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Bio-inspired Decentralized Architecture for Walking of a 5-link Biped
Robot with Compliant Knee Joints
Masoud Yazdani, Hassan Salarieh*, and Mahmoud Saadat Foumani

Abstract: Animal walking is one of the most robust and adaptive locomotion mechanisms in the nature, involves
sophisticated interactions between neural and biomechanical levels. It has been suggested that the coordination of
this process is done in a hierarchy of levels. The lower layer contains autonomous interactions between muscles and
spinal cord and the higher layer (e.g. the brain cortex) interferes when needed. Inspiringly, in this study we present
a hierarchical control architecture with a state of the art intrinsic online learning mechanism for a dynamically
walking 5-link biped robot with compliant knee joints. As the biological counterpart, the system is controlled by
independent control units for each joint at the lower layer. In order to stabilize the system, these units are driven
by a sensory feedback from the posture of the robot. A central stabilizing controller at the upper layer arises in
case of failing the units to stabilize the system. Consequently, the units adapt themselves by including online
learning mechanism. We show that using this architecture, a highly unstable system can be stabilized with identical
simple controller units even though they do not have any feedback from all other units of the robot. Moreover, this
architecture may help to better understand the complex motor tasks in human.

Keywords: Biped walking, dcentralized control, dynamic robot, hierarchical control, legged locomotion, online
learning.

1. INTRODUCTION

Under-actuated robots and especially biped robots have
been a research hotspot in the last decades and gave rise
to fascinating robots and products. To achieve such great
products, the wide range of topics from studying biolog-
ical locomotion and their mechanical model [1], model
formulation [1, 2], methods of gait synthesis [2] and the
mechanical realization of biped robots [3] to the control
of such systems [4, 5] have been addressed by the litera-
ture. For example in [6] dynamic walking of biped robots
and in [7] human-gait analysis for biomedical applications
have been studied. Optimal path planning for biped robot
running has been studied in [8], and robust predictive con-
trol with on-line gait generation for biped robots has been
investigated in [9].

A biped robot like a multi-link inverted pendulum is in-
trinsically unstable. In addition, for walking, the dynam-
ics of the system is continuously switched between some
conditions, and we have a hybrid nonlinear system which
should present a cyclic motion. So locomotion is a very
complicated control task, and the control system must use
the instantaneous values of many state variables and gen-
erate the output values of many actuators for stabilizing
the system and providing a cyclic motion called walking.
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Recent studies show that locomotion control in mammals,
is based on the neural circuit activities within the spinal
cord which is usually called CPG. It seems that the men-
tioned circuits are responsible for learning rhythmic ac-
tivities. In other words, the locomotion is initiated by the
brain and the mentioned neural circuits learn the pattern.
Then, the neural circuits control the muscle activation that
makes locomotion possible.

This idea is discussed and developed in the latest
decades. Cronin et al. in [10] developed a fully ac-
tuated biped robot with a two layer controller. In this
study, the trajectory of each joint is generated from hu-
man gait. Also, Odashima et al. in [11] present a two
layer controller architecture for a hexapod robot where the
upper layer controller is responsible for generating the de-
sired trajectory and the lower layer is making sure that
the robot follows that path. This idea also implemented
in [12, 13]. However, in all these studies, the lower layer
controller and the upper layer one are two pieces of a con-
troller that without each ones, the system does not per-
form. Also, these architectures cannot be implemented on
under-actuated and unstable systems.

Therefore, the main objective of this article is to de-
velop a two-layer controller framework for a walking
biped which replicates the function of brain in the learning
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process at the upper layer and the function of the neural
circuits in the control of locomotion at the lower layer. It
means that we have a two-level independent control sys-
tem. In upper layer, similar to the brain function, a high
performance control system produces the locomotion by
using the whole state variables and providing the outputs
of all actuators. In the lower layer, which is also called
low-level control, the system learns to produce control-
ling signals of actuators to have a stable walking pattern
without any need to the whole state variables of the sys-
tem. Indeed, in the second layer we have a distributed low-
level controls with learning capability. In this architecture,
before the controllers in the lower layer (low-level con-
trollers) get tuned, the system is controlled by a high-level
controller at the upper layer which has a detailed knowl-
edge of the system dynamics. Then, when the parameters
of the lower level controllers get tuned, control of the sys-
tem is entrusted to them. In this structure, due to their poor
knowledge of the system dynamics, low-level controllers
cannot be expected to control the system robustly under
moderate to heavy disturbances. In these circumstances,
it would be desired to put the overall system control in the
hand of upper layer controller as a supervisory control in
order to bring the system’s output back on track.

In the high-level controller of the proposed framework
a dynamic-based strategy [14–17] is utilized. In this strat-
egy, the main focus is on the dynamics and kinematics of
the system to generate gait motion, and a manifold of con-
straints between the state variables of the system is con-
sidered to be asymptotically stabilized by the controller.
Stabilizing the mentioned constraints results in dynamic
walking. Although such an approach needs extensive
knowledge of the mechanical structure and high compu-
tational power, it performs more robustly than trajectory-
based controllers under moderate disturbances.

