. The complex-
ity analysis for the optimization problem solved by an
LMI tool in the compared algorithms is polynomial-time,
which (regarding the fastest interior-point algorithms) is
proportional to K3L, where K is the number of scalar LMI
variables and L is the number of scalar LMI rows [32].
Compared with Algorithm 1 in [23], the larger N leads to
the increase of K and L, which will result in the increase
of the on-line computational burden.

7. NUMERICAL EXAMPLE

Consider the following LPV model, where the system
model parameters are

A1 =

[
0.8227 −0.00168
6.1233 0.9367

]
,B1 =

[
−0.000092

0.1014

]
,

A2 =

[
0.9654 −0.00182
−0.6759 0.9433

]
,B2 =

[
−0.000097

0.1016

]
,

A3 =

[
0.8895 −0.00294
2.9447 0.9968

]
,B3 =

[
−0.000157

0.1045

]
,

A4 =

[
0.8930 −0.00062
2.7738 0.8864

]
,B4 =

[
−0.000034

0.0986

]
,
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Table 1. The comparison of complexity analysis.

The compared
algorithms

Optimization problem The prediction of bounds
of estimation error sets

Algorithm 1 in [23]
Problem (22) in [23]:

K=Lnunx +nx(nx +1)+
1
2

nu(nu +1)+
1
2

q(q+1)+2,

L=4nx +L(2nx +nw +ny +nu)+2nx +2nu +L(2nx +nw +q)+q

Problem (23)-(24) in [23]:
K= 3, L= 1+nw ++nx

Algorithm 1 in [24]

Problem (42) in [24]:

KM =
1
2

L(L+1)n2
x +Lnx(ny +nu)+nuny +2nx(nx +1)

+
1
2

nu(nu +1)+
1
2

q(q+1)+2,

LM =
(L+n−1)!

2(L−1)!
(4nx +nw +ny +nu)

+L
(L+n−1)!

2(L−1)!
(2nx +2nw +ny)+L(2nx +nw +nu)

+5nx +nu +q+1

Problem (50) in [24]:
K= 1

2 nx(nx +1), L= p̂nw
p +nx;

Problem (51) in [24]:
K= p̄, L= 2 p̄ p̂nw

p

Algorithm 1
Problem (33):

K=2+(N +1)(nunx +
1
2

nx(nx +1)),

L=2+Nnx +(LN +1)(5nx +2nw +ny +nu +q)+(N +1)(nx +nu)

Problem (13)-(14):
K= 3(N +1),

L= 1+2nw +nx +LN(1+2nw ++nx)

λ1(k) =
1
2

φ1(y)−φ1(−ψ̄)

φ1(ψ̄)−φ1(−ψ̄)
,Dl = [0.0006,0.0141]T,

λ2(k) =
1
2

φ1(ψ̄)−φ1(y)
φ1(ψ̄)−φ1(−ψ̄)

,Cl = [0 1], El = 0.5,

φ1(y) = 7.2×1010e−
8750

y+350 ,∆l = 0.05, l ∈ Z[1,4],

λ3(k) =
1
2

φ2(y)−φ2(−ψ̄)

φ2(ψ̄)−φ2(−ψ̄)
, ū = 10,Ψ = I,

λ4(k) =
1
2

φ2(ψ̄)−φ2(y)
φ2(ψ̄)−φ2(−ψ̄)

, ψ̄ = [0.5,10]T,

φ2(y) = 3.6×1010
(

e−
8750

y+350 − e−
8750
350

)
/y.

In the above system, the system output y(k), and
the current scheduling parameter are known and have
bounded rate of their changes. The control object is to
regulate x2 by manipulating the control input satisfying
the input constraints. Select θ = 0.02 and solve prob-
lem (11)-(12) to obtain Pe0 and the observer gain. In
problem (33), select α1 = 0.05, Pw = 1, N = 4. Choose
Q = 25 and R = 1, which means that we prefer the con-
vergence of system output, which is also related to the
system state x2. The disturbance sequence w is randomly
generated from the interval [−1,1]. Let e(0) = [0.12,1.2]T

and η(0) = 17.525.
We compare Algorithm 1 with Algorithm 1 in [23] and

Algorithm 3 in [24]. Fig. 1 shows the region of attraction
for the compared algorithms. Here, the region of attrac-
tion denoted by X̂ is the region of x̂(0) such that when-
ever x̂(0) ∈ X̂ , the optimization problems of the com-
pared algorithms are feasible at time k = 0. It is shown
that Algorithm 1 in the paper has the largest region of

