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Global Robust Synchronization of Fractional Order Complex Valued
Neural Networks with Mixed Time Varying Delays and Impulses
Pratap Anbalagan, Raja Ramachandran, Jinde Cao*, Grienggrai Rajchakit, and Chee Peng Lim

Abstract: In this article, we explore the theoretical issues on the drive-response synchronization of a class of frac-
tional order uncertain complex valued neural networks (FOUCNNs) with mixed time varying delays and impulses.
Based upon the contraction mapping principle, robust analysis techniques, as well as Riemann-Liouville (R-L)
derivative, we derive a new set of novel sufficient conditions for the existence and uniqueness of equilibrium point
of such neural network system, while by applying the Lyapunov functional approach, the global stability of the
equilibrium solutions are obtained. Furthermore, the synchronization criterion of FOUCNNs is also attracted by
means of the adaptive error feedback control strategy. Finally, two examples are provided along with the simulation
results to demonstrate the effectiveness of our main proofs.

Keywords: Adaptive synchronization, asymptotic stability, complex valued neural networks, Riemann-Liouville
derivative.

1. INTRODUCTION

The fresh concept of fractional order calculus and dif-
ferential equations has three hundred years old of branch.
For long period, the theory of fractional calculus is de-
veloped only on pure mathematics. Owing to lack of solu-
tion methods, the development of fractional order calculus
has not much attracted more mathematicians in those peri-
ods. At present, fractional order dynamical system has at-
tracted increasing interests of many researchers from var-
ious aspects such as porus media [2], viscoelasticity [19]
and so on. As a extension of ordinary integer order calcu-
lus, fractional calculus has been acted more powerful tool
because the results are more accurate than integer order
in both theory part as well as application part. In con-
tinuous time integer order case, the common capacitance
can be replaced by fractance, giving this issues is called
the origin of non integer order neural network dynamical
system [5]. Recently, fractional order calculus and their
properties has been applied to neural networks, especially
complex valued neural networks.

Complex valued neural network systems, the general-
ization of real valued recurrent neural network models
is totally different properties and more complicated to
real world neural network models because the connection
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weight parameters, activation functions and state variables
are mainly chosen in complex values. Many author con-
sidered sigmoid activation functions in real world neural
networks because these activation are continuously differ-
entiable and bounded. Moreover, In complex valued neu-
ral networks, the continuously differentiable and bounded
activation in complex domain is not convenient since they
will reduce constants over entire C by means of Liou-
ville’s theorem [15]. In practice, detection of symme-
try problem and XOR problem are not suitable for real
world counterparts and it can be only solved by com-
plex valued neural networks [32]. However, in prac-
tice, the stability may be affects the parameter uncertainty
[4], discrete delay [7, 9], synchronization errors [13], dis-
tributed delay [33], diffusion effects [14], impulsive ef-
fects [22,29], stochastic effects [34] and in electronic net-
work implementations, these are widely exists to neural
network models. For example, a lot of many excellent
considerable results with fractional order and integer or-
der complex valued neural networks have been reported
in the existing literature, see [7, 8, 11, 12, 25].

Since the method of synchronization between two
chaotic system with different initial conditions was gov-
erned in Pecora and Carroll [10]. In past few days, the
study of fractional order complex valued synchronization
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has a burgeoning research topic in the area of neural net-
works and complex networks. Up to now, there are nu-
merous types of synchronization in fractional order has
been proposed projective synchronization [3], global Mit-
tag Leffler synchronization [18], finite time synchroniza-
tion [20], adaptive synchronization [23, 24], Finite time
Mittag-Leffler synchronization [26], quasi uniform syn-
chronization [27] and lag synchronization [28] by means
of sliding mode control, state feedback control, adaptive
controls and period intermittent control methods. There
are few number of results are published in the synchro-
nization analysis of complex valued neural networks with
integer order and non integer order cases, see Ref [1, 31].
Through the review of literature, a few results have been
available on robust stability and robust adaptive synchro-
nization analysis of fractional order complex valued neu-
ral networks with mixed time delays and impulses. Mo-
tivated by the aforementioned arguments, the main objec-
tive of this article are listed as follows

• This is the first time to investigates the Riemann-
Liouville sense for global robust synchronization of
FOUCNNs with mixed time varying delay and im-
pulses.