The low-level controllers in this framework are a net-
work of simple trajectory based controllers which are
working based on the pre-calculated joint trajectories. In
this approach, the reference trajectories are pre-computed
via various methods and then these trajectories are pur-
sued by means of feedback controllers. To compute these
trajectories, some used optimization of various cost func-
tions over a walking cycle [8, 18, 19]; and some extracted
them from their analogy with biological or simpler me-
chanical systems [20, 21]. In this paper the trainable neu-
ral network of the low-level control uses the controlled
trajectories and control signals of the high-level control
to produce the reference trajectory and feed-forward part
of the low-level controller. Also each low-level control
uses a local feedback of the neighboring links, and also
a common variable shown the posture of the robot. So
the low-level controllers have simple structures with lo-
cal feedbacks and use a common feedback depicted the
posture of the robot. Also they utilize a trainable neural
network which can be trained to produce reference tra-

jectories of the joints. Indeed, the proposed framework
combines the approach of trajectory-based and dynamic
based methods. Thus, it takes advantage of the simplicity
and computational efficiency of trajectory-based approach
and the robustness of dynamic-based approach at the same
time. The proposed method utilizes the hierarchy concept
of the brain-neural circuits of mammals and try to repro-
duce such concept for controlling the biped robots, and de-
pict for the first time, a simple structured distributed con-
trol network for locomotion. This framework can mimic
the action of nature in controlling complicated hybrid sys-
tems with a network of simple controllers.

In Section 2, the dynamical model of a five-link biped
robot with passive knee joint is driven. Then, the con-
troller structure for this robot is proposed in Section 3. Af-
ter discussing the control framework and its components,
its implementation on the considered robot is simulated
and the results are presented in Section 4. Finally, the
conclusion is drawn in Section 5.

2. ROBOT MODEL

The model has a torso link and two identical kinematic
open chains represent the legs which are pivoted together
at a point called hip (Fig. 1(a)). Each leg consists of two
links hinged together at knee. Knee joints are considered
as passive joints modeled as a pair of spring and damper
and hip joints are considered as active joints which are
torque exerting actuators used as the inputs of the system.

It is assumed that the motion is confined to sagittal
plane and the walking of the robot is considered on a level
surface. Beside these assumption, the walking of the robot
is interpreted as consecutive single support phases (mean-
ing only one leg is on the ground and act as a pivot) and
transition from one leg to another one is taking place in an
infinitesimal length of time [14]. Therefore, the model of
the robot can be described by two parts: (1) A differen-
tial equation representing the governing dynamics during
single support phases; and (2) An impulse model repre-
senting the contact event (modeled as a contact between
rigid bodies).

2.1. Single support phase model
During the single support phase, the stance leg is acting

as a pivot. Therefore, the dynamic model of the robot dur-
ing this phase has five DoFs. Let q = (θ1,θ2,θ3,θ4,θ5)

T

be the set of coordinates depicted in Fig. 1(a); and u =
(u1,u2)

T is the inputs of the system presented in Fig. 1(c).
Since only symmetric gaits are of interest, the same model
can be used irrespective of which leg is the stance leg if the
coordinates are relabeled after each impact [22]. By using
the Lagrange method, the equation of motion for the robot
can be derived as the following equation,

D(q)q̈+C(q, q̇)q̇+g(q) = B(q)u−κq−β q̇. (1)
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(a) Schematic of biped robot
showing all the abso-
lute angles (θi) and the
lengths of the links (li).
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(b) schematic of biped robot
showing all the masses
(mi); moments of inertias
(Ii); and the locations of
center of masses (ρi).
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(c) Schematic of biped robot
showing all the inputs
(ui). ϕ1 and ϕ2 are
the hip posture angle
with respect to the stance
leg end and swing end
leg, respectively; (x1,z1),
(x2,z2) and (xH ,zH) are
location of stance leg,
swing leg and the hip, re-
spectively.
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(d) Schematic of low-level con-
trollers network (Cl and F)
and their interaction with the
high-level controller (Ch).

Fig. 1. Schematic of the biped robot.

The matrix D is the inertia matrix; C is the Coriolis ma-
trix; g is the gravity vector and κ and β are the spring and
damping constant matrices of passive joints. Furthermore,
the matrix B maps inputs of the system to the generalized
forces. This equation is expressed in state-space form for
better readability as;

ẋ =

[
q̇

D−1(q)(B(q)u−C(q, q̇)q̇−g(q)−κq−β q̇)

]
= f(x)+g(x)u, (2)

where x = (qT, q̇T)T.

2.2. Impact model
The impact between the swing leg and the ground is

modeled as a contact between two rigid bodies. At the
contact event, the following conditions are assumed [23].

1) The impact is instantaneous. The impulsive forces of
the impact result in an instantaneous change in the ve-
locities, but not instantaneous change in the angles and
positions.