attraction. To compare the algorithms, two cases on the
initial values of Algorithm 1 (Algorithm 1 for cases (a)
and (b) ) are considered. Considering that Algorithm 1
in [23], Algorithm 3 in [24] and Algorithm 1 are fea-
sible, take x̂(0) = [0.18,3.6]T and x(0) = [0.3,4.8]T. In
Algorithm 1 for case (b), take x̂(0) = [0.29,5.2]T and
x(0) = [0.41,6.4]T, where the initial estimated state is near
the boundary of the region of attraction for Algorithm 1.
In this case, Algorithm 1 is feasible, while Algorithm 1 in
[23] and Algorithm 3 in [24] are infeasible. The responses
of x(k), x̂(k), and the bounds of estimation error sets for
the compared algorithms are shown in Figs. 2-4, where
the dash (solid) lines with symbols are the responses of
the estimated (true) states, and the ellipsoids are the esti-
mation error sets. Fig. 5 shows the state trajectories of the
augmented closed-loop system. Figs. 6 and 7 show the
responses of the states x̂1,x1 and x̂2,x2, respectively. In
Fig. 8, the control inputs in Algorithm 1 reach the bounds
of control input constraints. From the simulation results, it
can be concluded that the proposed multi-step OFRMPC
enlarges the region of attraction and improves the control
performance. The simulation time spent on Algorithm 1
(Algorithm 1 in [23] and Algorithm 3 in [24]) is 8.84 s
(3.68 s, 28.63 s). Matlab 9.3 (Intel i5-7200U 2.5GHz, 8G
Memory) is utilized for the simulations.

8. CONCLUSIONS

For the LPV systems with bounded changes of schedul-
ing parameters and disturbance, the multi-step OFRMPC
approach is investigated, where predictions of future
bounds of estimation error and future parametric uncer-
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Fig. 1. The region of attraction for the compared algo-
rithms.
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Fig. 2. The responses of x̂(k), x(k), and the evolution of
the bounds of e(k), Algorithm 1 for case (a).

tain sets are considered. The proposed algorithm guaran-
tees robust UUB of the estimation error and robust sta-
bility of the observer system. The multi-step OFRMPC
method reduces the conservatism in the output feedback
controller design and introduces more degree of freedom
for the optimization problem. However, more optimiza-
tion variables and LMI conditions are introduced in the
optimization problem, which increases the on-line com-
putational burden. Our future work on this topic would be
reducing the on-line computational burden.

APPENDIX A

A.1. Proof of Lemma 2
Since ||w(k + i)||2Pw

≤ 1, eT(i|k)Pee(i|k) ≥ 1 is equiva-
lent to eT(i|k)Pee(i|k) ≥ ||w(k + i)||2Pw

. Equation (10) is
equivalent to

eT(i|k)Pee(i|k)≥ ||w(k+ i)||2Pw
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Fig. 3. The responses of x̂(k), x(k) and the evolution of the
bounds of e(k), Algorithm 1 in [23].
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Fig. 4. The responses of x̂(k), x(k) and the evolution of the
bounds of e(k), Algorithm 3 in [24].

⇒ eT(i|k)Pee(i|k)− eT(i+1|k)Pee(i+1|k)≥ 0.
(A.1)

By applying the S-procedure, equation (A.1) is satisfied if
there exists a scalar θ ≥ 0 such that

eT(i|k)Pee(i|k)− eT(i+1|k)Pee(i+1|k)
≥ θ(eT(i|k)Pee(i|k)≥ ||w(k+ i)||2Pw

). (A.2)

For l ∈ Z[1,L], equation (A.2) is rearranged as[
e(i|k)

w(k+ i)

]T [ Π1l ⋆
Π2l Π3l

][
e(i|k)

w(k+ i)

]
≥ 0,

(A.3)

where

Π1l = (1−θ)Pe − (Al −LpCl)
TPe(Al −LpCl),

Π2l =−(Dl −LpEl)
TPe(Al −LpCl),

Π3l = θPw − (Dl −LpEl)
TPe(Dl −LpEl).

Equation (A.3) is satisfied for any possible e(i|k) and
w(k+ i) if[

Π1l ⋆
Π2l Π3l

]
≥ 0. (A.4)



2166 Xu-Bin Ping, Peng Wang, and Jia-Feng Zhang

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

1

2

3

4

5

6

7

Fig. 5. The state trajectories of the system for the com-
pared algorithms.
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Fig. 6. The responses of state x̂1 and x1.