• By employing the contraction mapping principle, a
suitable Lyapunov functional, Barbalat’s Lemma and
the properties of R-L derivative, some sufficient con-
ditions which ensures the existence, uniqueness and
stability of equilibrium point of the system are estab-
lished.

• By means of adaptive feedback control, we have to
show the occurrence of robust adaptive complex val-
ued synchronization conditions between the drive-
response systems and we have to introduces some
special corollaries of obtained main results which is
different from existing literatures.

Notations: Throughout this paper, C is the space of
complex valued functions, R be the space of real val-
ued functions, Cn, Rn denotes n-dimensional unitary and
n-dimensional Euclidean spaces. Let x = p + iq be a
complex number, where i =

√
−1 is the imaginary units,

p,q ∈ R. In this paper ∥.∥ denotes ∥.∥1, Rn×n and Cn×n

denotes the set of all n × n real and complex matrices.
Let RLDβ is Riemann-Liouville operator, simply denoted
by Dβ and C((−∞,0],Rn) denotes the family of Banach
space of all continuous functions mapping from (−∞,0]
to Rn. Similarly, C((−∞,0],Cn) denotes the family of
Banach space of all continuous functions mapping from
(−∞,0] to Cn.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this work, we consider the impulsive fractional order
uncertain complex valued neural networks (FOUCNN’s)

model as follows:

Dβ xh(t) =−rhxh(t)+
n

∑
l=1

(uhl +∆uhl)gl(xl(t))

+
n

∑
l=1

(vhl +∆vhl)gl(xl(t − τl(t)))

+
n

∑
l=1

(whl +∆whl)
∫ t

−∞
Lhl(t − s)

×gl(xl(s))ds+ Ih, t ̸= tk, t ≥ 0,

∆xh(tk) = xh(t+k )− xh(t−k ) = Φhk(xh(tk)), (1)

for h = 1, 2, ..., n, k = 1, 2, ..., where xh(t) =
(x1(t),x2(t), ...,xn(t)) ∈ Cn is the state vector of the of
the h-th neuron at time t; Dβ denotes the Riemann Li-
ouville operator with fractional order 0 < β < 1; τl(t) =
(τ1(t),τ2(t), ...,τn(t)) denotes the corresponding discrete
time varying delay of the l-th neuron to h-th neuron;
Lhl(.) denotes the delay kernel of infinite distributed de-
lay defined on [0,+∞) and non negative bounded func-
tion; gl : Cn →Cn describes the nonlinear complex valued
activation function; R = diag{rh} > 0, h = 1,2, ...,n are
constant matrices; U = (uhl)n×n ∈ Cn×n, V = (vhl)n×n ∈
Cn×n and W = (whl)n×n ∈ Cn×n be the connection weight
matrices; I = (I1, I2, ..., In) ∈ Cn denotes the external in-
puts; tk denotes the impulsive perturbations and it satisfies
0 < t1 < t2 <,..., limk→∞ tk =+∞; Φhk denotes the impul-
sive jumps, xh(t−k )= limt→t−k

x(t) and xh(t+k )= limt→t+k
x(t)

stands for the left and right limits on impulsive moments
at time t = tk. Without loss of generality, the solution
of network system (1) is left continuous at time tk. i.e.,
xi(t−k ) = xi(tk); ∆uhl , ∆vhl and ∆whl be the complex un-
certain parameter. The initial value associated with the
system (1) is

D−(1−β )xh(t) = ρh(t) ∈C((−∞,0],Cn).

There are two kinds of approaches to solved complex val-
ued concepts in neural network systems. The first one is
connection weight parameters, activation functions and
state variables are all defined in complex domain and the
results can be obtained straight forward [17, 25]. Another
one is separation of complex valued neural networks into
real and imaginary parts of neural networks, which is the
twice that dimensional of real valued neural networks [1].
In this paper, we moves with second type of approaches.
Let xh(t) = ph(t)+ iqh(t), gh(xh(t)) = gR

h (ph(t),qh(t))+
igI

h(ph(t),qh(t)), Ih = IR
h + II

h, where ph(t),qh(t) ∈
R, gR

h (ph(t),qh(t)),gI
h(ph(t),qh(t)) : R2 → R. Therefore,

the equation (1) can be splitted into real and imaginary
parts. We have that

Dβ ph(t)

