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Autonomous Task Allocation in a Swarm of Foraging Robots: An Ap-
proach Based on Response Threshold Sigmoid Model
Bao Pang, Yong Song* O , Chengjin Zhang, Hongling Wang, and Runtao Yang

Abstract: This paper proposes a task allocation model to adjust the number of working robots autonomously in
a swarm of foraging robots. In swarm foraging, the traffic congestion in foraging area and the physical interfer-
ence between robots can decrease the swarm performance significantly. We introduce the concept of traffic flow
density for the first time which can be used to reflect the traffic condition in the foraging area. The amount of
obstacle avoidance denotes the number of times physical interference generated in swarm foraging. The traffic flow
density and the amount of obstacle avoidance together adjust the value of the threshold. In the proposed response
threshold sigmoid model (RTSM), the individual robot can determine autonomously whether to forage or not on
the basis of the threshold and the external stimulus and the swarm system can complete the expected foraging task.
Simulation experiments are carried out with the aim of evaluating the performance of the proposed method. Sev-
eral performance measures are introduced to analyze the experimental results and compare to adaptive response
threshold model (ARTM). Experimental results verify that the RTSM improves foraging efficiency and decreases
the physical interference.

Keywords: Foraging, physical interference, self-organized, swarm robotics, task allocation.

1. INTRODUCTION

In nature, there are many examples where the individ-
ual with simple structure, limited function can complete
the complicated tasks by means of cooperation with each
other [1]. A typical example is the ant colonies foraging,
that the ants search for food in the environment and trans-
port the collected food to the nest. No global information
and no direct communication, the ants complete the for-
aging task by local sensing and indirect communication
[2]. In ant colonies, the individuals perform a variety of
tasks, such as foraging, brood care and nest construction.
According to different requirement of the colony, task al-
location is used to allocate different number of ants to per-
form different tasks [3].

Inspired by the complicated social behaviors in ant
colonies, this paper employs simple robots to carry out
the complex foraging task. The robot in swarm foraging
is designed based on swarm intelligence and possesses the
basic characteristic of swarm intelligence: decentralized
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control, limited sensing, and local communication [4]. In
the swarm of foraging robots, the individual robot should
search for certain objects called for food which is dis-
tributed randomly around the foraging area. Once the food
is found, the robot collects the food and delivers it to a
unique location referred to as the nest [5]. Swarm robotics
is mainly in the stage of theoretical research recently and it
has not been widely used in real-world applications. How-
ever, swarm foraging has lots of potential applications,
such as, toxic-waste cleanup, harvesting, land-mine clear-
ance, search and rescue, and area exploration [6]. In these
applications, the swarm system can adjust the number of
working robots according to the changing environment by
using the proposed RTSM.

In recent years, swarm foraging has received wide-
spread attention [7–11]. Without global information and
no direct communication, Moon et al. construct a vir-
tual pheromone map which effectively realizes the indi-
rect communication among multi-robots [12]. Garnier et
al. [13] employ chemicals as pheromone and use virtual
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pheromone to realize the communication between robots
and eventually they fulfill the swarm foraging task. How-
ever, the swarm system can not adjust the number of forag-
ing robots based on the requirement of the swarm and due
to simple structures of the robots, the mentioned methods
have certain difficulty to implement.

Inspired by division of labor in insect societies, E.
Bonabeau introduced a fixed response threshold model
(FRTM) [14]. The FRTM can be used to account for the
experimental observations of social insects in their divi-
sion of labor. In ant colonies, when the amount of food in
nest is less than a certain threshold (θ ), much more ants
begin to go foraging; when the amount of food in the nest
is greater than a certain threshold (θ ), fewer ants begin
to go foraging. Individuals with different threshold (θ )
respond differently to external stimulus. When given a
lower threshold, the individual will respond to a lower ex-
ternal stimulus and the the individual is more likely to go
foraging.