2) The contact of the swing leg with the ground results in
no rebound and no slipping of the swing leg and the
stance leg lifts from the ground without interaction.

These hypotheses yield an expression for the links’ veloc-
ities after the impact in terms of the velocities just before

the impact; e.g. the impact model results in a smooth dis-
crete map [15],

x+ = ∆(x−), (3)

where x− is the value of the states just before the impact
and x+ is the value of the states just after the impact. Fur-
thermore, the function ∆ is responsible for the mapping
from the states of the system before the impact to the states
of the system after the impact. Moreover, it reorders the
states (i.e., relabeling the swing leg and the stance leg) in
order to be used as the initial conditions for the next swing
phase equation of motion.

2.3. Overall model
The overall dynamic system can be expressed as a hy-

brid system [15],

Σ :
{

ẋ(t) = f(x(t))+g(x(t))u(t) x−(t) /∈ S,
x+(t) = ∆(x−(t)) x−(t) ∈ S, (4)

where S is the set of all feasible states belonging to the
walking surface which is defined as

S = {(q, q̇)|z2 = 0, x2 > 0}. (5)

In other words, the trajectory evolution of the system is
described by (2) until the impact occurs (when the states
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of the system belong to S). The impact, which is de-
scribed by (3), changes the states instantaneously and re-
labels them to be used as the next single support phase
initial condition.

3. CONTROL ARCHITECTURE

The proposed control architecture, as illustrated in
Fig. 1(d), has two modes: 1) high-level mode where the
system is controlled by a dynamic based controller and
2) low-level mode where the system is controlled by a
network consists of two controller nodes and a feedback
node. Each controller node is attached to an active joint
of the robot and solely gets position and velocity feedback
from the corresponding joint in addition to the hip posture
state of the robot received from the feedback node (i.e.,
angle of ϕ1 stated in Fig. 1(c)).

The system is controlled by high-level controllers as
long as it gets unstable using the low-level controllers. In
this mode, the positions, the speeds and the controller in-
puts of the joints are fed into the Learning Agents of low-
level controllers in order to train the controllers. At the
same time, Critic Agents of low-level controllers evalu-
ate whether they can generate the desired trajectories. If
all nodes in the network have the ability to generate the
desired trajectories, the high-level controller gets turned
off and the robot will be controlled by the Control Agents
of the low-level controllers. A schema of this process is
shown in Fig. 2.

It is desired that when the low-level controllers are ac-
tive, the system acts like when it is controlled by the high-
level controller. Due to decentralized nature of the low-
level controllers, each node should generate the output
according to the hip posture state. Therefore, the nodes
are fed by the hip posture state using a feedback node
(Fig. 1(d)).

By using this control architecture, the system is utiliz-
ing the robustness of the high-level controller when the
system is perturbed and the simplicity and computational
efficiency of low-level controllers when it is in the steady
state.

3.1. High-level controller

This controller design is based on the proposed method
by [14]. The fundamental idea of this controller is to en-
code walking in terms of a set of posture conditions, which
are in turn expressed as holonomic constraints on the po-
sition variables. These virtual constraints are then used
to construct outputs of the model and are imposed on the
robot via a feedback control. For the considered simple
model, the following constraints have been chosen,

y = G ·h(q), (6)

High-Level Controller

Control Agent

Learning Agent

Critic Agent Robot

qi, q̇i−

q∗
i , q̇

∗
i+

ei, ėi

q, q̇

Fig. 2. Controller node structure in interaction with the
robot and the high-level controller; the dashed line
border area is the low-level controller boundary;
critic agent decides which controller is suitable for
the system.

where

h =

[
h1

h2

]
=

[
(θ3 −θ3d)
(ϕ1 +ϕ2)

]
, (7)

and G is a diagonal matrix define as

G =

[
g1 0
0 g2

]
(8)

It should be noted that in (7),

x1 = 0,

z1 = 0,

xH = l1 sin(θ1)+ l2 sin(θ2),

x2 = xH − l1 sin(θ5)− l2 sin(θ4),

z2 = zH + l1 cos(θ5)+ l2 cos(θ4),

d1 = xH − x1 = l1 sin(θ1)+ l2 sin(θ2),

d2 = xH − x2 = l1 sin(θ5)+ l2 sin(θ4),

ϕ1 = arctan(−d1/(z1 − zH)),

ϕ2 = arctan(−d2/(z2 − zH)). (9)

As illustrated in Fig. 1(c), (xH ,zH) and (x2,z2) are the hip
location and the swing foot-end location with respect to
the location of stance foot-end, i.e., (x1,z1). Moreover, in
(8), the gains g1 and g2 are scaling constants. Note that
the latter constants normalize the outputs in the process of
controller design.

Satisfying the first constraint implies that the robot torso
should maintain its desired angle (i.e., θ3d), the second one
makes the robot take steps and advance its hip.

