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Consensus Based Control Algorithm for Nonlinear Vehicle Platoons in the
Presence of Time Delay
Panpan Yang*, Ye Tang, Maode Yan, and Xu Zhu

Abstract: The platoon control problem for nonlinear vehicles in the presence of time delay is investigated in this
paper, where both constant time delay and time-varying delay cases are considered. A linearized third-order vehicle
dynamic model is firstly derived by deploying the exact feedback linearization technique and the vehicle platoon
control problem is converted into a consensus-seeking problem. Then, a consensus based vehicle platoon control
algorithm with time delay is proposed, which drives vehicles to form an equally spaced platoon with the same
velocity. By deploying the Lyapunov-Razumikhin theorem, the upper bound of time delay for vehicle platoon with
constant time delay is derived and the sufficient conditions that guarantee the stability of the vehicle platoon are
obtained. Meanwhile, the sufficient conditions that ensure the stability of vehicle platoon with time-varying delay
are acquired via the Lyapunov-Krasovskii theorem. Numerical demonstrations verify the feasibility and correctness
of the theoretical results.
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1. INTRODUCTION

Traffic congestion, road accident and air pollution have
become a worldwide social problem with the ever increas-
ing number of vehicles in large cities [1], which impel
governments, automobile manufactures and academic re-
searchers to make great efforts for the next generation of
transportation systems [2]. Among all the feasible so-
lutions, vehicle platoon [3], which requires vehicles to
move in a string with predefined inter-vehicle space and
the same velocity, has been identified as a promising al-
ternative in future intelligent transportation systems (ITS)
for its prominent advantages in enhancing traffic safety,
improving highway capacity, increasing fuel economy and
reducing carbon emissions [4–6].

Over the last decades, vehicle platoon has gained con-
siderable interests in the academic community [3, 7, 8],
various control schemes, such as sliding mode control
[9–11], fuzzy logic control [12,13], consensus based con-
trol [14,15], model predictive control [16,17] and so forth,
have been developed. Among the existing methodologies,
consensus based vehicle platoon control is more and more
deployed as the control objective of vehicle platoon (i.e.,
all vehicles in the platoon move at the same velocity and
maintain a desired inter-vehicle distance) can be easily
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formulated into a consensus-seeking problem [15]. For
instance, a consensus based control scheme was proposed
to evaluate the performance of vehicle platoon under dif-
ferent network topologies of initial states in [14]. Under a
weighted and constrained consensus framework, the vehi-
cle platoon control problem for enhancing highway safety
and efficient utility was studied in [18]. Using a modi-
fied consensus-based control method, the vehicle platoon
problem with absent velocity measurement and actuator
saturation constrains was investigated in [19].

In practical applications, vehicles are required to get
the state information of other vehicles via some wireless
vehicle-to-vehicle (V2V) communication techniques like
DSRC, VANET or 4G-LTE [4, 7, 20]. However, the in-
formation transmission between vehicles will inevitably
induce the phenomenon of time delay due to the limited
bandwidth or the congestion of communication channels
[15, 21]. Time delay, which is known as a source of sys-
tem instability, may degrade the performance of vehicle
platoon and even cause the instability of the vehicle string
[22, 23]. To this end, a consensus based control algorithm
was developed for multi-platoon cooperative driving by
considering the time delays in [15]. A distributed consen-
sus strategy for vehicle platoon with time-varying hetero-
geneous communication delays was proposed in [24, 25].
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In addition, the stabilized parametric regions for vehicle
strings with time delay were investigated via the cluster
treatment of characteristic roots paradigm [22].

However, the above results primarily treat the vehicle
dynamics as a second-order linear system, which may not
well coincide with its real dynamic characteristics [15].
In fact, the vehicle dynamics is a typical high-order model
with strong nonlinearity [26]. As far as we are concerned,
literatures that specifically address the vehicle platoon
control problem with nonlinearity, high order and time de-
lays seem very few. Until very recently, a robust exponen-
tial H∞ controller for vehicle platoon, where the vehicle
nonlinearity, actuator saturation as well as time delay were
considered, was proposed in [27].

Motivated by this fact, the platoon control of nonlinear
vehicles with time delay is investigated in this paper. The
main contributions of this paper are two-folds:

• The real nonlinear vehicle dynamic model is de-
ployed and a feedback linearization method is
adopted to convert the vehicle dynamics into a third-
order linear system. Comparing with the existing
results, like [15, 22, 24, 25], that simply take the ve-
hicle dynamics as a second-order system, it is more
akin to the real dynamics of a vehicle and of more
practical significance in vehicle platoon control.

• Both constant time delay and time-varying delay in
vehicle platoon control are investigated. Lyapunov-
Razumikhin theorem and Lyapunov-Krasovskii func-
tional are deployed to derive the upper bounds and
the sufficient conditions for the stability of nonlinear
vehicle platoon with constant time delay and time-
varying delay, respectively.

