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Integral Barrier Lyapunov Functions-based Neural Control for Strict-
feedback Nonlinear Systems with Multi-constraint
Jun Zhang

Abstract: A new robust tracking control approach is proposed for strict-feedback nonlinear systems with state and
input constraints. The constraints are tackled by extending the control input as an extended state and introducing an
integral barrier Lyapunov function (IBLF) to each step in a backstepping procedure. This extends current research
on barrier Lyapunov functions(BLFs)-based control for nonlinear systems with state constraints to IBLF-based
control for strict-feedback nonlinear systems with state and input constraints. Since the IBLF allows the original
constraints to be mixed with the error terms, the use of IBLF decreases conservatism in barrier Lyapunov functions-
based control. In the backstepping procedure, neural networks (NNs) with projection modifications are applied to
estimate system uncertainties, due to their ability in guaranteeing estimators in a given bounded area. To facilitate
the use of the once-differentiable NNs estimators in the backstepping procedure, the virtual controllers are passed
through command filters. Finally, simulation results are presented to illustrate the feasibility and effectiveness of
the proposed control.

Keywords: Barrier Lyapunov function, dynamic surface control, input saturation, neural networks, state constraints,
strict-feedback nonlinear system.

1. INTRODUCTION

State constraints and control input constraints exist in
many mechanical systems and process industries due to
mechanical stoppages, safety specification, actuator satu-
ration and so on. Ignoring state or input constraints may
result in system performance degradation, closed-loop in-
stability, and even disasters. Thus, more and more atten-
tions have been payed to the control design for constrained
systems [1–3].

The approaches used in control for constrained nonlin-
ear systems mainly include anti-saturation control [4–8],
model predictive control (MPC) [9–11], reference gov-
ernor (RG) [12], and barrier Lyapunov functions (BLFs)
[13, 14]. However, anti-saturation control can not tackle
system state constraints. MPC and RG are well known
as effective methods for control of constrained nonlinear
systems. In MPC, system constraints are explicitly con-
sidered in receding horizon optimizations and control is
obtained by solving the optimization online. In RG, sys-
tem constraints are guaranteed by redesign of reference
signal obtained by solving online optimization. However,
the computational complexity of solving nonlinear opti-
mizations brings difficulties for their applications in real-
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time control.
Recently, BLFs-based controllers have been developed

for constrained nonlinear systems with time-invariant out-
put constraints [13–15], time-varying output constraints
[16], partial state constraints [17], and full state con-
straints [18–21]. Since the function values of BLFs will
grow to infinity if the arguments approach the constraints
boundary, the avoidance of constraints violation can be
reached by bounding BLFs. To decrease conservatism of
BLFs-based control due to imposing constraints on trans-
formed errors not on original state constraints directly, in-
tegral BLFs-based control are designed for nonlinear sys-
tems with state constraints in [22,23]. However, input sat-
uration is not considered in [13–23]. Therefore, integral
BLFs-based control for nonlinear systems with state and
input constraints deserves more research.

System uncertainties exist in most practical systems
due to modeling errors and exogeneous disturbances. In
[13–23], uncertainties are not considered or only uncer-
tainties with linear parametric forms are considered ex-
cept [14, 15, 19, 20, 23]. Adaptive RBF NNs [24–26] with
σ modifications are used in [14, 15, 19, 20, 23] to esti-
mate system uncertainties in constrained nonlinear sys-
tems. Though the use of σ modifications prevent NN
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weights from drifting to infinity, it can not guarantee the
estimators confined in given bounded areas. In the BLFs-
based backstepping control, the virtual controllers are re-
quired to be bounded by state constraint bound. Thus,
compared with other NNs, NNs with projection modifi-
cations are applied in BLFs-based control to estimate un-
certainties due to their ability in guaranteeing estimators
in given bounded areas. But once-differentiability of the
NNs with projection modifications prohibits their appli-
cations in high-order strict feedback uncertain nonlinear
systems, since at least twice-differentiability of NN esti-
mators are required in the backstepping procedure.