As the FRTM is concise and effective to accomplish
task allocation, Yang et al. [15] have applied the FRTM to
the swarm of foraging robots. In swarm foraging, thresh-
old (θ ) is a fixed internal variable which is usually given
in advance. When a smaller threshold is given, the swarm
system has the strong robustness and has better adaptabil-
ity to against sudden changes; under the same stimulus,
much more robots begin to go foraging which will pro-
duce more physical interference and thus reduce the for-
aging efficiency [16]. The swarm with a bigger thresh-
old can decrease the physical interference, but the forag-
ing efficiency is also affected by a lot [17]. Therefore, it
can be seen that the swarm with fixed threshold can not
achieve expected foraging efficiency. In order to elimi-
nate the limitations of the fixed threshold and further im-
prove the foraging efficiency, some researches improved
the foraging efficiency by adjusting the threshold dynam-
ically [18, 19]. A novel response threshold model was
improved where the threshold decreased in a predefined
amount when a robot performed the task [20]. Castello
and Yamamoto [21] proposed an adaptive response thresh-
old model (ARTM) where the threshold (θ ) can be adap-
tively adjusted according to the external stimulus. How-
ever, these methods did not consider the traffic condition
and physical interference, which will decrease the forag-
ing efficiency.

As noted in [22], the performance of a swarm system is
influenced by the physical interference among the forag-
ing robots. Increasement of the number of foraging robots
increases the swarm performance up to some point after
which the performance starts to decrease influenced by
negative effect of the interferences between robots [23].
Pini [24, 25] proposed the task partitioning method, in
which the task of moving an object from the source to
the nest is partitioned into several sub-tasks consisting
of moving the object for a short distance. Although this

method decreased the number of physical interference, the
time to complete the task was increased which reduced
the foraging efficiency. Vaughan et al. [26] extended the
bucket brigade foraging algorithm in which each robot’s
foraging area is adapted in response to interference with
other robots. Liu et al. [27] present an adaptation mecha-
nism to automatically adjust the number of foraging robots
to maximize the net energy income to the swarm. By
considering the physical interference, these methods re-
duce the number of foraging robots. Sometimes, although
much more interferences will be produced, because of the
task demand, much more robots are required to work to-
gether to complete the foraging task.

In order to complete the self-organised task allocation
according to the requirement of the task and the chang-
ing environment, this paper proposes the response thresh-
old sigmoid model (RTSM) to adjust the robots’ forag-
ing behaviors. As RTSM contains an exponential term,
the robots can respond to the changes of environment in
a timely manner. In RTSM, the threshold (θ ) can be dy-
namically adjusted based on the robots’ states and the en-
vironment situation, such as traffic condition and physical
interference. The proposed method is better than the pre-
vious methods in the following points.

Firstly, unlike FRTM and ARTM, the RTSM introduces
an exponential term which makes the individual robot re-
sponds quickly to the changes in the environment. Sec-
ondly, RTSM introduces the concept of traffic flow den-
sity (TFD) for the first time, the number of the working
robots in unit length, to reflect the traffic situation. Also,
RTSM employs physical interference, the amount of ob-
stacle avoidance between robots, to measure the traffic
condition. The individual robot dynamically adjusts the
threshold (θ ) according to the amount of obstacle avoid-
ance and TFD, and then decides whether to go foraging
or not based on the foraging probability. Thirdly, stimulus
S(t), the information about the food in the nest, can eval-
uate whether the task has completed or not in real time.
Because the stimulus S(t) and threshold (θ ) together af-
fect the foraging probability, RTSM can allocate different
number of robots to go foraging according to the require-
ment of the task and the changing environment. RTSM
can not only guarantee to complete the tasks but also re-
duce physical interferences.

2. METHODS

2.1. State transitions of swarm foraging
In the study of the swarm foraging, most of the re-

searches focused on the changes of the swarm energy,
which are caused by the foraging behaviors and the con-
sumption of the swarm. Swarm energy is all derived from
the food collected by the robots and each food contains a
certain amount of energy. However, the foraging behav-
iors of the robots such as the movements of the robots,
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the physical interference and the swarm in the nest all en-
tail the swarm energy loss. Net energy is the rest of the
swarm energy, that is, the energy acquired from the col-
lected food minus the energy consumed by the robots and
the swarm. In order to maintain the net energy (net food)
at a desired level, the swarm need to implement the self-
organized task allocation. In task allocation, the robot de-
termines when to search for food and when to wait in the
nest autonomously. Because the net energy and the traffic
condition will affect the foraging behaviors, how to im-
prove the foraging efficiency is an important problem in
swarm foraging.