To design a controller to satisfy constraints defined in
(6) (drive them to zero), their governing dynamics should
be derived. To do so, time derivatives of constraints are
considered. Obviously, due to the second-order nature
of the dynamics of the system and independence of con-
straints from generalized velocities, the first derivative of
the constraints dynamics is not explicitly dependent on
the inputs of the system. However, by using the second
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derivative of the constraints, their governing equation are
obtained,

d2y
dt2 = L2

f h(q, q̇)+LgL f h(q)u, (10)

where LgL f h(q) is called the decoupling matrix and
L f h(q, q̇) is the Lie derivative of h(q, q̇) along the vec-
tor field of f(q, q̇). If the decoupling matrix is invertible,
which is true in the region of interest [15], one can choose
the following controller,

u = (LgL f h)−1(−L2
f h+v). (11)

In this case, the governing dynamics equation of closed-
loop system is driven as follows:

ÿ = v. (12)

Therefore, in order to stabilize the virtual constraints, the
following PD feedback is used,

v = k1.y+ k2.ẏ, (13)

where k1 < 0 and k2 < 0. This feedback structure makes
the origin in the space of the constraints to be exponen-
tially stable. Subsequently, it can be shown that under
certain conditions, the trajectory of the system is a stable
periodic orbit (via the Poincare map method [14]), which
means that the robot is walking stably.

3.2. Low-level controller
Low level controller nodes are designed to just get po-

sition and velocity feedback from its corresponding joint.
Therefore, to discuss their properties, the governing equa-
tion should be described in relative coordinate system,
i.e., (q̄, ˙̄q) where q̄ := (qu,qa)

T . In this coordinate sys-
tem, qu = (ϕ1,θ2−θ1,θ4−θ5)

T represents unactuated co-
ordinates and qa = (ψ1,ψ2)

T describes actuated coordi-
nates corresponding to each low-level controller. Thus,
when leg number one is the stance leg, the actuated co-
ordinates is equal to (θ2 +θ3,θ4 +θ3)

T and it is equal to
(θ4 +θ3,θ2 +θ3)

T when leg number two is the stance leg.
Therefore, the dynamic model (1) in the coordinates

used in low-level controller network can be written as fol-
lows,

D̄(q̄) ¨̄q+ C̄(q̄, ˙̄q) ˙̄q+ ḡ(q̄) = B̄ ·u, (14)

where it can be easily shown that B̄ has the form B̄ =
[02×3,I2×2]

T .
In the rest of this section, the components of the low-

level controller are discussed. As depicted in Fig. 2, each
controller node in the low-level controller network has
three components as follows:

• Learning Agent whose mission is to reproduce the
desired trajectory in function of the hip posture state
based on the outcomes of the system when the high-
level controller is active. This agent and its structure
are discussed in Section 3.2.2.

• Critic Agent which is in charge of switching between
states based on the control eligibility of low-level
controllers. This agent is introduced and discussed
in section 3.2.3.

• Control Agent which is to make sure that the system
follows the desired trajectories. This agent and its
properties are brought up in Section 3.2.1.

3.2.1 Control agent
Suppose that the system is controlled by the high-level

controller and its trajectory is a stable limit-cycle. Fur-
thermore, assume that the desired trajectory and its cor-
responding input signals are generated by the learning
agents of low-level controllers within a satisfactory error,
i.e., the generated trajectory is expressed as (q̄∗, ˙̄q∗) and
evolution of the desired input signals are denoted by u∗.
This conditions make the system switch to be controlled
by low-level controllers.

When the system is controlled in the low-level state,
the control agents are trying to eliminate the difference
between the desired trajectories and the actual ones. To
do so, the control agent output for the ith actuated DoF is
considered as follows,

ui = u∗
i +δui, (15)

where δui should stabilize the perturbed system from the
desired trajectory. It means that the designed controller
makes the system follow the desired trajectory. To design
the controller, let us consider the perturbation from the
desired trajectory which is denoted by (δ q̄,δ ˙̄q). The gov-
erning equation for the ith perturbed actuated DoF can be
rewritten as

D̄iiδ ¨̄qi +∆(1)
i δ ˙̄qi +∆(2)

i δ q̄i +∆(3)
i = δui, (16)

where ∆(1)
i , ∆(2)

i and ∆(3)
i are given in Appendix A.1

Due to existence of a critic agent, the large disturbances
make the system use the high-level controller instead of
the low-level controller network. This means that all vari-
ables are bounded on the domain of low-level controller
definition. Hence, these bounds can be used in the sta-
bility analysis and controller design for the low-level con-
trollers. In order to design a controller to make the sys-
tem follow the desired trajectory, consider the following
proposition.

Proposition 1: The high-gain feedback structure (17)
for δui makes the system (16) stable.

δui =−1
ε
(δ ˙̄qi + cδ q̄i) , (17)

where c > 0 and ε ≪ 1.