This paper proposes an integral BLFs-based adaptive
NN control approach for a class of strict-feedback uncer-
tain nonlinear systems with state and input constraints.
The main contribution of this study include:

1) The system constraints are tackled by extending
control input as an extended state and introducing an
integral barrier Lyapunov function (IBLF) to each step
in a backstepping procedure. This extends current re-
search on IBLF-based control for nonlinear systems with
state/output constraints to state constraints and symmetric
control saturation.

2) Raised cosine RBF NNs with projection modifica-
tions are designed to estimate and compensate nonlin-
ear system uncertaities. By properly choosing bounds of
NN weights, the NN estimators can be confined in ex-
pected bounded areas and the virtual control can be eas-
ily bounded by the bounds of system states by properly
choosing parameters.

3) To facilitate the use of the once-differentiable NN es-
timators in backstepping, dynamic surface control [27,28]
is used by passing the virtual control through command
filters, which also decrease the computation complexity in
the backstepping procedure.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1. Problem statement
Consider the following nth order SISO nonlinear sys-

tem:

ẋi = fi(x̄i)+ xi+1, i = 1,2, · · · ,n−1, (1)

ẋn = fn(x̄n)+u, (2)

where xi ∈ R and u ∈ R are the state variable and the
system input, respectively, fi(x̄i) are unknown nonlinear
functions with the state x̄i = [x1, · · · ,xi]

T as the function
variable. For system (1), the system constraints consist of
state constraints and asymetric input constraint, which are
described as follows:

|xi| ≤ kci, |u| ≤ uc, i = 1,2, ..,n, (3)

where kci, −uc1 and uc2 are positive constants.

The objective of this paper is to design an IBLFs-based
NN control u(t) such that the system constraints (3) are
satisfied, the signal of the closed-loop control system are
bounded and the x1 is driven to track the desired trajectory
yd(t).

Assumption 1: The functions f (x) is locally Lipschits
continuous.

Assumption 2: The reference signal yd(t) and its
jth-order time derivative y( j)

d (t), j = 1,2, · · · ,n + 1 are
known and satisfy |yd(t)| ≤ A0 < kc1 and |y( j)

d | ≤Yj, where
A0,Y1, · · · ,Yn+1 are positive constants.

2.2. RBF neural networks
Define Di = {[x1, · · · ,xi]

T ∈ Ri : |x j| ≤ kc j, j = 1, · · · , i}.
The locally Lipschits continuous functions fi(x̄i) : Di → R
can be expressed by RBF NN as

fi(x̄i) = θ T
i Φi(x̄i)+ εi(x̄i), (4)

where Wi is the vector of optimal weight, εi(x̄i) is the op-
timal estimation error and Φi(x̄i) = [ϕi1(x̄i), · · · ,ϕi,Ni(x̄i)]

T

with ϕis(x̄i),s = 1, · · · ,Ni defined as

ϕis(x̄i) =
i

∏
j=1

ξis, j(x j), (5)

ξis, j(x j) =


1
2

(
1+ cos

(
π(x j − cis, j)

σis, j

))
,

if |x j − cis, j| ≤ σis, j,
0, if |x j − cis, j|> σis, j,

(6)

with cis, j and σis, j being the center and radius, respectively.
The estimation of fi(x̄i) by the raised-cosine RBF can

be expressed as

f̂i(x̄i) = θ̂ T
i Φi(x̄i), (7)

where θ̂i is the estimation of optimal weight.
Define the compact sets Ωi := {θ̂i : ||θ̂i|| ≤ cθ i}, i =

1, · · · ,n, where cθ i are prespecified finite constants. Then

θi = argmax
θ̂ j∈Ωi

(
sup
x̄i∈Di

| fi(x̄i)− f̂ (x̄i)|
)
. (8)

Define

ci = max
θi,θ̂i∈Ωi

θ̃ T
i θ̃i/pi, (9)

where θ̃i = θi − θ̂i and pi is a positive design parameter.