In order to research the swarm foraging, we assume that
the swarm system used in this study is a homogeneous sys-
tem. We present a set of behavioral rules which are used
to control and guide individual robots to form efficient and
adaptive foraging behaviors. All robots are subject to the
same behavior rules in performing the foraging task. The
foraging behavior of the robots is illustrated by the finite
state mechanism shown in Fig. 1. The states for foraging
behaviors are as follows:

Wait: At the initial phase of the foraging task, all the
robots wait in the nest. T1 is the minimum waiting time
which is given in advance. If the waiting time t1 that has
been consumed by the robot in the Wait state is greater
than T1, the individual robot determines whether to go for-
aging or not. The process from Wait to Search is the task
allocation which will be introduced in detail in next sub-
section. Based on the foraging probability Pf , the robot
chooses whether to switch from Wait state to Search state
or not.

Search: The robot looks for the food based on ran-
dom walk method, where the robot goes straight until en-
countering other robots or the boundary and then the robot
turns around randomly. In order to better complete the for-
aging task, we set a maximum search time T2. If the robot
finds food in the given time T2, it switches to Cpature
state. If not, it switches to Return state.

Return: We set up a light source in the nest, so the
robot returns to the nest by tracing the light. By detecting
changes of ground color inside and outside the nest, the
individual robot ensures whether it has reached the nest or
not. When the robot arrives at the nest, it switches to Wait
state.

Capture: The robot walks up to the food and grab
the food. If the robot loses the food or grabs no food,
the robot enters Search state. If the robot grabs the food
successfully, it enters Delivery state.

Delivery: The robot with food goes back to the nest
by tracing the light. If the robot loses the food, it enters
Search state. If the robot arrives at the nest, it enters De-
posit state.

Deposit: The robot unloads the food and then enters
Wait state.

As can be seen in Fig. 1, the robot within each state can

C1: task allocation, Pf

Wait

Search

Return

Capture

Delivery

DepositC1

C2: find no food in the given time

C3: arrive at the nest

C4: find the food in the given time

C6: grab no food

C8: unload the foodC7: lost the food

C5: grab the food

C8

C2

C3

C4

C6

C5

C7

C3

Fig. 1. State transitions of robot’s foraging behavior. The
foraging behavior can be divided into six states:
Wait, Search, Return, Capture, Delivery, De-
posit. Each state represents different phases of
the foraging task. We define eight perceptual cues
(Ci, i = 1,2, ...,8). Under the influence of percep-
tion cues, the individual robot decides whether to
switch to the next state. The arrows indicate the re-
lations and directions between the state transitions.

switch to corresponding state if the perceptual cue is satis-
fied. In Search state, the robot searches for food using the
random walk method. When the robot encounters obsta-
cles such as other robots and boundaries, the robot turns
to the opposite direction to avoid the obstacles. In Return
state and Delivery state, the robot uses light intensity sen-
sors to measure the light intensity to ensure the direction
of the nest.

In order to generate self-organized foraging behavior
and improve the foraging efficiency, the individual robot
needs to know in what circumstances it should go forag-
ing. The perceptual cues C1 denote the task allocation and
the foraging probability Pf determines whether the robot
begins to go foraging or not. This paper employs RTSM
to calculate the value of Pf and the detailed description is
presented in the following subsection.

2.2. Response threshold sigmoid model (RTSM)

The purpose of task allocation is to improve the for-
aging efficiency and maintain the net food at the desired
level. Swarm energy is derived from the food collected by
the robots and swarm energy can also be reduced. On the
premise of maintaining the net energy at the desired level,
how to effectively adjust the robots’ behavior is a chal-
lenging problem. We employ the RTSM to calculate the
foraging probability of each robot. In RTSM, the foraging
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behavior of individual robot is influenced by the external
stimulus (S(t)) and the response threshold (θ ). The exter-
nal stimulus S(t) is defined as:

S(t) = Fd −F(t), (1)

where Fd is the desired amount of food to be maintained
in the nest. F(t) refers to the amount of net food at time
t in the nest, that is to say, the total food collected by the
robots minus the amount of food consumed. Stimulus S(t)
denotes the gap between the existing amount of net food
and the desired amount of food. When the stimulus S(t) is
bigger, the existing amount of net food is much less than
the desired level, so much more robots start to go foraging.
On the contrary, when the stimulus S(t) is smaller, fewer
robots start to go foraging. When S(t)≤ 0, the robots stop
going foraging.