Proof: The closed-loop equation for the ith actuated
DoF with the proposed controller structure (17) can be
written as

εD̄iiδ ¨̄qi +(1+ ε∆(1)
i )δ ˙̄qi +(c+ ε∆(2)

i )δ q̄i + ε∆(3)
i
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= 0, (18)

Therefore, by using singular perturbation analysis [24]
(see Appendix A.2), the closed-loop response will be as
follows:

δ q̄i(t) =δ q̄i(0)e−ct +O(ε) (19)

δ ˙̄qi(t) =− c δ q̄i(0)e−ct +(δ ˙̄qi(0)+

cδ q̄i(0))δD(t/ε)+O(ε), (20)

where δD(·) decays exponentially with the rate of its argu-
ment and δD(0) = 1. □

The proposition 1 implies that the controller agent with
the structure (15) and (17) guarantees the ith actuated DoF
achieve a trajectory within O(ε)-neighbor of the desired
trajectory.

3.2.2 Imitating/learning agent
The missions of this agent are learning and generating

the desired trajectory for its corresponding DoF. This tra-
jectory is the projection of the trajectory of system on the
state space of the corresponding DoF. In order to generate
it, this projection is transformed using action-angle trans-
formation.

In this agent, the action coordinates are learned and gen-
erated based on the action coordinate via a map called
Shaping Network described in Section 3.2.2.1. However,
due to the nature of the projection, the angle coordinate
should be derived based on the state space of the system.

The imposed constraints on the robot drive the system
to the zero dynamics manifold. On this manifold, the dy-
namics of the system can be expressed by the hip posture
state and the passive joints states. However, if the passive
joints are sufficiently stiff, the posture state dynamics will
be dominant. Hence, the system can be expressed only by
the posture state and by this assumption, the posture state
(i.e., ϕ1) is monotonic in each cycle [25]. Therefore, this
state will be used as the angle coordinate or the input of
the Shaping Network for this agent.

Shaping Network: In this manuscript, a radial basis
function network is used to approximate the desired map-
ping. By using this technique, the shaping network out-
puts of the agent for the ith actuated DoF are written as
follow,

q∗
a,i =

n

∑
k=1

wi
kΦk(ϕ1)+wi

0 (21)

q̇∗
a,i =

n

∑
k=1

vi
kΦk(ϕ1)+ vi

0 (22)

u∗i =
n

∑
k=1

θ i
kΦk(ϕ1)+θ i

0, (23)

where the activation function Φk(·) is a radial basis func-
tion (a.k.a. RBF) defined as follows:

Φk(ϕ1) = exp(− 1
η2 (ϕ1 −χk)

2); (24)

ϕ1 is the hip posture state and wi
k, vi

k and θ i
k are weights of

RBFs in the network.
It should be noted that in (24), χk is the center of ra-

dial basis function. These centers can be chosen by vari-
ous methods, e.g., randomly sampled among the input in-
stances, obtained by Orthogonal Least Square Learning
Algorithm [26] or chosen via clustering of the inputs. Be-
sides, η controls the width of RBFs which is usually con-
sidered as constant for all RBFs.

In the learning mode, the network’s weights are adap-
tively changed in order to minimize the following objec-
tive function

Ji(t) =
1
2
(q∗

a,i(t)−qa,i(t))2 +
1
2
(q̇∗

a,i(t)− q̇a,i(t))2

+
1
2
(u∗

i (t)−ui(t))2.

(25)

Using gradient descent method [27] to derive the adap-
tive laws for the weights in the network yields,

ẇi
0 =−γw∇wi

0
Ji

=−γw(q∗a,i −qa,i), (26)

ẇi
k =−γw∇wi

k
Ji

=−γw(q∗a,i −qa,i)Φk(ϕ1), k ∈ {1,2, ...,n}, (27)

v̇i
0 =−γv∇vi

0
Ji

=−γv(q̇∗a,i − q̇a,i), (28)

v̇i
k =−γv∇vi

k
Ji

=−γv(q̇∗a,i − q̇a,i)Φk(ϕ1), k ∈ {1,2, ...,n}, (29)

θ̇ i
0 =−γθ ∇θ i

0
Ji

=−γθ (u∗
i −ui), (30)

θ̇ i
k =−γθ ∇θ i

k
Ji

=−γθ (u∗
i −ui)Φk(ϕ1), k ∈ {1,2, ...,n}, (31)

where ∇x(·) = ∂
∂x (·).

It should be pointed out that when the training is over
and the system is in the imitating mode, the weights of the
network become constant and they will be used to generate
the desired trajectory and control input.

3.2.3 Critic agent
The assessment of the control ability of the low-level

controller is made by this agent. This agent evaluates this
ability by using the error between the output of the Shap-
ing Network and the outputs of the system. For each con-
troller node, the error is defined as follows:

ei = (qa,i −q∗a,i), (32)

ėi = (q̇a,i − q̇∗a,i), (33)

which will be used to generate the Assessment Value de-
fined as follows:

uε,i =

{
1 eε,i > emax

0 else,
(34)
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where

eε,i = ke|ei|+ kė|ėi|, i = 1,2. (35)

In other words, this value assesses the ability of the im-
itating agent to generate the desired trajectory within an
acceptable error margin at the current time. In order to
use this value and assess the ability of the imitating agent
to generate the desired trajectory at all times, the history
of the Assessment Value should be taken into account. In
order to do that, the following dynamical system is used
which is called the Assessment System,

ε̇i =− 1
εl
(1−uε,i)εi + εuuε,i(1− εi), (36)

where εl and εu are small constants and εi is the output of
the assessment system.