3. CONTROL DESIGN AND STABILITY
ANALYSIS

Step 1: Define z1 = x1 − yd as the tracking error. Con-
sider the following IBLF:

V1 =
∫ z1

0

σk2
c1

k2
c1 − (σ + yd)2 dσ +

1
2p1

θ̃ T
1 θ̃1. (10)
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Taking time derivative of V1, yields

V̇1 =
k2

c1z1

k2
c1 − x2

1
( f1(x̄1)+ x2 − ẏd)+

∂V1

∂yd
ẏd , (11)

where ∂V1/∂yd is calculated as [22, 23]:

∂V1

∂yd
= z1

(
k2

c1

k2
c1 − x2

1
−ρ1(z1,yd)

)
, (12)

and

ρ1(z1,yd) =
∫ 1

0

k2
c1

k2
c1 − (β z1 + yd)2 dβ (13)

with

ρ1(0,yd) =
k2

c1

k2
c1 − y2

d
, (14)

which means that ρ1(z1,yd) is well defined and bounded
around the neighborhood of z1 = 0.

Define the virtual control α1 as

α1 =− f̂1 − k1z1 −
1
2

k2
c1z1

k2
c1 − x2

1
+

k2
c1 − x2

1

k2
c1

ẏdρ1. (15)

Passing α1 through a command filter, yields

τ1α̇1d =−α1d +α1. (16)

Define z2 = x2 −α1d and α̃1 = α1 −α1d . Then,

V̇1 =−1
2

(
k2

c1z1

k2
c1 − x2

1

)2

+
k2

c1z1

k2
c1 − x2

1
(ε1 + α̃1 + z2)

− θ̃ T
1 (

˙̂θ1/p1 −Φ1
k2

c1z1

k2
c1 − x2

1
)− k2

c1k1z2
1

k2
c1 − x2

1
. (17)

Using Young’s inequality,

k2
c1z1

k2
c1 − x2

1
(ε1 + α̃1)≤(ε1d)

2 +(α̃1)
2 +

1
2

(
k2

c1z1

k2
c1 − x2

1

)2

.

(18)

Then,

V̇1 ≤− k2
c1k1z2

1

k2
c1 − x2

1
+

k2
c1z1z2

k2
c1 − x2

1
− θ̃ T

1 (
˙̂θ1/p1 −Φ1

k2
c1z1

k2
c1 − x2

1
)

+(α̃1)
2 +(ε1d)

2. (19)

Step i (i = 2, · · · ,n): Define zi = xi −αi−1,d . Consider
the candidate Lyapunov function

Vi =Vi−1 +Λi, (20)

where

Λi =
∫ zi

0

σk2
ci

k2
ci − (σ +αi−1,d)2 dσ +

1
2pi

θ̃ T
i θ̃i. (21)

Taking time derivative of Λi, yields

Λ̇i =
k2

cizi

k2
ci − x2

i
( fi + xi+1 − α̇i−1,d)

+
∂Λi

∂αi−1,d
α̇i−1,d −

1
2pi

θ̃ T
i

˙̂θi, (22)

where ∂Λi
∂αi−1,d

is calculated as

∂Λi

∂αi−1,d
= zi

(
k2

ci

k2
ci − x2

i
−ρi(zi,αi−1,d)

)
, (23)

and

ρi(zi,αi−1,d) =
∫ 1

0

k2
ci

k2
ci − (β zi +αi−1,d)2 dβ (24)

with

ρi(0,αi−1,d) =
k2

ci

k2
ci −αi−1,d

2 , (25)

which means that ρi(0,αi−1,d) is well defined and bounded
around the neighborhood of zi = 0.

Lemma 1 [22]: The function ρi(zi,αi−1,d) is C1 in the
set Ψi = {zi ∈ R,αi−1,d ∈ R : |αi−1,d | ≤ kci, |zi +αi−1| ≤
kci}.