When multiple robots perform foraging task, obstacle
avoidance often occurs between the robots. Sometimes
obstacle avoidance which occurs among multiple robots
can make the robots to turn into the deadlock state. When
the robot is in Return state or Delivery state, the robot
goes back to the nest in a straight line by tracing the light;
the obstacle avoidance can make the robot deviates from
the route, thus the robot spends much more time to re-
turn to the nest. Therefore, obstacle avoidance can reduce
the foraging efficiency. Obviously, the amount of obstacle
avoidance is affected by the number of foraging robots and
the size of the foraging area. In order to describe the in-
dex quantitatively, we introduce the concept of traffic flow
density (TFD) for the first time. TFD is a basic theory in
traffic engineering. TFD denotes the number of vehicles
within one or several lanes on a unit length of road and it
is defined as:

k =
N f

L
, (2)

where N f denotes the number of vehicles on the road and
L is the length of the road; k is the TFD which can be used
to measure the density of the vehicles on the road. When k
is large, it indicates that there is a traffic congestion on the
road. We introduce the TFD to swarm foraging for the first
time. In RTSM, N f denotes the number of active foraging
robots and L is the side length of the foraging area. We
use (3) to calculate the number of foraging robots.

N f = NT −Nw, (3)

where NT is the total number of robots in the foraging task
and Nw is the number of robots in Wait state. Equation (2)
can be written as:

k =
1
L
∗ (NT −Nw), (4)

As can be seen from (4), when the value of k is large,
lots of robots are performing the foraging task. Much

more obstacle avoidance will be generated and the for-
aging efficiency will be reduced. Therefore, we should
decrease the number of foraging robots. In RTSM, the
response threshold changes dynamically and satisfies the
following:

θ =
1
L
∗ (NT−Nw)+

1
NT

∗m, (5)

where 1
L ∗ (NT−Nw) is the TFD which can be used to re-

flect the traffic conditions. In swarm foraging, the amount
of obstacle avoidance can also reflect the traffic conditions
and it possesses the property of timeliness. Therefore, in
(5) the parameter m denotes the amount of obstacle avoid-
ance within a period of time T3. We initialize m = 0 at the
beginning of each period of time T3. NT is the total num-
ber of robots in the foraging task. The larger the value of

1
NT

∗m is, the larger the influence of the amount of obstacle
avoidance on the individual robot is. As can be seen from
(5), TFD and the amount of obstacle avoidance together
influence the changes of the threshold θ . Therefore, the
size of the threshold θ can reflect the traffic condition of
foraging area.

In nature, the social insects can complete complex tasks
by using self-organized task allocations. The FRTM was
proposed to account for the experimental observations of
social insects in their division of labor [14]. The FRTM
can be denoted as:

Pf =


S(t)n

S(t)n +θ n , S(t)> 0,

0, S(t)≤ 0,
(6)

where Pf is the state transition probability which deter-
mines whether the robots begin to perform foraging task
or not. Although the FRTM can realize effective task allo-
cation, sometimes the robots cannot respond to the chang-
ing environment timely. In order to overcome this short-
coming, this paper uses the Sigmoid function with the ex-
ponential term to make the robots respond quickly to the
changes in the environment. The Sigmoid function can be
denoted as:

f (x) =
1

1+ e−x . (7)

Combining the FRTM and Sigmoid function, this paper
proposes the RTSM, where the foraging probability Pf is
defined as:

Pf =


1

1+ en(θ−S(t)) , S(t)> 0,

0, S(t)≤ 0.
(8)

In this equation, the parameter n determines the slope
of the probability function. A robot with a larger n is
more sensitive to the changes of the environment and can
make a rapid response to the stimulus S(t) and threshold
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Fig. 2. The probability response curves with different val-
ues of θ and n. The larger the n is, the steeper the
curve is. When the threshold θ is large, the robots
need a bigger stimulus to go foraging.

θ . At the beginning of the foraging experiment, all the
robots have the same θ and S(t). If we give the same n
to the robots, all the robots will perform foraging task at
the same time, which may lead to traffic jams. In order to
avoid the traffic jam, we generate the n randomly for each
robot. When the amount of net food have reached the de-
sired value, that is S(t)≤ 0, all the robots stop performing
foraging task and wait in the nest.