The remainder of this paper is organized as follows: In
section 2, some preliminary knowledge on graph theory,
matrix theory and time-delay systems are introduced. In
section 3, the linearized third-order vehicle dynamics is
derived and a consensus based vehicle platoon control al-
gorithm is designed. In section 4, the sufficient conditions
for the stability of vehicle platoon with both constant time
delay and time-varying delay are derived and the corre-
sponding upper bounds of time delay are obtained. Nu-
merical simulations are performed in section 5 to demon-
strate the correctness of the theoretical results. Section 6
offers the concluding remarks and future work.

2. MATHEMATICAL PRELIMINARIES

Before addressing the vehicle platoon control problem
with time delay, some mathematical preliminaries, includ-
ing algebraic graph theory, matrix theory and time-delay
systems, are firstly introduced.

2.1. Algebraic graph theory
In a vehicle platoon, if each vehicle is regarded as a

node, the communication topology among vehicles can
then be easily described by a neighboring graph G. Here,
graph G = (V,E ,A) is a directed graph consisting of a
set of nodes (vehicles) V = {v1,v2, · · · ,vn}, a set of edges
(communication links) E = {(vi,v j)∈V×V : vi ∼ v j} and
an adjacency matrix A= [ai j] with nonnegative adjacency
elements ai j. Here, we define ai j > 0 if (vi,v j) ∈ E and
ai j = 0, otherwise.

The set of neighbors of node vi is denoted by Ni = {v j ∈
V : (vi,v j) ∈ E}. Graph G is called an undirected graph
if (vi,v j) ∈ E ⇔ (v j,vi) ∈ E . For an undirected graph,
its adjacency matrix is symmetric (i.e., AT = A) and
the corresponding Laplacian matrix L = D−A, where
D= diag{d1,d2, · · · ,dn} ∈Rn×n is the in-degree matrix of
graph G with di = ∑n

j=1 ai j being the in-degree of node vi.
In addition, the Laplacian matrix L is symmetric and pos-
itive semi-definite with minimum eigenvalue zero and the
corresponding eigenvector is 1 = [1, · · · ,1]T, i.e., L1 = 0.

2.2. Matrix theory preliminaries
Lemma 1: For any vector x, y of appropriate dimen-

sions and any symmetric positive definite matrix Z of ap-
propriate dimension, the following inequality holds

±2xTy ≤ xTZx+ yTZ−1y. (1)

Lemma 2 (Schur complement [28]): Given a symmet-
ric matrix F = FT ∈ R(n+m)×(n+m) is partitioned as

F =

[
A BT

B C

]
, (2)

where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rm×m. The following
conditions are equivalent:

1) F < 0;
2) C < 0 and A−BTC−1B < 0;
3) A < 0 and C−BA−1BT < 0.

2.3. Theorems for time-delay systems
Consider the following system{

ẋ(t) = f (t,xt), t > 0,

x(θ) = φ(θ), θ ∈ [−τ,0],
(3)

where xt(θ) = x(t +θ),∀θ ∈ [−τ,0] and f (t,0) = 0. Let
C([−τ,0],Rn) be a Banach space of continuous functions
defined on an interval [−τ,0], taking values in Rn with
the topology of uniform convergence, and with a norm
∥φ∥c = maxθ∈[−τ,0] ∥φ(θ)∥. Then, the following results
are for the stability of system (3):

Lemma 3 (Lyapunov-Razumikhin Theorem [29]): Let
ϕ1, ϕ2 and ϕ3 be continuous, nonnegative, nondecreasing
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functions with ϕ1 > 0, ϕ2 > 0, ϕ3 > 0 for s> 0 and ϕ1(0) =
ϕ2(0) = 0. For system (3), suppose that the function f :
C([−τ,0],Rn) → R takes bounded sets of C([−τ,0],Rn)
in bounded sets of Rn. If there is a continuous function
V (t,x) such that

ϕ1(∥x∥)≤V (t,x)≤ ϕ2(∥x∥), t ∈ R, x ∈ Rn. (4)

In addition, there exists a continuous nondecreasing
function ϕ(s) with ϕ(s)> 0,s > 0 such that

V̇ (t,x)≤−ϕ3(∥x∥) if

V (t +θ ,x(t +θ))< ϕ(V (t,x(t))), θ ∈ [−τ,0], (5)

then the solution x = 0 is uniformly asymptotically stable.
Usually, V (t,x) is called Lyapunov-Razumikhin func-

tion if it satisfies (4) and (5) in Lemma 3.

Remark 1: It can be seen in Lemma 3 that one only
needs to consider the initial data if a trajectory of (3) start-
ing from these initial data is “diverging” rather than to re-
quire that V̇ (t,x) be non-positive for all initial data in order
to have the stability of system (3).

Consider the following differential equation with time
delay

ẋ(t) = f (t,xt), t ≥ t0, (6)

where x(t) ∈ Rn is a state vector. In addition, xt(θ) de-
notes a transfer operator of state trajectory for [−τ,0] and
is defined as xt(θ) = x(t+θ) for ∀θ ∈ [−τ,0]. Functional
f (t,xt) is continuous for xt and satisfies f (t,0) = 0.