Define the virtual control αi as

αi =− f̂i − kizi −
1
2

k2
cizi

k2
ci − x2

i
+

k2
ci − x2

i

k2
ci

α̇i−1,dρi

−
k2

c,i−1(k
2
ci − x2

i )zi−1

k2
ci(k

2
c,i−1 − x2

i−1)
. (26)

Passing αi through a command filter, yields

τiα̇id =−αid +αi. (27)

Define α̃i = αi −αid and zn+1 = u−αnd . Then,

Λ̇i =− k2
cikiz2

i

k2
ci − x2

i
−1

2

(
k2

cizi

k2
ci − x2

i

)2

+
k2

cizi

k2
ci − x2

i
(εi + α̃i + zi+1)

− θ̃ T
i (

˙̂θi/pi −Φi
k2

cizi

k2
ci − x2

i
)−

k2
c,i−1zi−1zi

k2
c,i−1 − x2

i−1
. (28)

Then, we have

Λ̇i ≤− k2
cikiz2

i

k2
ci − x2

i
+

k2
cizizi+1

k2
ci − x2

i
− θ̃ T

i (
˙̂θi/pi −Φi

k2
cizi

k2
ci − x2

i
)

+(α̃i)
2 +(εid)

2 −
k2

c,i−1zi−1zi

k2
c,i−1 − x2

i−1
. (29)

Based on (19) and (29),

V̇i ≤
k2

cizizi+1

k2
ci − x2

i
−

i

∑
j=1

k2
cikiz2

i

k2
ci − x2

i
−

i

∑
j=1

((α̃i)
2 +(εid)

2)
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+
i

∑
j=1

θ̃ T
i (

˙̂θi/pi −Φi
k2

cizi

k2
ci − x2

i
). (30)

Step n+1n+1n+1: Consider the candidate Lyapunov function:

Vn+1 =Vn +Λn+1, (31)

where

Λn+1 =
∫ zn+1

0

u2
c

u2
c − (σ +αn,d)2 dσ . (32)

Taking time derivative of Λn+1, yields

Λ̇n+1 =
u2

czn+1

u2
c −u2 (u̇− α̇n,d)+

∂Λn+1

∂αn,d
α̇n,d , (33)

where ∂Λn+1/∂αn,d is calculated as:

∂Λn+1

∂αn,d
= zn+1

(
u2

c

u2
c −u2 −ρn+1(zn+1,αn,d)

)
. (34)

Define system control u such that

u̇ =− kn+1zn+1 +
u2

c −u2

u2
c

α̇n,dρn+1

−
k2

c,n(u
2
c −u2)zn

u2
c(k2

c,n − x2
n)

. (35)

Then,

Λ̇n+1 =−
u2

ckn+1z2
n+1

u2
c −u2 − k2

cnznzn+1

k2
cn − x2

n
. (36)

Based on (30) and (36), one can obtain

V̇n+1 ≤−
n

∑
j=1

k2
cikiz2

i

k2
ci − x2

i
−

u2
ckn+1z2

n+1

u2
c −u2 −

n

∑
j=1

(α̃i)
2

−
n

∑
j=1

(εid)
2 +

n

∑
j=1

θ̃ T
i (

˙̂θi/pi −Φi
k2

cizi

k2
ci − x2

i
), (37)

where kc,n+1 = uc.
Design the adaptive law of θ̂i as

˙̂θi = Proj
(

piΦi
k2

cizi

k2
ci − x2

i

)
, (38)

where Pro j(•) is a projection operator given by [26]

Pro j(•) =


•, if ||θ̂i||< cθ i

or ||θ̂i||= cθ i & θ̂ T
i • ≤ 0,

•− θ̂iθ̂ T
i •/||θ̂i|2|,

if ||θ̂i||= cθ i & θ̂ T
i •> 0.