As can be seen from Fig. 2, when the stimulus S(t) is
large and the threshold θ is small, many robots start to go
foraging. On the contrary, when the stimulus S(t) is small
and the threshold θ is large, few robots begin to go for-
aging. When the stimulus S(t) is large and the threshold
θ is large, when the stimulus S(t) is small and the thresh-
old θ is small, whether the robot begins to go foraging
is determined by the foraging probability Pf . Therefore,
whether the robot performs foraging task is influenced by
the requirement of the task and the changing environment.

3. EXPERIMENTAL SETUP

3.1. Experimental environment
In this subsection, we set up the simulation experiments

to verify the effectiveness of the RTSM. All the simulation
experiments are conducted on ARGoS robotic simulator
[28]. It is a widely used multi-physics robot simulator
and can simulate large-scale swarms of robots efficiently.
Fig. 3 is a screenshot of the ARGoS simulator at the be-
ginning of the simulation experiments. As can be seen in
Fig. 3, the foraging area is designed as a square area with
the side length of L meters. The grey circular region with
the diameter in d meter represents the swarm’s nest. In the
nest, the blue objects are the robots. In the center of the

Fig. 3. Screenshot of the simulation experiment in AR-
GoS simulator. At the beginning of the experiment,
all the robots are waiting in the nest.

nest, the yellow sphere object is the light source, which
can be used to guide directions for robots to trace the light
to return to the nest. The black cylindrical objects which
are distributed randomly in the foraging area are the food.
In the simulation experiment, we use a virtual infrastruc-
ture to sense and calculate the total amount of food at the
nest and the number of robots in Wait state [21]. Once the
robot returns to the nest, it sends information about the
amount of obstacle avoidance to the infrastructure. After
processing and computing, the infrastructure sends these
messages to robots that are in Wait state. It is important to
note that the infrastructure can be seen as the virtual sensor
of the swarm and the swarm do not rely on any globalised
transmitted communication and any direct communication
between robots. Therefore, the RTSM can be regarded as
decentralised solutions to foraging processes.

We employ marXbot [29] as experimental robots and
Fig. 4 represents a marXbot. The marXbot with a diame-
ter of 0.17 m and height of 0.29 m are placed in the nest
at the beginning of the experiment. The robot is equipped
with 24 infrared sensors which can be used to perceive ob-
stacles. Eight light intensity sensors are used to measure
the intensity of light to find the direction of the nest. Four
ground sensors underneath the robot are used to detect the
ground color to determine whether the robot has reached
the nest or not. A RGB omnidirectional camera is used
to discover and identify the food and other robots through
different colors. The robots move at speed 0.1 m/s.

To test if the RTSM has the ability to adapt to different
environment, we run the experiment with two different ar-
eas: L = 4 m and L = 3 m. Each experiment lasts 1200
s (20 min) and the simulation algorithm runs 10 times
each second, so the experiment runs T = 12000 simula-
tion steps. The parameter settings for these experiments
are d = 1.5 m, NT = 15, the initial amount of food in the
nest F(0) = 5 and the desired amount of food Fd = 20. In
order to maintain the net food at the desired level Fd = 20,
we set a buffer. When the amount of food is more than 21,
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Omnidirectional 

       RGB camera 

RGB LEDs(12) 

Gripper  

IR sensors (24) 

Ground sensors(4) 

Fig. 4. The marXbot robot. The omnidirectional RGB
camera can be used to search for the food. The IR
sensors are used to avoid the obstacles and trace
the light. The ground sensors can detect the color
of the ground to ensure the robot’s location.

the robots stop performing the foraging task. When the
amount of food is less than 21, the robots begin to perform
task allocation. The total amount of food in the environ-
ment is 25 and each food contains 1500 energy. The for-
aging robot consumes 1 energy each simulation step and
each obstacle avoidance consumes 10 energy. The con-
sumption rate of the swarm is 5 energy each simulation
step.

In RTSM, the parameter settings are T1 = 50 simula-
tion steps, T2 = 600 simulation steps, T3 = 300 simula-
tion steps. In ARTM, the parameter settings are given ac-
cording to [21]. The threshold parameter θ was initialised
to 3.3, (θ(t0) = 3.3), ∆ = 1, α = 0.25. During ARTM exe-
cution, θ was bound to the range (1 ≤ θ ≤ 10). In all the
experiments, this integer n was randomly generated within
a predefined range (2 ≤ n ≤ 9) and remained fixed for the
whole experiment.