This dynamical system has two different terms which
have contrary effects on its output. The first one is trying
to increase the output in a fast manner when the error is
greater than a threshold. In other word, the error above a
specific level means that the low-level control has failed
to control the system. Therefore, the critic agent should
act fast and assign the control task to the high-level con-
troller. On the other hand, the second term in (36) will try
to decrease the output slowly when the error drops lower
than the threshold. The slow dynamics of this term helps
the system to take the history of the Assessment Value into
account. Hence, when the output reaches a certain level,
the imitating agent generates the desired trajectory within
an acceptable error margin at all times.

At last, based on the output of the Assessment System
and its current state, the critic agent will make the decision
about the control ability of low-level controller. In order
to avoid Zeno phenomenon and oscillation in switching
between high-level controller and low-level controllers
and thus instability of the overall system, this decision is
made by a switching function with hysteresis. In other
words, when the system is controlled by high-level con-
troller and 0 < εi < Eu, the critic agent commands the sys-
tem to be controlled by the low-level controllers. In this
case, the imitating/learning agents of the low-level con-
trollers are switched to the imitating mode. After that, if
εi > El > Eu, the system will be switched to be controlled
by the high-level controller. Therefore, imitating/learning
agents of the low-level controllers will be switched back
to the learning mode.

3.3. Architecture summary
As a summary, the structure of low-level controller

node is depicted in Fig. 3. In this structure, the control
input of the each actuated DoF is determined by the corre-
sponding critic agent. When the system is not trained, the
control action of the high-level controller is directly fed
into the system and its output is used to train the imitat-
ing/learning agent. When all the imitating/learning agents

Table 1. Mechanical Parameters of the modeled robot (see
Fig. 1(a) and Fig. 1(b)).

Model Param. Tibia
(n = 1)

Femur
(n = 2)

Torso
(n = 3)

Mass, Mn (kg) 3.2 6.8 20
Length, ln (m) 0.4 0.4 0.625

Mass Center, ρn (m) 0.13 0.16 0.2
Inertia, In (kg ·m2) 0.93 1.08 2.22

of the system are trained enough (the error between the
output of the system and the outputs of these agents tends
to zero), the critic agent cut the high-level controller ac-
tion and reroute the input of the system to the output of
the control-agent.

4. SIMULATION

In this section, simulation of a robot prototype called
RABBIT [16] with passive knee joints has been consid-
ered. The mechanical parameters of this robot is presented
in Table 1. In addition to that, spring constant and damp-
ing constant of the knee joints are equal to κ = 200 and
β = 40, respectively. Then, in order to construct the vir-
tual constraints mentioned in (8) and (9), it is desired that
g1 = 62.5, g2 = 500 and θ3d =−π/9 rad. Also, to stabilize
the virtual constraints, feedback gains are set to k1 = 9000
and k2 = 400.

To find the approximation of the desired trajectories, the
number of RFBs, n, is set to 100. Also, the width of the
radial basis function, η is considered as 0.1. In addition
to that, all gradient descent gains (i.e., γw, γv, γθ , γµ ), are
set to 10. When the system is switched to be controlled by
low-level controllers, the controller agents are using the
value of 1/300 for the inverse of velocity feedback gain
(i.e., ε) and 50 for the ratio of the position feedback gain
to the velocity feedback gain(i.e., c). In this simulation,
all critic agents are using the parameters’ values stated in
Table 2.

By using described parameters’ values, the result of the
simulation for more than 100 walking steps is depicted in
the following figures. During the training, the error be-
tween desired trajectories (the output of the system) and
the output of imitating/learning agents gets smaller and
smaller until the system decides to assign control task to
the low-level controllers. In Fig. 4, the position errors
of the actuated DoFs are depicted versus time. When one
of the robot’s legs hits the ground, the Shaping Networks
cannot approximate the outputs accurately. Therefore, the
errors increase at these times. Note that these figures show
the system with the low-level controllers is stable within a
bounded error.

As mentioned, the high-level controller is working
based on regulating the defined virtual constraints. In Fig.
5, the performance of the system using the high-level con-
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1

×

× q̈a,i = fi(q̄, ˙̄q)+gi(q̄, ˙̄q).ui

u(i)i =− c
ε ei − 1

ε ėi +u∗i u∗
i =Ui(ϕ1)

(q̄∗
a,i, ˙̄q∗

a,i) = Hi(ϕ1)

eε,i = ke|ei|+ kėi |ėi| ε̇i = εuuε(1− εi)− 1
εl
(1−uε)εi

u(e)
i +

uε

q∗
a,i, q̇

∗
a,i

−
ei, ėi

+

qa,i, q̇a,i

ϕ1

+

εi

−

+

u∗
i

Fig. 3. Implementation of the low-level controller for the ith actuated DoF. Single border blocks (green blocks in colored
version) represents subsystems of critic agent; double border blocks (yellow blocks) are subsystems of control
agent; dash dot border blocks (red blocks) describe the imitating/learning agent and dash border block (blue block)
is representation of time evolution dynamics of the system. u(e)i is the control action of the high-level controller
and u(i)

i represents control action of the low-level controller for the ith actuated DoF.