(39)

Lemma 2 [22]: The first part of (21) satisfies∫ zi

0

σk2
ci

k2
ci − (σ +αi−1,d)2 dσ ≤ k2

ciz
2
i

k2
ci − x2

i
(40)

for |xi|< kci, and∫ zn+1

0

u2
c

u2
c − (σ +αn,d)2 dσ ≤

u2
cz2

n+1

u2
c −u2 . (41)

Lemma 3 [28]: For the filters (27), if α̃i(0) = 0 and
x(t)∈Dn,∀t ∈ [0,Tf ], then given µ ∈R+, there exist τi > 0
such that |α̃i(t)| ≤ µ,∀t ∈ [0,Tf ], i = 1,2, · · · ,n.

Theorem 1: Consider the system (1-2) under Assump-
tion 1-2, control law described in (13) and initial condition
x(0) ∈ Dn, |u(0)| ≤ uc. Let

Ai = max
(z̄i,ȳdi)∈Γi

|αi(z̄i, ȳdi)|, A
′

i = max
(z̄i,ȳdi)∈Γi

|αdi|,

i = 1, · · · ,n,

where z̄i = [z1, · · · ,zi]
T , ȳdi = [yd ,y

(1)
d , · · · ,y(i−1)

d ]T , and

Γi ={z̄i ∈ Ri, ȳdi ∈ Ri : ||z j| ≤
√

2V |t=0,

j = 1, · · · , i, |yd | ≤ A0, · · · , |y(i−1)
d | ≤ Yi−1}. (42)

If there exist k1, · · · ,kn+1 and τ1, · · · ,τn > 0 such that

kci > Ai−1,kci > A
′

i−1, i = 1,2, · · · ,n,uc > An, (43)

then the system constraints (3) are satisfied, zi, θ̃i, θ̂i ∈
L∞, i = 1, · · · ,n, and the tracking error z1 converge to a
bounded compact set.

Proof: From the expression of A
′

i, i = 1, · · · ,n and their
boundedness, the errors α̃i are bounded and there exist αD

such that |α̃i| ≤ αD. Substituting (38) into (37), yields

V̇n+1 ≤−
n

∑
j=1

k2
cikiz2

i

k2
ci − x2

i
−

u2
ckn+1z2

n+1

u2
c −u2

+
n

∑
j=1

((α̃i)
2 +(εid)

2)

≤
n

∑
i=1

(
α2

D + ε2
D +

1
2

kci

)
− k

n

∑
i=1

1
2pi

θ̃ T
i θ̃i

− k

(
n

∑
j=1

k2
ciz

2
i

k2
ci − x2

i
+

u2
cz2

n+1

u2
c −u2

)

≤− 1
2

kVn+1

− 1
2

(
kVn+1 −2

n

∑
i=1

(
α2

D + ε2
D +

1
2

kci

))
,

(44)

where k = mini{ki}. Then,

V̇n+1 ≤−1
2

min
i
{ki}Vn+1, if Vn+1(t)≥ ζ , (45)

where ζ = 2∑n
i=1(α2

D + ε2
D + 1

2 kci)/k. Therefore, Vn+1(t)
is bounded for all t ∈ R+, from which x(t) ∈ Dn,∀t ∈ R+

and |u(t)| ≤ uc can be concluded.
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It is derived from Lemma 3 that given α̃i(0) = 0 and
µ > 0, there exist τi such that |α̃i(t)| ≤ µ,∀t ∈ [0, t f ].
Therefore,

V̇n+1 ≤−1
2

min
i
{ki}Vn+1, if Vn+1(t)≤ ζ1,∀t ∈ [0, t f ],

(46)

where ζ1 = 2∑n
i=1(µ2+ε2

D+
1
2 kci/pi)/k. Therefore, x̃ and

θ̃i are bounded over any finite time interval, by [29, Theo-
rem 3.3], the solution exists for t ∈ [0,∞)(i.e.Tf = ∞).

Solving the inequality (46), yields

||z̄n(t)|| ≤
√

2Vn+1(0)exp(−kt/2)+
√

2ζ1 (47)

from which one can conclude that the tracking error z1

converges to a small neighborhood of zero by properly
choosing ki, τi, pi, i = 1, · · · , n, and kn+1.