Lemma 4 (Lyapunov-Krasovskii Theorem) [29]: Sup-
posing the mapping f : R×C → Rn is continuous and
nondecreasing (u,v,w : R̄+ → R̄+. For s > 0, u(s) > 0,
v(s) > 0; for s = 0, u(s) = v(s) = 0), the stability of sys-
tem (6) can be proved if it satisfies

1) V : R×C→ R is continuous and differentiable;
2) u∥ϕ(0)∥ ≤V (t,ϕ)≤ v∥ϕ∥c;
3) V̇ (t,ϕ)≤−ϖ(∥ϕ(0)∥).

In addition, the solution x = 0 is uniformly asymptot-
ically stable for s > 0, ϖ(s) > 0 and globally uniformly
asymptotically stable for lims→∞ u(s) = ∞.

3. PROBLEM FORMULATION

3.1. Vehicle dynamics modeling
Consider a group of vehicles moving in a 1-D longi-

tudinal path in a leader-follower fashion. Vehicles are
assumed to be equipped with on-board sensors (e.g., in-
ertial measurement unit, GPS and radar) to measure the
position, velocity, acceleration of itself and its preceding
neighbors [25]. In addition, each vehicle can get the state
information of other vehicles via a V2V communication
paradigm, the topological structure of the vehicle platoon
is illustrated in Fig 1.

According to Newton’s law, the dynamic equation for
each vehicle can be formulated as [26]{

ẋi = vi,

miv̇i = Fi +Fg
i +Faero

i +Fdrag
i ,

(7)

where xi, vi and mi are the position, velocity and mass of
vehicle i, respectively.

The right hand side for the second equation of (7) rep-
resents the force acting on vehicle i. To be specific,

• Fi =miξi is the force produced by the engine, and ξ̇i =

− ξi
µi(vi)

+ αi
miµi(vi)

models the engine dynamics, where
µi(vi) denotes the vehicle’s engine time-constant with
speed vi and αi represents the throttle input to vehi-
cle’s engine.

• Fg
i = −migsin(θi) represents the vehicle’s weight

parallel to the road surface, where g is the acceler-
ation of gravity and θi denotes the angle between the
road surface and the horizontal plane.

• Faero
i =− ρAiCdi

2 (vi +Vwind)
2sgn(vi +Vwind) is the aero-

dynamic force, where ρ is the specific mass of air, Ai

is the cross-sectional area of the vehicle, Cdi is the
drag coefficient and Vwind denotes the velocity of the
wind gust.

• Fdrag
i = −dmi is a constant, which represents the am-

plitude of the mechanical drag force.

Consequently, (7) can be rewritten as

ẋi = vi,

miv̇i = miξi −migsin(θi)−dmi

− ρAiCdi

2
(vi +Vwind)

2sgn(vi +Vwind),

ξ̇i =− ξi

µi(vi)
+

αi

miµi(vi)
.

(8)

Assumption 1: The road surface is horizontal and
there is no wind gust, then we have θi = 0 and Vwind = 0.

Assumption 2: All vehicles are moving along the same
direction, it can be obtained that sgn(vi) = 1.

Then, the vehicle dynamics (8) can be simplified as

ẋi = vi,

v̇i = ξi −
ρAiCdi

2mi
vi

2 − dmi

mi
,

ξ̇i =− ξi

µi(vi)
+

αi

miµi(vi)
.

(9)

Remark 2: It is well known that the force of a vehicle
is produced by its engine system [26]. In (9), the control
input for vehicle i is the engine’s throttle input αi, which
is more akin to the real dynamics of a vehicle than the pre-
vious mentioned literatures [15, 22, 24, 25] as they merely
take the vehicle’s acceleration (driving or braking force)
as the control input.
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Fig. 1. The topology structure of vehicle platoon.

For vehicle dynamics (9), an exogenous input ui is in-
troduced as the new control input. Then, by deploying the
exact feedback linearization method [27], the linearized
model of a single vehicle can be represented as

ẋi = vi,

v̇i = ai,

ȧi = ui,

(10)

where ui is the newly defined control input, xi, vi and ai

denote the position, velocity and acceleration of vehicle i,
respectively.

Remark 3: From (10) it can be seen that the linearized
vehicle model is a third-order linear dynamic system,
which is more simple than the nonlinear vehicle dynamic
model (9). In the following, the vehicle platoon control
problem with time delay will be investigated on the basis
of (10).

3.2. Consensus based vehicle platoon algorithm
Given the third-order vehicle dynamic model (10), the

vehicle platoon problem for maintaining a desired dis-
tance with successive vehicles and having the same ve-
locity and acceleration with the leader vehicle can there-
fore be formulated as a consensus problem [24]. Then, the
aim of vehicle platoon is to drive the positions, velocities
and accelerations of all the vehicles towards the following
equations

lim
t→∞

∥xi − x j∥= Ri j,

lim
t→∞

∥vi − vL∥= 0,

lim
t→∞

∥ai −aL∥= 0, (11)

where Ri j = |i− j| · (R + Li) represents the distance be-
tween vehicle i and j. Here, Li is the body length of ve-
hicle i and R is the safe distance between two consecutive
vehicles. In addition, vL and aL are the velocity and accel-
eration of the leader vehicle, respectively.