3.2. Performance measures
We employ three performance indexes to evaluate the

effectiveness of the two methods. To maintain the net food
at the desired level is one of the purpose of the task alloca-
tion in swarm foraging. Therefore, the average deviation
of the net food with the desired food is an important index
to measure the performance.

The average deviation of food in the nest (Vf ) is defined
as [21]:

Vf =
T

∑
t=1

|Fd −F(t)|
T

, (9)

where Fd is the desired amount of food that should be
maintained in the nest. F(t) is the amount of net food at
time t in the nest. Vf denotes the gap between the existing
amount of food in the nest and the desired amount of food.
The greater value of Vf means that the method can not ef-
fectively allocate appropriate number of robots to perform
foraging task. Smaller values of Vf imply that the task
allocation can maintain food levels closer to the desired
value. From this equation, we can see that the value of
Vf will be increased regardless of F(t)> Fd or F(t)< Fd .
Therefore, the average deviation Vf can assess the extent
of the task completion and measure the self-organized fea-
ture of both methods.

In swarm foraging, most of the researches focused on
the changes of swarm energy. As a result, the amount of
energy consumed in the foraging task is also considered in
the performance index. We employ the energy efficiency
(Ee) to assess the methods. Ee is defined as:

Ee =
En

ET
, (10)

where En is the existing energy, that is to say, the net en-
ergy of the remaining food. ET is the total energy collected
by the robots. The greater Ee implies that the robots con-
sume less energy and the corresponding method possesses
higher foraging efficiency.

In order to prevent the traffic congestion, this paper
takes into consideration of the TFD and the amount of ob-
stacle avoidance which can reflect the traffic condition. In
order to verify the effectiveness of this kind of idea, the
average amount of obstacle avoidance mv is also consid-
ered as a performance measure:

mv =
mT

NT
, (11)

where mT is the total amount of obstacle avoidance dur-
ing the mission. NT is the total number of robots engaged
in foraging. mv denotes the average amount of obstacle
avoidance by each robot. Because obstacle avoidance can
not only consume energy but also cause traffic jams, mv

can reflect the effect of task allocation intuitively and re-
flect foraging efficiency to some extent.

4. RESULTS

The simulations of each experimental setup are re-
peated for 100 runs. RTSM and ARTM all use the re-
sponse threshold model to calculate the foraging proba-
bility in the same simulation environment. In RTSM, (5)
is used to obtain the response threshold, where the number
of foraging robots and the amount of obstacle avoidance
are used. In ARTM, the discrete attractor selection model
is used to adapt the response threshold which introduces
many more variables. Therefore, the ARTM has a high
computation complexity.
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Fig. 5. The amount of net food in the nest during the mis-
sion with L = 4 m.

The larger foraging areas can reduce the amount of ob-
stacle avoidance between robots, but the individual robot
need to search for more areas to find food. Fig. 5 and
Fig. 6 depicts the amount of net food in the nest. The
amount of net food can be used to calculate the average
deviation of food (Vf ) and the energy efficiency (Ee). At
the beginning of the experiment, there is 5 food in the nest
and the desired amount of food is 20. Accordingly, the ex-
ternal stimulus S(t) of each robot is large and the robot’s
foraging behavior mainly be affected by S(t). Much more
robots begin to perform foraging task and the net food in
the nest increase rapidly. As the stimulus gradually de-
creases, the threshold θ and stimulus S(t) begin to to-
gether affect the foraging behavior of each robot. The
robot’s foraging probability decreases gradually and the
growth rate of the food slow down. When the amount of
net food arrives at the desired value, the robots stop go-
ing foraging. The swarm robots in the nest can entail the
swarm energy loss and when the amount of food is less
than the desired level, the robots start to go foraging again.

As can be seen from Fig. 5, compared with ARTM
(Vf = 2.7583), RTSM (Vf = 2.3022) can maintain the
food level closer to the desired value. Because the for-
aging area gets smaller, the robots are more likely to col-
lect food. In Fig. 6, the swarm became faster at collect-
ing food and RTSM (Vf = 1.6902) is better than ARTM
(Vf = 2.0439) at keeping the food at the expected level.
Moreover, the decrease of the foraging area produces
much more obstacle avoidance, which makes ARTM un-
stable that can be concluded from the standard deviation
of ARTM in Fig. 6. The average deviation of food shows
that RTSM can make a fast and effective response to the
changing environment and possess higher task allocation
efficiency.