Fig. 4. Error of the imitating agents’ outputs for controller nodes, i.e., ei = ψi−q∗
a,i for i = 1,2. The red dashed line shows

the time the system switched to be controlled by low-level controllers network.

troller and the low-level controllers is depicted.
At last, the simulated gait is depicted in Fig. 6.

4.1. Performance in the presence of disturbance
The robustness of the closed-loop system in the pres-

ence of external disturbances is one of the key elements
in the usability of such controllers. If the low-level con-
trollers is not robust enough, the system gets unstable
quickly after it is switched to be controlled by the low-
level controllers. Hence, the critic agents put the high-
level controller back in charge as soon as possible which

will be in contradiction with the considered objectives.
The under study system is an under-actuated unstable

dynamical system which contains impact events. There-
fore, if the closed-loop system is not robust enough, the
system will get unstable even in absence of any distur-
bances. However, the simulation conducted in Section 4
shows that the system is stable when it is under the con-
trol of low-level controllers. It can be concluded that the
system will be robust in the presence of disturbances. This
claim has been investigated by conducting 3 different sim-
ulations. At the first simulation, a moderate disturbance
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Fig. 5. Time evolution of the constraints’ values defined in (6).

Fig. 6. Simulated gait; the divider dashed red line shows the position that the system has been switched to be controlled
by the low-level controllers.

(a) Time evolution of the constraints’ values. (b) Time evolution of the critic values.

Fig. 7. The system output when it is undergone a moderate disturbance impulse at time t = 40s; the impulse amplitude
and its duration were 3Nm and 0.1s respectively.

impulse force with the amplitude δ = 3Nm and the dura-
tion τ = 0.1s has been exerted on the system at the time
t = 40s. The results are depicted in Fig. 7. As it is shown,
the virtual constraints have been violated after the system
gets disturbed. It leads to the increase of the critic agents’

values. However, the low-level controllers suppress the
input disturbance afterwards. At the second conducted
simulation, a large disturbance impulse force with the am-
plitude δ = 10Nm and the duration of τ = 0.1s has been
exerted on the system at the time t = 40s. The results are
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(a) Time evolution of the constraints’ values. (b) Time evolution of the critic values.

Fig. 8. The system output when it is undergone a moderate disturbance impulse at time t = 40s; the impulse amplitude
and its duration were 10Nm and 0.1s, respectively.

(a) Time evolution of the constraints’ values. (b) Time evolution of the critic values

Fig. 9. The system output when it is undergone a uniformly distributed disturbance after time t = 50s; the maximum
amplitude of the disturbance is 1Nm.

shown in Fig. 8. In this situation, the disturbance is so
large that it makes the critic values get larger than the up-
per threshold, i.e. Eu. Therefore, the system is switched
to be controlled by high-level controller which makes the
system stable by using the global feedbacks. It should
be mentioned that in this case, the low-level controllers
switch back into the training state. At last, to show the
performance of the system with the low-level controllers
undergone continuous disturbances, a simulation is con-
ducted with a uniformly distributed disturbance with the
maximum amplitude Amax = 1Nm and it has been imposed
on the system after t = 50s. The results are illustrated in
Fig. 9. As it is shown, the constraints values have been
increased. However, the system does not get unstable (the

critics values remain less than Eu).
Therefore, the proposed architecture is robust in the

presence of small to moderate disturbances (impulse or
continuous ones) and it makes the system switch to ro-
bustly designed high-level controller in the presence of
large disturbances.

5. CONCLUSION

In this study, a model for the control of under-actuated
biped robots is presented which considers the hierarchy of
nervous system and its learning capability under the con-
scious trainings in the human. The presented framework
consists of two independent layers: 1) the High-Level
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Table 2. Values of the critic agents’ parameters.

Param. Description Value
emax maximum allowable error (see (34)) 0.1
ke error gain (see (35)) 1
kė error velocity gain (see (35)) 0

εl
constant gain controls the fast dynamic
time constant in (36) 0.4

εu
constant gain controls the slow dynamic
time constant in (36) 0.3

Eu

the level of the switching from the
high-layer controller to the low-level
controllers

0.01

El

the level of the switching from the
low-level controllers to the high-layer
controller

0.30

Controller and 2) a network of Low-Level Controllers.
The high-level controller works as the brain cortex and
control the system whenever the low-level distributed con-
trollers (inspired from the spinal cord and the motor neu-
rons), are not trained enough or the system gets unsta-
ble under their commands (due to the large disturbances
and lack of global feedback). In this state, low-level con-
trollers get trained and when they are ready, the high-level
controller is turned off and the system is controlled by
the low-level controllers. Interestingly, the low-level con-
trollers can stabilize one of the most unstable and dynamic
phenomena in the world just by using the hip posture state
and the local states from their corresponding joint as feed-
back and without any data from other joints. This frame-
work makes the control of the system modular, simple and
computationally efficient.