If time delay is considered in the state information ex-
change between vehicles, the control objective (11) can be

rewritten as

lim
t→∞

∥xi(t −Ψ(t))− x j(t −Ψ(t))∥= Ri j,

lim
t→∞

∥vi(t −Ψ(t))− vL(t −Ψ(t))∥= 0,

lim
t→∞

∥ai(t −Ψ(t))−aL(t −Ψ(t))∥= 0, (12)

where Ψ(t) represents the time delay.
Here, by deploying the consensus strategy, the dis-

tributed controller for vehicle platoon with time delay is
designed as

ui =−
n

∑
j=1

ki j [xi(t −Ψ(t))− x j(t −Ψ(t))−Ri j]

− [xi(t −Ψ(t))− xL(t −Ψ(t))−RiL]

−
n

∑
j=1

ki j [vi(t −Ψ(t))− v j(t −Ψ(t))]

− [vi(t −Ψ(t))− vL(t −Ψ(t))]

−β
n

∑
j=1

ki j [ai(t −Ψ(t))−a j(t −Ψ(t))]

− [ai(t −Ψ(t))−aL(t −Ψ(t))] , (13)

where RiL = i · (R+Li) is the distance between vehicle i
and the leader, ki j > 0 is the weighted adjacency matrix,
β > 0 denotes the acceleration damping gain.

Let x̃i = xi(t −Ψ(t))− xL(t −Ψ(t))−RiL, ṽi = vi(t −
Ψ(t))− vL(t −Ψ(t)), ãi = ai(t −Ψ(t))− aL(t −Ψ(t)) be
the position error, velocity error and acceleration error
with respect to the leader vehicle, respectively. In addi-
tion, define

x̃ =


x̃1

x̃2
...

x̃n

 , ṽ =


ṽ1

ṽ2
...

ṽn

 , ã =


ã1

ã2
...

ãn

 , u =


u1

u2
...

un

 .

Then, the control input (13) in terms of error expres-
sions can be represented in the compact form

u =−Lx̃(t −Ψ(t))−Lṽ(t −Ψ(t))
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−βLã(t −Ψ(t))− x̃(t −Ψ(t))

− ṽ(t −Ψ(t))−β ã(t −Ψ(t))

=− (L+ In)x̃(t −Ψ(t))− (L+ In)ṽ(t −Ψ(t))

−β (L+ In)ã(t −Ψ(t)), (14)

where L is the Laplacian matrix of the vehicle platoon, In

is the adjacency matrix of the leader vehicle.
In the following, some sufficient conditions that guar-

antee the stability of the proposed vehicle platoon control
algorithm (14) in the presence of time delay will be de-
rived.

4. MAIN RESULTS

In this section, the sufficient conditions for the stability
of vehicle platoon control algorithm with constant time
delay are firstly addressed. After that, the case with time-
varying delay is investigated.

4.1. Vehicle platoon with constant time delay
In the case of constant time delay, Ψ(t) = τ is assumed

to be a constant value. Then, (14) can be rewritten as

u =− (L+ In)x̃(t − τ)− (L+ In)ṽ(t − τ)
−β (L+ In)ã(t − τ). (15)

Writing (15) in the state space form yields ˙̃x
˙̃v
˙̃a

=

0 In 0
0 0 In

0 0 0

x̃
ṽ
ã


+

 0 0 0
0 0 0

−H −H −βH

x̃(t − τ)
ṽ(t − τ)
ã(t − τ)

 , (16)

where H = L+ In.
Let ε = [x̃T ṽT ãT]T, it can be obtained that

ε̇(t) =C0ε(t)+C1ε(t − τ), (17)

where

C0 =

0 In 0
0 0 In

0 0 0

 , C1 =

 0 0 0
0 0 0

−H −H −βH

 .

Then, the following theorem for the stability of vehicle
platoon with constant time delay is proposed.

Theorem 1: Under the control protocol (15), the vehi-
cle platoon (10) with constant time delay will be asymp-
totically stable if the time delay τ satisfies

τ < τ∗ =
λmin(F)

∥Q1∥+∥Q2∥+2r∥P∥
, (18)

where F =−[P(C0 +C1)+(C0 +C1)
TP] is a positive def-

inite symmetric matrix, Q1 and Q2 are defined as Q1 =
PC1C0P−1CT

0 CT
1 P and Q2 = PC2

1P−1(C2
1)

TP, respectively.

Then, if time delay τ is smaller than τ∗, under the pla-
toon control algorithm (15), the followers will track the
trajectory of the leader with the desired distance, mean-
while keeping the same velocity and acceleration with it
asymptotically.

Proof: Consider the following Lyapunov-Razumikhin
function

V1(ε) = εTPε, (19)

where P is a positive definite matrix.
Taking the time derivative of V1, it obtains

V̇1 = 2εTPε̇. (20)

According to the Leibniz-Newton formula and (17), it is
known that

ε(t)− ε(t − τ) =
∫ t

t−τ
ε̇(s)ds

=
∫ 0

−τ
[C0ε(t + s)+C1ε(t + s− τ)]ds.