4. SIMULATION RESULTS

To illustrate the effectiveness of the proposed IBLFs-
based adaptive NN control, simulations are carried out for
a constrained nonlinear system and a single-link robot ma-
nipulator.

4.1. Case 1
The dynamics of the considered nonlinear system is

given by

ẋ1 = x2
1 + x2, (48)

ẋ2 = x1x2 +2x1 +u(t), (49)

|x1|< 0.8, |x2|< 2.5, |u|< 10. (50)

Denote x3 = u and choose the initial system states as
x1(0) = 0.3,x2(0) = 0.2,x3(0) = 0 and the reference tra-
jectory as yd = 0.5sin(0.2t).

In the simulation, the control gains are chosen accord-
ing to dynamic frequency responses of the control system.
The dynamic frequency response of x2 should be much
faster than responses of x1. Thus, we choose k2 = 2.5,
which is 5 times of k1 = 0.5, and choose 1/τ2 = 30, which
is two times of 1/τ1 = 15. To avoid too fast variation of
the control law u(t), choose k3 = k2 = 2.5.

The control is designed to satisfy

u̇ =−2z3 −
2.52(102 − x2

3)z2

102(2.52 − x2
2)

+
102 − x2

3

102 α̇2dρ3, (51)

where z2 = x2 −α1d and z3 = x3 −α2d with α1d and α2d

obtained by passing virtual control α1,α2 through the fol-
lowing command filters

α̇1d =−15(α1d −α1), α̇2d =−30(α2d −α2). (52)

The virtual control α1,α2 are chosen as

α1 =− f̂1 −0.4z1 +
0.82 − x2

1

0.64
ẏdρ1 −0.5

0.82z1

0.82 − x2
1
,

(53)

Fig. 1. Trajectory tracking errors z1 = x1 − yd .

Fig. 2. The state x1, x2 and control input u.

α2 =− f̂2 −2z2 −0.5
2.52z2

2.52 − x2
2
+

2.52 − x2
2

2.52 α̇1dρ2

− 0.82(2.52 − x2
2)

2.52(0.82 − x2
1)

z1. (54)

In NN weights update law (38), p1 = 10 and p2 = 10. In
the NN approximation, the cθ1 and cθ2 in (39) are chosen
as 0.3 and 3, respectively. The c1s,1, σ1s,1 in (6) are chosen
as c1s,1 =−0.8+2(s−1), σ1s,1 = 0.4, s = 1, 2, · · · , 9, and
σ2s,1 = 0.6, c2s,1 =−0.8, −0.4, 0, 0.4, 0.8 for s mod 5= 1,
2, 3, 4, 5, respectively, and σ2s,2 = 0.7, c2s,2 = −2.5 +
0.5[s/6], s = 1, 2, · · · , 55.

The simulation results are presented in Figs. 1-5, where
Fig. 1 presents the trajectory tracking error z1 in case 1,
Fig. 2 depicts the performance of system states and input
in case 1, Fig. 3 describes the NNs approximation perfor-
mance in Case 1, and Figs. 4-5 present f1, f̂1 and f2, f̂2 in
Case 1, respectively.

From Fig. 1, the tracking error will be less than 0.015
after 15 seconds and the constraints satisfaction |x1| ≤ 0.8,
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Fig. 3. The NN estimation errors f̃1 and f̃2.

Fig. 4. The uncertainty f1 and its NN estimator f̂1.

Fig. 5. The uncertainty f2 and its NN estimator f̂2.

|x2| ≤ 2.5, |u| ≤ 10 can be easily seen from Fig. 2. From
Figures 3-5, one can see that the absolute values of the
approximation errors f̃1 and f̃2 will be no more than 0.01

Fig. 6. The tracking error performance z1 for the system
disturbed by d(t) = 0.2sin(0.2t).