Although the simulation conducted in this manuscript is
based on the parameters of a real robotic platform (RAB-
BIT biped robot), one of the most important part of this
research is implementing and testing this architecture on a
real robotic platform. It is considered as the next step for
the current study.

At last, it is worth mentioning that the presented frame-
work is quite general and can be used to control any rhyth-
mic activity in fully-actuated or under-actuated systems,
even unstable ones in a decentralized fashion.

APPENDIX A

A.1. Definition of Parameters in the Perturbed Dy-
namics

In this section, the variables used in (16) are given by

∆(1)
i = C̄i jδ ˙̄q j +∑

k

[
∂ D̄ik

∂ ˙̄qi
¨̄q∗k +

∂C̄ik

∂ ˙̄qi
˙̄q∗k

]
,

∆(2)
i =

∂ ḡi

∂ q̄i
+∑

k

[
∂ D̄ik

∂ q̄i
¨̄q∗k +

∂C̄ik

∂ q̄i
˙̄q∗k

]
,

∆(3)
i = ∑

j ̸=i

(
D̄i jδ ¨̄q j +δ jḡi +C̄i jδ ˙̄q j

(A.1)

{
+∑

k

[
δ jD̄ik ¨̄q∗k +δ jC̄ik ˙̄q∗k

])
,

where Ci j and Di j is denoting the element of row i and
column j of the matrix C and the matrix D, respectively.
Also, gi denotes the ith component of the vector g. More-
over,

δ j = δ q̄ j
∂

∂ q̄ j
+δ ˙̄q j

∂
∂ ˙̄q j

. (A.2)

A.2. Perturbation analysis of dynamics of an actuated
DoF with high-gain controller

In this section, singular perturbation analysis of (18) is
considered.

Let us assume that there exists a regular expansion for
the solution, i.e.,

δ q̄i(t) =δQ(0)
i (t/ε)+ εδQ(1)

i (t/ε)+ · · · (A.3)

+δq(0)i (t)+ εδq(1)i (t)+ · · · . (A.4)

It should be noted that due to the singularity of the sys-
tem, Q(n)

i (t/ε) for n = 0,1, · · · are added to the solution to
prevent the boundary layer jump near t = 0. Substituting
the proposed expansion into (18) yields

δ q̇(0)i + cδq(0)i = 0,
δ q̇(1)i + cδq(1)i =−∆(3)

i − D̄iiδ q̈(0)i −
∆(1)

i δ q̇(0)i −∆(2)
i δq(0)i

δ q̇(n)i + cδq(n)i =−D̄iiδ q̈(n−1)
i −∆(1)

i δ q̇(n−1)
i −

∆(2)
i δq(n−1)

i , n ∈ {2,3, · · ·}.

(A.5)

Therefore, the solution of these terms at lowest order is
written as follows:{

δq(0)i (t) = Ae−ct

δ q̇(0)i (t) =−cAe−ct ,
(A.6)

where A is a constant determined by the initial conditions.
For the boundary layer solution, the proposed expan-

sion yields to the following equations,

D̄iiδ Q̈(0)
i +δ Q̇(0)

i = 0,

D̄iiδ Q̈(1)
i +δ Q̇(1)

i =−cδQ(0)
i −∆(1)

i δ Q̇(0)
i ,

D̄iiδ Q̈(2)
i +δ Q̇(2)

i =−cδQ(1)
i −∆(1)

i δ Q̇(1)
i

−∆(2)
i Q(0)

i −∆(3)
i ,

D̄iiδ Q̈(n)
i +δ Q̇(n)

i =−cδQ(n−1)
i −∆(n−1)

i δ Q̇(n−1)
i

−∆(2)
i Q(n−2)

i , n ∈ {3,4, · · ·}.
(A.7)

In these equations, D̄ii’s have positive upper and lower
bounds (D̄(t) is a positive definite matrix for ∀t ∈ R),
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therefore the lowest order term of the boundary layer so-
lution is exponentially stable [28, p. 154] and decay with
the rate t/ε ,

δ Q̇(0)
i (t/ε) = BδD(t/ε),

δQ(0)
i (t/ε) = εB

∫ t/ε

0
δD(τ)dτ.

(A.8)

where δD(·) is an exponentially decaying function with
the rate of its argument and δD(0) = 1 and B is a constant
determined by the initial conditions.
Therefore, the solution of the system will be as follows:{

δ q̄i(t) = Ae−ct +O(ε),
δ ˙̄qi(t) =−cAe−ct +BδD(t/ε)+O(ε),

(A.9)

Hence, satisfying the initial conditions yields,

A = δ q̄i(0),

B = δ ˙̄qi(0)+ cδqi(0). (A.10)
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