=−rh ph(t)+
n

∑
l=1

(uR
hl +∆uR

hl)g
R
l (pl(t),ql(t))
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−
n

∑
l=1

(uI
hl +∆uI

hl)g
I
l (pl(t),ql(t))

+
n

∑
l=1

(vR
hl +∆vR

hl)g
R
l (pl(t − τl(t))),ql(t − τl(t))))

−
n

∑
l=1

(vI
hl +∆vI

hl)g
I
l (pl(t − τl(t))),ql(t − τl(t)))

+
n

∑
l=1

(wR
hl +∆wR

hl)
∫ t

−∞
Lhl(t − s)gR

l (pl(s),ql(s))ds

−
n

∑
l=1

(wI
hl +∆wI

hl)
∫ t

−∞
Lhl(t − s)gI

l (pl(s),ql(s))ds

+ IR
h , t ̸= tk, t ≥ 0,

∆ph(tk) = ph(t+k )− ph(t−k )

= ΦR
hk(ph(tk)), k = 1,2, ..., (2)

and

Dβ qh(t)

=−rhqh(t)+
n

∑
l=1

(uI
hl +∆uI

hl)g
R
l (pl(t),ql(t))

+
n

∑
l=1

(uR
hl +∆uR

hl)g
I
l (pl(t),ql(t))

+
n

∑
l=1

(vI
hl +∆vI

hl)g
R
l (pl(t − τl(t)),ql(t − τl(t)))

+
n

∑
l=1

(vR
hl +∆vR

hl)g
I
l (pl(t − τl(t))),ql(t − τl(t))))

+
n

∑
l=1

(wI
hl +∆wI

hl)
∫ t

−∞
Lhl(t − s)

×gR
l (pl(s),ql(s))ds+

n

∑
l=1

(wR
hl +∆wR

hl)

×
∫ t

−∞
Lhl(t − s)gI

l (pl(s),ql(s))ds

+ II
h, t ̸= tk, t ≥ 0,

∆qh(tk) = qh(t+k )−qh(t−k )

= ΦI
hk(qh(tk)), k = 1,2, .... (3)

The initial conditions of separating neural drive system
(2)-(3) are defined as

D−(1−β )ph(t) = φh(t) ∈C((−∞,0],Rn),

D−(1−β )qh(t) = χh(t) ∈C((−∞,0],Rn).

Definition 1 [16]: The fractional order integral of order
β for an integral function y : [t0, t)−→ R is defined as

D−β y(t) =
1

Γ(β )

∫ t

t0
(t −m)β−1y(m)dm,

where β > 0 and Γ(.) is the Gamma function.

Definition 2 [16]: The Riemann-Lioville (R-L) deriva-
tive of order β for a function y(t) is defined as

Dβ y(t) =
1

Γ(n−β )
dn

dtn

∫ t

t0
(t −m)n−β−1y(m)dm,

where t ≥ t0 and n is the positive integer such that n−1 <
β < n.
Particularly, when 0 < β < 1,

Dβ y(t) =
1

Γ(1−β )
d
dt

∫ t

t0
(t −m)−β y(m)dm.

Definition 3: Let x∗ = (x∗1,x
∗
2, ...,x

∗
n) is an equilibrium

point of the system (1), if and only if

0 =− rhx∗h +
n

∑
l=1

(uhl +∆uhl + vhl +∆vhl)gl(x∗l )

+
n

∑
l=1

(whl +∆whl)
∫ t

−∞
Lhl(t − s)gl(x∗l )ds+ Ih,

0 =Φhk(x∗h), h = 1,2, ...,n, k = 1,2, .... (4)

Lemma 1 [6]: If the time dependent differential func-
tion σ(t) has finite limit as t →+∞, and if dσ

dt is uniformly
continuous, then dσ

dt → 0 as t →+∞.

Assumption 1: Let xh(t) = ph(t)+ iqh(t) and x̃h(t) =
p̃h(t) + iq̃h(t). The nonlinear Lipschitz continuous ac-
tivation function are given as follows: gh(xh(t)) =
gR

h (ph(t),qh(t))+ igI
h(ph(t),qh(t)), where gR

h (., .) : R2 →
R, gI

h(., .) : R2 → R with ph(t), qh(t), p̃h(t), q̃h(t) ∈ R,
there exist some positive constants κRR, κRI , κ IR,κ II such
that

|gR
h (p̃h(t), q̃h(t))−gR

h (ph(t),qh(t))|
≤ κRR

h |p̃h(t)− ph(t)|+κRI
h |q̃h(t)−qh(t)|,

|gI
h(p̃h(t), q̃h(t))−gI

h(ph(t),qh(t))|
≤ κ IR

h |p̃h(t)− ph(t)|+κ II
h |q̃h(t)−qh(t)|.