Each food contains a certain amount of energy, so the
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Fig. 6. The amount of net food in the nest during the mis-
sion with L = 3 m.

energy efficiency can be seen as the food efficiency. In
Fig. 5, RTSM (Ee = 15.09%) consumed less energy than
ARTM (Ee = 13.11%). In Fig. 6, compared with ARTM
(Ee = 15.9%), RTSM (Ee = 19.3%) improved obviously.

The energy efficiency proves that taking into account
the traffic condition, the swarm using RTSM consumes
less energy and improves the foraging efficiency effec-
tively.

Fig. 7 and Fig. 8 show how the average amount of ob-
stacle avoidance changes in the experiments, from which
the traffic condition and the foraging efficiency can be
concluded. At the end of the experiment, the average
amount of obstacle avoidance in RTSM (mv = 50.5707)
is significantly less than ARTM (mv = 70.7933) with
L = 4 m. When the foraging area was reduced to L =
3 m, the average amount of obstacle avoidance in RTSM
(mv = 50.3093) did not change significantly by adjust-
ing the number of foraging robots. However, not con-
sidering the traffic condition and the changing environ-
ment, the average amount of obstacle avoidance in ARTM
(mv = 82.8973) increased significantly. This result shows
that taking into account the traffic condition is an effec-
tive method to reduce the amount of obstacle avoidance.
RTSM can achieve a better task allocation effect than
ARTM in dealing with traffic jam and RTSM possesses
higher foraging efficiency.

In swarm foraging, the traffic condition of foraging
area can affect the foraging efficiency. To improve forag-
ing efficiency, RTSM takes into account the TFD and the
amount of obstacle avoidance to describe the traffic con-
dition quantificationally for the first time. The individual
robot determines whether to forage or not based on the
traffic condition and the amount of net food in the nest.
Accordingly, the swarm robots can decrease the amount
of obstacle avoidance under the premise of maintaining
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Fig. 7. The average amount of obstacle avoidance with
L = 4 m. At the beginning of the experiments, the
amount of obstacle avoidance grows faster. After
that, the growth rate of the RTSM is slower than
ARTM.

the food level closer to the desired value. Through the
above simulation experiments in different areas (L = 4 m,
L = 3 m), we can see that RTSM showed better perfor-
mance on all indexes for example the average deviation of
food in the nest (Vf ), energy efficiency (Ee) and the aver-
age amount of obstacle avoidance (mv) in comparison with
ARTM. Therefore, we can conclude that the RTSM im-
proves foraging efficiency effectively. Morever, when for-
aging area changes, the amount of obstacle avoidance with
RTSM almost unchanged. Such experimental result shows
that RTSM can adjust the number of foraging robots adap-
tively according to environmental change, which means
that RTSM has robustness for changes in the environment.

5. CONCLUSION AND FUTURE WORK

In swarm foraging, we propose the self-organized task
allocation method - RTSM in which the traffic condition
is taken into account to improve the foraging efficiency.
In RTSM, the response threshold θ is adjusted dynami-
cally according to the traffic flow density and the amount
of obstacle avoidance. Using threshold θ and stimulus
S(t), individual robot calculates the foraging probability,
so as to decide whether to go foraging or not. The robots
emerge out of the complex task allocation and foraging
behaviors based on the simple rules. Finally, simulation
experiments have been given to verify the effectiveness of
the RTSM. The experimental results showed that the pro-
posed RTSM can maintain the amount of the net food at
the desired level. Moreover, RTSM improves the energy
efficiency and reduce the amount of obstacle avoidance,
so as to improve the foraging efficiency.
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Fig. 8. The average amount of obstacle avoidance with
L = 3 m.

In the proposed method, the food is evenly distributed
in the environment and the amount of food is constant.
However, the food is usually randomly distributed and the
amount of food is changing in practice. Therefore, as fu-
ture work, we will continue to develop an improved ver-
sion of RTSM, which can implement the self-organized
task allocation under the complex and changeful environ-
ment. Morever, time-delays and packet dropouts are fre-
quently encountered in systems, so we will make attempts
to extend the current results for the underlying systems
under the network-based environment with time-delays,
packet dropouts, and quantization [30, 31].
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