(21)

Thus, we have

ε(t − τ) =ε(t)−
∫ t

t−τ
ε̇(s)ds

=ε(t)−C0

∫ 0

−τ
ε(t + s)ds

−C1

∫ −τ

−2τ
ε(t + s)ds. (22)

Then, equation (17) can be rewritten as

ε̇ =C0ε +C1

[
ε −

∫ t

t−τ
ε̇(s)ds

]
=(C0 +C1)ε −C1C0

∫ 0

−τ
ε(t + s)ds

−C2
1

∫ −τ

−2τ
ε(t + s)ds. (23)

Invoking (23), the time derivative of V1 is that

V̇1 =2εTP(C0 +C1)ε

−2εTPC1C0

∫ 0

−τ
ε(t + s)ds

−2εTPC2
1

∫ −τ

−2τ
ε(t + s)ds. (24)

According to Lemma 1, the following inequalities hold

−2εTPC1C0

∫ 0

−τ
ε(t + s)ds

≤ τεTPC1C0P−1CT
0 CT

1 Pε +
∫ 0

−τ
ε(t + s)TPε(t + s)ds,

(25)
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−2εTPC2
1

∫ −τ

−2τ
ε(t + s)ds

≤ τεTPC2
1P−1(C2

1)
TPε +

∫ −τ

−2τ
ε(t + s)TPε(t + s)ds.

(26)

Therefore, equation (24) can be rewritten as

V̇1 =− εTFε −2εTPC1C0

∫ 0

−τ
ε(t + s)ds

−2εTPC2
1

∫ −τ

−2τ
ε(t + s)ds

≤− εTFε + τεTPC1C0P−1CT
0 CT

1 Pε

+
∫ 0

−τ
ε(t + s)TPε(t + s)ds

+ τεTPC2
1P−1(C2

1)
TPε

+
∫ −τ

−2τ
ε(t + s)TPε(t + s)ds

≤− εTFε + τεTPC1C0P−1CT
0 CT

1 Pε
+ τεTPC2

1P−1(C2
1)

TPε

+
∫ 0

−2τ
ε(t + s)TPε(t + s)ds. (27)

Let ϕ(s) = rs and r > 1. According to Lemma 3, it can be
obtained that

ε(t + s)TPε(t + s)≤ rεTPε, (28)

when

V (ε(t +θ))< rV (ε(θ)), − τ ≤ θ ≤ 0. (29)

Note that (28) satisfies the following inequality according
to the mean value theorems for definite integrals∫ 0

−2τ
ε(t + s)TPε(t + s)ds ≤ 2rτεTPε. (30)

Finally, invoking (27) and (30), V̇1 follows

V̇1 ≤− εT[F − τ(Q1 +Q2 +2rP)]ε
<0. (31)

Thus, it is known that

lim
x→∞

ε(t) = 0, (32)

i.e., x̃(t−τ) = xi(t−τ)−xL(t−τ)− i ·RiL = 0, ṽ(t−τ) =
vi(t −τ)−vL(t −τ) = 0, and ã(t −τ) = ai(t −τ)−aL(t −
τ) = 0, which means that vehicles in the platoon will keep
the desired safe distance with other vehicles, and have the
same velocity and acceleration with the leader vehicle in
the presence of constant time delay. □

Remark 4: It is worth mentioning that Theorem 1 only
applies for the case of constant time delay in vehicle pla-
toon. However, the time delay in the information ex-
change between vehicles is associated with many factors

like the deployed communication protocol, inter-vehicle
distance, communication bandwidth and etc, which is
uaually time-varying in the vehicle state transmission pro-
cess [7]. In the following, a more general case for vehicle
platoon with time-varying delay will be investigated.

4.2. Vehicle platoon with time-varying delay
In this subsection, we further consider the problem of

vehicle platoon with time-varying delay, i.e., Ψ(t) = τ(t).
Here, τ(t) is a continuously differentiable function satis-
fying 0 ≤ τ(t)≤ τ∗, τ̇(t)≤ h < 1, for all t ≥ 0.
Then, equation (14) is given as

u =− (L+ In)x̃(t − τ(t))− (L+ In)ṽ(t − τ(t))
−β (L+ In)ã(t − τ(t)). (33)

Similarly, equation (33) can be written in the state space
form ˙̃x

˙̃v
˙̃a

=

0 In 0
0 0 In

0 0 0

x̃
ṽ
ã


+

 0 0 0
0 0 0

−H −H −βH

x̃(t − τ(t))
ṽ(t − τ(t))
ã(t − τ(t))

 , (34)

where H = L+ In.
Let ε = [x̃T ṽT ãT]T, we have

ε̇(t) =C0ε(t)+C1ε(t − τ(t)), (35)

where

C0 =

0 In 0
0 0 In

0 0 0

 , C1 =

 0 0 0
0 0 0

−H −H −βH

 .

Then, the following theorem for the stability of vehicle
platoon with time-varying delay is introduced.