Assumption 2: There exist some positive scalars τ̌ and
τ̂ such that 0 < τl(t)< τ̌ , τ̇l(t)≤ τ̂ < 1, l = 1,2, ...,n.

Assumption 3: For any h, l = 1, 2, ..., n, there exists a
positive constant ζhl such that∫ +∞

0
Lhl(m)dm = ζhl .

Assumption 4: ∀h, k = 1, 2, ..., n, there exist real
scalars µα

hl , ϑ α
hl , ωα

hl(α = R, I) such that

∆uα
hl =µα

hlηα
hl(t), ∆vα

hl =ϑ α
hl η̂α

hl(t), ∆wα
hl =ωα

hlη̌α
hl(t).

where the time-varying uncertain real function ηα
hl , η̂α

hl
and η̌α

hl(α = R, I) satisfies the conditions [ηα
hl(t)]

2 ≤ 1,
[η̂α

hl(t)]
2 ≤ 1, [η̌α

hl(t)]
2 ≤ 1, h, l = 1, 2, ..., n.

Assumption 5: For any h = 1, 2, ..., n and k = 1, 2, ...,
there exist positive constants ϒR

hk and ϒI
hk such that func-

tions ΦR
hk and ΦI

hk satisfying

ΦR
hk =−ϒR

hk(yh(t)), ΦI
hk =−ϒI

hk(zh(t)),

0 < ϒR
hk < 2, 0 < ϒI

hk < 2,

where yh(t) and zh(t) are defined in later.
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3. MINE RESULTS

3.1. Existence and uniqueness of the equilibrium
point

Theorem 1: Suppose Assumptions 1, 2, 3, 4, and 5
hold, then there exists a unique equilibrium point of the
system (1), x∗ = (p∗,q∗) is globally robust stable if Λ1 >
0, Λ2 > 0 and

ϒ̂ = max
1≤h≤n

{ n

∑
l=1

(
[ûR

lh + ûI
lh]κR

h +[v̂R
lh + v̂I

lh]κR
h

+ζlh[ŵR
lh + ŵI

lh]κR
h

)
,

n

∑
l=1

(
[ûR

lh + ûI
lh]κ I

h +[v̂R
lh

+ v̂I
lh]κ I

h +ζlh[ŵR
lh + ŵI

lh]κ I
h

)}
< min

1≤h≤n
{rh}, (5)

where

Λ1 = min
1≤h≤n

{
rh −

n

∑
l=1

{ûR
lhκR

h + ûI
lhκR

h }

−
n

∑
l=1

{v̂R
lhκR

h + v̂I
lhκR

h }
1− τ̂

−
n

∑
l=1

{ŵR
lhκR

h + ŵI
lhκR

h }ζlh

}
,

Λ2 = min
1≤h≤n

{
rh −

n

∑
l=1

{ûR
lhκ I

h + ûI
lhκ I

h}

−
n

∑
l=1

{v̂R
lhκ I

h + v̂I
lhκ I

h}
1− τ̂

−
n

∑
l=1

{ŵR
lhκ I

h + ŵI
lhκ I

h}ζlh

}
,

where ûα
lh = |uα

lh|+ |µα
lh|, v̂α

lh = |vα
lh|+ |ϑ α

lh |, ŵα
lh = |wα

lh|+
|ωα

lh| (α = R, I), κR
h = κRR

h +κ IR
h , κ I

h = κ IR
h +κ II

h .