Fig. 7. The state and the control of the system disturbed
by d(t) = 0.2sin(0.2t).

after 15 seconds and the designed NNs can well approxi-
mate the uncertainties f1 and f2. Therefore, the designed
IBLFs-based adaptive NN control makes the system state
and control input constraints are satisfied and the trajec-
tory tracking error converge to a small neighborhood of
zero. Figs. 6-7 illustrate the tracking error performance
and the performance of states and control of the system
(48) and (49) disturbed by d(t) = 0.2sin(0.2t). From the
two figures, we can see that the system tracks the de-
sired trajectory with good performance without violation
of constraints, which illustrate control robustness to the
disturbances.

4.2. Case 2
Consider a single-link robot manipulator with the fol-

lowing dynamics

Mq̈+
1
2

mgl sinq = u, (55)
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Fig. 8. Trajectory tracking errors z1 = x1 − yd .

Fig. 9. The state x1, x2 and control input u.

where M = 0.5 is the inertial moment, q is the angle, m= 1
Kg is the mass of the link, l = 1 m is the length of the
link, and g = 9.8 m/s2 is the gravity acceleration. Denote
x1 = q, x2 = q̇, and x3 = u. Then, the dynamics (55) can
be represented as

ẋ1 = x2, (56)

ẋ2 = f (x1,x2)+2x3, (57)

ẋ3 = u̇, (58)

where f (x1,x2)=−9.8sin(x1) is the uncertainty term, and
the system constraints are as follows: |x1| < 1, |x2| < 1,
|u|< 5.

In the simulation, the initial system states as x1(0) =
0.5, x2(0) = 0.2, x3(0) = 0 and the reference trajectory as
yd = 0.5sin(0.2t). The control gains are chosen accord-
ing to dynamic frequency responses of the control system.
The dynamic frequency response of x2 should be much
faster than responses of x1. Thus, we choose k2 = 2.5,
which is 5 times of k1 = 0.5, and choose 1/τ2 = 45, which

Fig. 10. The NN estimation errors f̃ .

Fig. 11. The uncertainty f and its NN estimator f̂ .

is two times of 1/τ1 = 15. To avoid too fast variation of
the control law u(t), choose k3 = k2 = 2.5.

The simulation results in Case 2 are presented in
Figs. 8-11, where Fig. 8 presents the trajectory tracking er-
ror z1 in case 2, Fig. 9 depicts the performance of system
states and input in Case 2, Fig. 10 describes the NN ap-
proximation performance in Case 2, and Fig. 11 presents
f and f̂ in Case 2.

From Fig. 8, the tracking error will be less than 0.03
after 2 seconds and satisfaction of the constraints |x1| ≤ 1,
|x2| ≤ 1, |u| ≤ 5 can be easily seen from Fig. 9. From
Fig. 10-11, one can see that the absolute value of the ap-
proximation error f̃ will be no more than 0.12 after 2 sec-
onds and the designed NN can well approximate the un-
certainties f . Therefore, the designed IBLFs-based adap-
tive NN control makes the system state and control in-
put constraints be satisfied and the trajectory tracking er-
ror converge to a small neighborhood of zero. Figs. 12-
13 illustrate the tracking error performance and the per-
formance of states and control of the system (56-58) dis-
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Fig. 12. The tracking error performance z1 for the system
disturbed by d(t) =−0.5sin(0.2t).

Fig. 13. The state and the control of the system disturbed
by d(t) =−0.5sin(0.2t).

turbed by d(t) =−0.5sin(0.2t). From the two figures, we
can see that the system tracks the desired trajectory with
good performance without violation of constraints, which
illustrate control robustness to the disturbances.

5. CONCLUSIONS

In this paper, a IBLFs-based adaptive NN control was
designed for a class of strict-feedback nonlinear systems
with state and input constraints. The paper extended the
current results on BLFs-based control for systems with
output and state constraints to systems with state and in-
put constraints, by considering the control input as an ex-
tended state. In the control, the system uncertainties were
estimated and compensated by NNs with projection mod-
ifications. From simulation results, one can see that the
tracking error and NN approximation error is accurate for
the constrained system. Therefore, based on theoretical

analysis and simulation results, the effectiveness of the
proposed control scheme can be concluded.
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