Theorem 2: Under the control protocol (33), the vehi-
cle platoon (10) with time-varying delay can be asymp-
totically stable if there exist symmetric positive definite
matrices G, R, E of appropriate dimensions satisfying the
following inequality

Λ =


Λ11 Λ12 G τ∗GC1

Λ21 Λ22 0 0
G 0 −R 0

τ∗GC1 0 0 −τ∗R

< 0, (36)

where Λ11 = (C0 +C1)
TG + G(C0 +C1) + E + τ∗(C0 +

C1)
TR(C0 +C1)− (1− h)E, Λ12 = (1− h)E − 2τ∗(C0 +

C1)
TRC1, Λ21 = (1−h)E, Λ22 = τ∗C1

TRC1 − (1−h)E.
Then, all the followers will track the leader vehicle with

the same velocity and acceleration, meanwhile keeping
the desired distance with its consecutive vehicles in the
presence of time-varying delay.



758 Panpan Yang, Ye Tang, Maode Yan and Xu Zhu

Proof: Define the following Lyapunov-Krasovskii
functional

V2(t) =εT(t)Gε(t)+
∫ t

t−τ(t)
εT(s)Eε(s)ds

+
∫ 0

−τ(t)

∫ t

t+θ
εT(s)Rε(s)dsdθ . (37)

Taking the time derivative of V2(t) yields

V̇2(t) =ε̇T(t)Gε(t)+ εT(t)Gε̇(t)+ εT(t)Eε(t)
− (1− τ̇(t))εT(t − τ(t))Eε(t − τ(t))

+ τ(t)ε̇T(t)Rε̇(t)−
∫ t

t−τ(t)
ε̇T(s)Rε̇(s)ds

=

[
(C0 +C1)ε(t)−C1

∫ t

t−τ(t)
ε̇(s)ds

]T

Gε(t)

+ εT(t)G

[
(C0 +C1)ε(t)−C1

∫ t

t−τ(t)
ε̇(s)ds

]
+ εT(t)Eε(t)+ τ(t)ε̇T(t)Rε̇(t)

−
∫ t

t−τ(t)
ε̇T(s)Rε̇(s)ds

− (1− τ̇(t))εT(t − τ(t))Eε(t − τ(t))
=εT(t)[(C0 +C1)

TG+G(C0 +C1)+E]ε(t)

−
∫ t

t−τ(t)
ε̇T(s)CT

1 Gε(t)ds

−
∫ t

t−τ(t)
εT(t)GC1ε̇(s)ds

− (1− τ̇(t))εT(t − τ(t))Eε(t − τ(t))

−
∫ t

t−τ(t)
ε̇T(s)Rε̇(s)ds+ τ(t)ε̇T(t)Rε̇(t)

≤εT(t)[(C0 +C1)
TG+G(C0 +C1)+E]ε(t)

+
1
2

∫ t

t−τ(t)
ε̇T(s)Rε̇(s)ds

+
1
2

∫ t

t−τ(t)
εT(t)GC1R−1CT

1 Gε(t)ds

+
1
2

∫ t

t−τ(t)
ε̇T(s)Rε̇(s)ds

+
1
2

∫ t

t−τ(t)
εT(t)GC1R−1CT

1 Gε(t)ds

−
∫ t

t−τ(t)
ε̇T(s)Rε̇(s)ds

− (1−h)εT(t − τ(t))Eε(t − τ(t))
+ τ(t)ε̇T(t)Rε̇(t)

≤εT(t)[(C0 +C1)
TG+G(C0 +C1)+E

+ τ(t)GC1R−1CT
1 G+GR−1G]ε(t)

− (1−h)εT(t − τ(t))Eε(t − τ(t))
+ τ(t)ε̇T(t)Rε̇(t)

=εT(t)[(C0 +C1)
TG+G(C0 +C1)+E

+ τ(t)GC1R−1CT
1 G+GR−1G]ε(t)

− (1−h)εT(t − τ(t))Eε(t − τ(t))

+ τ(t)
[
(C0 +C1)ε(t)−C1

∫ t

t−τ(t)
ε̇(s)ds

]T

×R
[
(C0 +C1)ε(t)−C1

∫ t

t−τ(t)
ε̇(s)ds

]
=εT(t)[(C0 +C1)

TG+G(C0 +C1)+E

+ τ(t)GC1R−1CT
1 G+GR−1G

+ τ(t)(C0 +C1)
TR(C0 +C1)

−2τ(t)(C0 +C1)
TRC1 + τ(t)C1

TRC1]ε(t)
− (1−h)εT(t − τ(t))Eε(t − τ(t))
+ τ(t)εT(t − τ(t))C1

TRC1ε(t − τ(t))
+2τ(t)εT(t)(C0 +C1)

TRC1ε(t − τ(t))
− τ(t)εT(t)CT

1 RC1ε(t − τ(t))
− τ(t)εT(t − τ(t))CT

1 RC1ε(t). (38)

Let Γ(t) = ε(t)− ε(t − τ), we have

V̇2(t)≤
[
εT(t) ΓT(t)

]
×
[

Λ11 + τ∗GC1R−1CT
1 G+GR−1G Λ12

Λ21 Λ22

]
×
[

ε(t)
Γ(t)

]
. (39)

According to inequality (36) and Lemma 2, it follows that[
Λ11 + τ∗GC1R−1CT

1 G+GR−1G Λ12

Λ21 Λ22

]
< 0. (40)

Hence, V̇2(t)< 0. According to Lyapunov theory, it can be
concluded that the vehicle platoon is asymptotically stable
and limx→∞ ε(t)= 0, i.e., x̃(t−τ(t))= xi(t−τ(t))−xL(t−
τ(t))− i ·RiL = 0, ṽ(t−τ(t))= vi(t−τ(t))−vL(t−τ(t))=
0, ã(t − τ(t)) = ai(t − τ(t))−aL(t − τ(t)) = 0.