Proof: First, we can prove the existence and unique-
ness of the equilibrium point.
Let rh ph = ψh and rhqh = εh. Consider a mapping
Π : R2n → R2n is Π(ψ,ε) =

(
Π1(ψ,ε), ..., Πn(ψ,ε),

Πn+1(ψ,ε), ..., Π2n(ψ,ε)
)T

defined by

Πh(ψh,εh) =
n

∑
l=1

(uR
hl +∆uR

hl)g
R
l

(ψl

rl
,

εl

rl

)
−

n

∑
l=1

(uI
hl +∆uI

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(vR
hl +∆vR

hl)g
R
l

(ψl

rl
,

εl

rl

)
−

n

∑
l=1

(vI
hl +∆vI

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(wR
hl +∆wR

hl)
∫ t

−∞
Lhl(t − s)

×gR
l

(ψl

rl
,

εl

rl

)
ds−

n

∑
l=1

(wI
hl +∆wI

hl)

×
∫ t

−∞
Lhl(t − s)gI

l

(ψl

rl
,

εl

rl

)
ds+ IR

h ,

Πn+h(ψh,εh) =
n

∑
l=1

(uI
hl +∆uI

hl)g
R
l

(ψl

rl
,

εl

rl

)

+
n

∑
l=1

(uR
hl +∆uR

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(vI
hl +∆vI

hl)g
R
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(vR
hl +∆vR

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(wI
hl +∆wI

hl)
∫ t

−∞
Lhl(t − s)

×gR
l

(ψl

rl
,

εl

rl

)
ds+

n

∑
l=1

(wR
hl +∆wR

hl)

×
∫ t

−∞
Lhl(t − s)gI

l

(ψl

rl
,

εl

rl

)
ds+ II

h.

Let us take any two complex vectors (ψ,ε) and (ψ̃, ε̃).
Based Assumptions 1, 3, and 4, we gain∥∥∥Π(ψ̃, ε̃)−Π(ψ,ε)

∥∥∥
≤

n

∑
h=1

[ n

∑
l=1

1
rl

(
(|uR

hl |+ |µR
hl |)κR

l +(|vR
hl |+ |ϑ R

hl |)κR
l

+ζhl(|wR
hl |+ |ωR

hl |)κR
l +(|uI

hl |+ |µ I
hl |)κR

l +(|vI
hl |

+ |ϑ I
hl |)κR

l +ζhl(|wI
hl |+ |ω I

hl |)κR
l

)
|ψ̃l −ψl |

]
+

n

∑
h=1

[ n

∑
l=1

1
rl

(
(|uI

hl |+ |µ I
hl |)κ I

l +(|vI
hl |+ |ϑ I

hl |)κ I
l

+ζhl(|wI
hl |+ |ω I

hl |)κ I
l +(|uR

hl |+ |µR
hl |)κ I

l +(|vR
hl |

+ |ϑ R
hl |)κ I

l +ζhl(|wR
hl |+ |ωR

hl |)κ I
l

)
|ε̃l − εl |

]
=

n

∑
h=1

∑n
l=1 Λll

rh
|ψ̃h −ψh|+

n

∑
h=1

∑n
l=1 Λ2l

rh
|ε̃h − εh|,

where Λ1l =
(
[ûR

lh + ûI
lh]κR

h + [v̂R
lh + v̂I

lh]κR
h + ζlh[ŵR

lh +

ŵI
lh]κR

h

)
, Λ2l =

(
[ûR

lh + ûI
lh]κ I

h + [v̂R
lh + v̂I

lh]κ I
h + ζlh[ŵR

lh +

ŵI
lh]κ I

h

)
.

By using (5), we know that

∑n
l=1 Λ1l

rh
< 1, (6)

∑n
l=1 Λ2l

rh
< 1. (7)

By using the inequality (6) and (7), we get

∥Π(ψ̃, ε̃)−Π(ψ,ε)∥<
n

∑
h=1

|ψ̃h −ψh|+
n

∑
h=1

|ε̃h − εh|

= ∥(ψ̃,ψ)− (ε̃,ε)∥. (8)

It follows that Π : R2n → R2n is a contraction mapping
on R2n. Thus there exists a unique fixed point such that
(ψ∗,ε∗) such that Π(ψ∗,ε∗) = (ψ∗,ε∗), that is

ψ∗
h =

n

∑
l=1

(uR
hl +∆uR

hl)g
R
l

(ψl

rl
,

εl

rl

)
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−
n

∑
l=1

(uI
hl +∆uI

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(vR
hl +∆vR

hl)g
R
l

(ψl

rl
,

εl

rl

)
−

n

∑
l=1

(vI
hl +∆vI

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(wR
hl +∆wR

hl)
∫ t

−∞
Lhl(t − s)

×gR
l

(ψl

rl
,

εl

rl

)
ds−

n

∑
l=1

(wI
hl +∆wI

hl)