By applying the Schur complement and considering the
convexity of the polytopic description of system (1), equa-
tion (A.4) is equivalent to (12). By maximizing the
trace(Pe) subject to (12), the matrix Pe0 with the largest
trace can guarantee (12) is obtained, i.e., the matrix Pe0 is
the shape matrix of the minimal RPI set for the estimation
error.

A.2. Proof of Lemma 3
Suppose that at time k+ i, i ∈ Z+, the estimation error

and bounded disturbance satisfy

eT(i|k)Pe0e(i|k)≤ η(k+ i), (A.5)

wT(k+ i)Pww(k+ i)≤ 1. (A.6)

Based on (9), the estimation error constraint at time k+
i+1 satisfies

eT(i+1|k)Pe0e(i+1|k)≤ η(k+ i+1). (A.7)
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Fig. 7. The responses of state x̂2 and x2.
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Fig. 8. The comparison of control inputs.

According to the S-procedure, the sufficient condition for
“(A.5) and (A.6) ⇒ (A.7)” to hold is that there exist non-
negative scalars ϕ1(i) and ϕ2(i), i ∈ Z+, such that

η(k+ i+)− eT(i+|k)Pe0e(i+|k)
−ϕ1(i)(1−wT(k+ i)Pww(k+ i))

−ϕ2(i)(η(k+ i)− eT(i|k)Pe0e(i|k))≥ 0. (A.8)

Define ζ (i|k) = [1,e(i|k),w(k + i)]T ∈ Rnζ , where nζ =
1+ nx + nw. Then for all possible ζ (i|k), by applying the
Schur complement and considering the predicted system
parametric uncertain sets in (5), equation (A.8) is equiva-
lent to (14). Further by minimizing the scalar η(k+ i+1)
subject to (14), the bounds of the estimation error set at
time k+ i+1 can be obtained.

A.3. Proof of Lemma 4

Since (19), (20), (22), (24) and (25) are satisfied, it
can be inferred that x̂(i|k) ∈ εQ−1

c (k,i), i ∈ Z[0,∞), with
Q−1

c (k, i) = Q−1
c (k,N) when i ∈ Z[N,∞). Consider the fol-
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lowing conditions:

max
i≥0

| ξsu(i|k) |2= max
i≥0

|ξsF(k+ i)x̂(i|k)|2

≤ max
i≥0

∥∥∥ξsF(k+ i)Q1/2
c (k, i)

∥∥∥2∥∥∥Q−1/2
c (k, i)x̂(i|k)

∥∥∥2

≤ max
i≥0

∥∥∥ξsF(k+ i)Q1/2
c (k, i)

∥∥∥2
. (A.9)

If the following constraints are satisfied:

ξsF(k+ i)Qc(k, i)[ξsF(k+ i)]T ≤ ū2
s ,s ∈ Z[0,nu],

(A.10)

then | u(i|k) |≤ ū, i ∈ Z[0,∞). By applying the Schur
complement, the convergence transformation via diag{
Qc(k, i), I} and Y (k + i) = F(k + i)Qc(k, i), equation
(A.10) is equivalent to (31).

According to the prediction of the future true state in
(18), and considering x̂(i|k)∈ εQ−1

c (k,i), e(i|k)∈ ε[Pe0/η(k+i)],
w(k+ i) ∈ εPw , then

max
i≥0

| Ψtx(i+1|k) |2

= max
i≥0

∣∣∣∣∣∣ΨtΠ4i

 x̂(i|k)
e(i|k)

w(k+ i)

∣∣∣∣∣∣
2

≤ 3max
i≥0

∥∥∥∥∥∥∥ΨtΠ4i

 Q
1
2
c (k, i) 0 0

0 [ Pe0
η(k+i) ]

− 1
2 0

0 0 P− 1
2

w


∥∥∥∥∥∥∥

2

,

Π4i = [Φ(k, i) A(k+ i) D(k+ i)].

If the following constraints are satisfied:

ψ̄2
t −3ΨtΠT

4i

 Q−1
c (k, i) 0 0

0 [ Pe0
η(k+i) ]

−1 0
0 0 P−1

w

Π4i ≥ 0,

(A.11)

then |Ψx(i + 1|k)| ≤ ψ̄ . By applying the Schur com-
plement, convergence transformation via diag{Qc(k, i), I}
and Y (k + i) = F(k + i)Qc(k, i), and considering future
prediction of system parametric uncertain sets in (5), it
is shown that (A.11) is equivalent to (32).
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