Therefore, vehicles in the platoon can keep the desired
safe distance with the consecutive vehicles and have the
same velocity and acceleration with the leader in the pres-
ence of time-varying delay. □

5. SIMULATION STUDIES

Numerical simulations are performed to verify the ef-
fectiveness of the proposed vehicle platoon algorithm in
the presence of time delay. Here, one leader and 4 follow-
ers are chosen to form the platoon, the reference velocity
of the leader is 20m/s.

The parameters of vehicles are listed as follows, where
ρ = 1.293 m/s3, A = 2.5 m2, Cd = 0.45, dm = 5N, m =
1775 kg, µ(v) = 0.1. Substituting these parameters into
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with constant time delay.
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Fig. 3. Inter-vehicle spaces between four follower vehi-
cles and the leader with constant time delay.

the simplified nonlinear vehicle dynamics (9), it obtains
ẋi = vi,

v̇i = ξi −
1.293×2.5×1.45

2×1775
vi

2 − 5
1775

,

ξ̇i =− ξi

0.1
+

αi

1775×0.1
.

(41)

In addition, the initial conditions for the leader and fol-
lower vehicles are xL(0) = 70 m, xi(0) = [0;10;30;50] m,
vL(0) = 20 m/s, vi(0) = 0 m/s, aL(0) = ai(0) = 0 m/s2, the
body length of each vehicle is Li = 4.5 m and the desired
distance between consecutive vehicles is R = 20 m.

5.1. Constant time delay case

Numerical simulations are conducted to illustrate the
feasibility of the platoon control algorithm in (15) and the
effectiveness of Theorem 1. Here, we let β = 4, L and In
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Fig. 4. Velocities for four follower vehicles and the leader
with constant time delay.

0 10 20 30 40 50 60
−8

−6

−4

−2

0

2

4

6

8

10

t(s)

a
(m

∗
s
−

2
)

 

 

aL

a1

a2

a3

a4

Fig. 5. Accelerations for four follower vehicles and the
leader with constant time delay.

can be written in the following form

L=


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 , In =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

(42)

According to Theorem 1, the maximum upper bound
for constant time delay can be solved by resorting to the
LMI Toolbox in MATLAB, which follows r = 2 and τ∗ =
3.345×10−7 s.

Let τ = 3×10−7s < τ∗ be the constant time delay, un-
der the vehicle platoon control algorithm (15), the posi-
tion, inter-vehicle space, velocity and acceleration curves
of vehicles are shown in Figs. 2-5.

From Fig. 2 and Fig. 3 it can be seen that the follow-
ers will track the leader vehicle and the distance between
consecutive vehicles will converge to the desired value.
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with time-varying delay.
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Fig. 7. Inter-vehicle spaces between four follower vehi-
cles and the leader with time-varying delay.

Meanwhile, there is no collision between any two consec-
utive vehicles during this process. Fig. 4 shows that the
velocity of followers will converge to that of the leader
vehicle (20m/s). In addition, the acceleration curves of
vehicles in Fig. 5 demonstrate that the acceleration of all
the vehicles will asymptotically converge to zero, suggest-
ing that the whole platoon moves in a uniform motion with
the desired velocity in the steady state.

Therefore, the proposed control algorithm (15) is able
to achieve the stable vehicle platoon in the presence of
constant time delay, as long as the time delay τ satisfies
(18).

Remark 5: According to the above simulation results,
it is known that the vehicle platoon (10) with control pro-
tocol (15) can achieve the platoon formation with the de-
sired inter-vehicle distance and velocity in the presence of
constant time delay. Particularly, the longitudinal distance
between consecutive vehicles can maintain the predefined
space Ri j and the velocity of each vehicle can track the
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Fig. 8. Velocities for four follower vehicles and the leader
with time-varying delay.
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Fig. 9. Accelerations for four follower vehicles and the
leader with time-varying delay.

desired velocity vL.

Remark 6: In Theorem 1, the feasible solutions for the
positive definite matrixes P and F are solved by the resort-
ing to the LMI tool box in MATLAB. Then, by substitut-
ing the feasible solutions of P and F into (18), the upper
bond of constant time delay τ∗ can be obtained.

5.2. Time-varying delay case
For the case of vehicle platoon with time-varying delay,

let β = 1.5 and τ(t) = 0.085|sin(t)|, it can be derived that
τ∗ = 0.085 s together with h = 0.085. According to The-
orem 2, the feasible solutions of G, E, R can also be given
by solving the LMIs.