×
∫ t

−∞
Lhl(t − s)gI

l

(ψl

rl
,

εl

rl

)
ds+ IR

h ,

ε∗
h =

n

∑
l=1

(uI
hl +∆uI

hl)g
R
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(uR
hl +∆uR

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(vI
hl +∆vI

hl)g
R
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(vR
hl +∆vR

hl)g
I
l

(ψl

rl
,

εl

rl

)
+

n

∑
l=1

(wI
hl +∆wI

hl)
∫ t

−∞
Lhl(t − s)

×gR
l

(ψl

rl
,

εl

rl

)
ds+

n

∑
l=1

(wR
hl +∆wR

hl)

×
∫ t

−∞
Lhl(t − s)gI

l

(ψl

rl
,

εl

rl

)
ds+ II

h.

Substituting ψ∗
h = rh p∗

h, ε∗
h = rhq∗h into above equalities

and by virtue of Definition 4, we conclude that, there ex-
ists a unique equilibrium point x∗ = (p∗,q∗) of a system
(1).
Next, we shall prove to the unique equilibrium point of
the system (1) is globally stable. Let x̂h(t) = xh(t)− x∗h =
yh(t)+ izh(t), where yh(t) = ph(t)− p∗, zh(t) = qh(t)−q∗.
From (2)-(3), the error system can be obtained by

Dβ yh(t) =−rhyh(t)+
n

∑
l=1

(uR
hl +∆uR

hl)
[
gR

l (yl(t)

+ p∗l ,zl(t)+q∗
l )−gR

l (p∗
l ,q

∗
l )
]

−
n

∑
l=1

(uI
hl +∆uI

hl)
[
gI

l (yl(t)+ p∗l ,zl(t)+q∗l )

−gI
l (p∗l ,q

∗
l )
]
+

n

∑
l=1

(vR
hl +∆vR

hl)

×
[
gR

l (yl(t − τl(t)))+ p∗l ,zl(t − τl(t)))

+q∗
l )−gR

l (p∗l ,q
∗
l )
]
−

n

∑
l=1

(vI
hl +∆vI

hl)

×
[
gI

l (yl(t − τl(t)))+ p∗l ,zl(t − τl(t)))

+q∗l )−gI
l (p∗l ,q

∗
l )
]
+

n

∑
l=1

(wR
hl +∆wR

hl)

×
∫ t

−∞
Lhl(t − s)

[
gR

l (yl(s)+ p∗l ,zl(s)+q∗l )

−gR
l (p∗l ,q

∗
l )
]
ds−

n

∑
l=1

(wI
hl +∆wI

hl)

×
∫ t

−∞
Lhl(t − s)

[
gI

l (yl(s)+ p∗l ,zl(s)+q∗l )

−gI
l (p∗l ,q

∗
l )
]
ds, t ̸= tk, t ≥ 0,

∆yh(tk) = ΦR
hk(yh(tk)), k = 1,2, ..., (9)

Dβ zh(t) =−rhzh(t)+
n

∑
l=1

(uI
hl +∆uI

hl)
[
gR

l (yl(t)

+ p∗
l ,zl(t)+q∗l )−gR

l (p∗l ,q
∗
l )]+

n

∑
l=1

(uR
hl

+∆uR
hl)[g

I
l (yl(t)+ p∗

l ,zl(t)+q∗l )

−gI
l (p∗l ,q

∗
l )]+

n

∑
l=1

(vI
hl +∆vI

hl)

× [gR
l (yl(t − τl(t)))+ p∗l ,zl(t − τl(t)))

+q∗
l )−gR

l (p∗
l ,q

∗
l )]+

n

∑
l=1

(vR
hl +∆vR

hl)

× [gI
l (yl(t − τl(t)))+ p∗l ,zl(t − τl(t)))

+q∗
l )−gI

l (p∗
l ,q

∗
l )]+

n

∑
l=1

(wI
hl +∆wI

hl)

×
∫ t

−∞
Lhl(t − s)[gR

l (yl(s)+ p∗l ,zl(s)+q∗l )

−gR
l (p∗l ,q

∗
l )]ds+

n

∑
l=1

(wR
hl +∆wR

hl)

×
∫ t

−∞
Lhl(t − s)[gI

l (yl(s)+ p∗
l ,zl(s)+q∗

l )