Simulation results are depicted in Figs. 6-9, from which
it can be seen that the vehicle platoon will be in the sta-
ble state after 40 s, i.e., the inter-vehicle space between
any two consecutive vehicles will maintain the desired
distance, the velocity of followers will converge to that
of the leader vehicle and the acceleration of all vehicles
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Fig. 10. Positions for four follower vehicles and the leader
in [27].
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Fig. 11. Inter-vehicle spaces between four follower vehi-
cles and the leader in [27].

will converge to zero eventually, which verify the feasi-
bility and correctness of the proposed control algorithm
(33) and sufficient conditions (36) for vehicle platoon in
the presence of time-varying delay.

Remark 7: According to the above simulation results,
it is known that the vehicle platoon (10) with control pro-
tocol (33) can achieve the platoon formation with the de-
sired inter-vehicle distance and velocity in the presence of
time-varying delay. Particularly, the longitudinal distance
between consecutive vehicles can maintain the predefined
space Ri j and the velocity of each vehicle can track the
desired velocity vL.

Remark 8: It is worth noting that the upper bound for
time delay in Theorem 2 is much larger than that of The-
orem 1, which suggests that the sufficient conditions, de-
rived by Lyapunov-Razumikhin Theorem, for the stabil-
ity of vehicle platoon with constant time delay, are more
conservative than that are given by Lyapunov-Krasovskii
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Fig. 12. Velocities for four follower vehicles and the
leader in [27].
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Fig. 13. Accelerations for four follower vehicles and the
leader in [27].

Theorem. Therefore, Theorem 2 is more robust against
time delay than Theorem 1 and it is more suitable for the
vehicle platoon control with time delay.

5.3. Comparative analysis
In order to illustrate the advantage of the proposed al-

gorithm, a comparative study is carried out between The-
orem 2 and [27], where a robust exponential H∞ controller
for vehicle platoon with time-varying delay is proposed in
[27].

In particular, the time delay for [27] is chosen as τ(t) =
0.085|sin(t)|, other simulation parameters can be referred
to the above simulation cases. The simulation results of
[27] are shown in Figs. 10-13.

From Figs. 10-13, it can be clearly seen that the ve-
hicle platoon control algorithm in [27] is unable to real-
ize the stable vehicle platoon when the time delay follows
τ(t) = 0.085|sin(t)|. To be specific, the position curves of
vehicle in Fig. 10 demonstrate that vehicles can not form
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the platoon formation. Some overlapped positions also in-
dicate that collision may occur in the platoon, which is
not allowed for vehicle platoon from the safety perspec-
tive. From Fig. 11, it can be seen that the inter-vehicle
spaces fluctuate drastically and can not maintain the de-
sired distance. The velocity and acceleration curves in
Fig. 12 and Fig. 13 suggest that the velocity of followers
can not converge to that of the leader. Meanwhile, ve-
hicles are frequently accelerating or decelerating, which
may cause discomfort for passengers and may also con-
sume more fuel that uniform motion.

Remark 9: Form the above comparative analysis, it is
known that Theorem 2 performs better than that of [27]
under the same time-varying delay. Moreover, the up-
per bound of time delay is τ∗ = 20 ms in the simulation
of [27], which is much smaller than that of Theorem 2.
Therefore, the results of [27] are more conservative than
our algorithm and our results are more robust against time
delay.

6. CONCLUSIONS AND FUTURE WORK

The platoon control problem for nonlinear vehicles with
time delay is studied in this paper. A feedback lineariza-
tion approach is firstly deployed to convert the nonlinear
vehicle dynamics into a third-order linear dynamic sys-
tem and the vehicle platoon control algorithm is designed
based on the consensus theory. Then, two time delay cases
with, respectively, constant time delay and time-varying
delay are investigated under the proposed control algo-
rithm. The sufficient conditions for the stability of vehicle
platoon with constant time delay and time-varying delay
are derived by deploying the Lyapunov-Razumikhin the-
orem and the Lyapunov-Krasovskii theorem, respectively.
Various simulation cases demonstrate the feasibility and
effectiveness of the theoretical results.

In the future, the following issues will be further inves-
tigated:

• The linearized vehicle dynamic model (10) adopted
in this paper neglects some intrinsic properties of ve-
hicles such as the actuator (gas pedal or break system)
saturation and time lag, which may also degrade the
performance of vehicle platoon in practical applica-
tions. Therefore, we will improve our algorithm and
investigate the actuator saturation and time lag prob-
lems of vehicle platoon.

• This paper only considers the time delay issue of
communication networks in vehicle platoon control.
However, the packet loss problem is another critical
issue in networked control systems [30] that may also
degrade the performance of vehicle platoon. In the fu-
ture, the vehicle platoon control with packet loss will
be further investigated.

• The topological structure of vehicle platoon in this pa-
per is assumed to be fixed, which is not well coincide
with the actual characteristic of vehicle platoon. As
the topology of vehicle platoon is time-varying with
the cruising of vehicles [31], the vehicle platoon con-
trol under switching topology is our new concern in
the future.
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