−gI
l (p∗

l ,q
∗
l )]ds, t ̸= tk, t ≥ 0,

∆zh(tk) = ΦI
hk(zh(tk)), k = 1,2, .... (10)

Construct the following Lyapunov function:

V (t) =D−(1−β )
[ n

∑
h=1

|yh(t)|+
n

∑
h=1

|zh(t)|
]

+
1

(1− τ̂)

n

∑
h=1

Θ1

∫ t

t−τh(t)
|yh(m)|dm

+
1

(1− τ̂)

n

∑
h=1

Θ2

∫ t

t−τh(t)
|zh(m)|dm

+
n

∑
h=1

Θ3

∫ 0

−∞

∫ t

t+s
Llh(−s)|yh(m)|dmds

+
n

∑
h=1

Θ4

∫ 0

−∞

∫ t

t+s
Llh(−s)|zh(m)|dmds, (11)

where Θ1 = ∑n
l=1{v̂R

lhκR
h + v̂I

lhκR
h }, Θ2 = ∑n

l=1{v̂R
lhκ I

h +
v̂I

lhκ I
h}, Θ3 = ∑n

l=1{ŵR
lhκR

h + ŵI
lhκR

h }, Θ4 = ∑n
l=1{ŵR

lhκ I
h +
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ŵI
lhκ I

h}. On the other hand, from using Assumption 5 and
we consider the case t = tk, k = 1, 2, 3, ... and t > 0, one
has

V (t+k ) = D−(1−β )
[ n

∑
h=1

|1−ϒR
hk||yh(t−k )|

+
n

∑
h=1

|1−ϒI
hk||zh(t−k )|

]
+

1
(1− τ̂)

n

∑
h=1

Θ1

∫ t+k

t+k −τh(t+k )
|yh(m)|dm

+
1

(1− τ̂)

n

∑
h=1

Θ2

∫ t+k

t+k −τh(t+k )
|zh(m)|dm

+
n

∑
h=1

Θ3

∫ 0

−∞

∫ t+k

t+k +s
Llh(−s)|yh(m)|dm ds

+
n

∑
h=1

Θ4

∫ 0

−∞

∫ t+k

t+k +s
Llh(−s)|zh(m)|dm ds

<V (t−k ),

V̇ (t)≤
n

∑
h=1

sgn(yh(t))Dβ yh(t)+
n

∑
h=1

sgn(zh(t)Dβ zh(t)

+
1

(1− τ̂)

n

∑
h=1

Θ1|yh(t)|+
1

(1− τ̂)

n

∑
h=1

Θ2|zh(t)|

−
n

∑
h=1

Θ1|yh(t − τh(t))|−
n

∑
h=1

Θ2|zh(t − τh(t))|

+
n

∑
h=1

Θ3ζlh|yh(t)|+
n

∑
h=1

Θ4ζlh|zh(t)|

−
n

∑
h=1

Θ3

∫ t

−∞
Llh(t − s)|yh(s)|ds

−
n

∑
h=1

Θ4

∫ t

−∞
Llh(t − s)|zh(s)|ds. (12)

Noticing the error dynamical system (9)-(10), Assump-
tions 1 and 4, we can finally obtain the following inequal-
ity:

n

∑
h=1

sgn(yh(t))Dβ yh(t)+
n

∑
h=1

sgn(zh(t))Dβ zh(t)

≤
n

∑
h=1

{
− rh +

n

∑
l=1

{ûR
lhκR

h + ûI
lhκR

h }|yh(t)|

+
n

∑
l=1

{v̂R
lhκR

h + v̂I
lhκR

h }|yh(t − τh(t))|

+
n

∑
l=1

{ŵR
lhκR

h + ŵI
lhκR

h }
∫ t

−∞
Llh(t − s)|yh(s)|ds

}
+

n

∑
h=1

{
− rh +

n

∑
l=1

{ûR
lhκ I

h + ûI
lhκ I

h}|zh(t)|

+
n

∑
l=1

{v̂R
lhκ I

h + v̂I
lhκ I

h}|zh(t − τh(t))|

+
n

∑
l=1

{ŵR
lhκ I

h + ŵI
lhκ I

h}
∫ t

−∞
Llh(t − s)|zh(s)|ds

}
.

(13)

From (13) substitute in (12), one has

V̇ (t)≤−Λ
[ n

∑
l=1

|yh(t)|+
n

∑
l=1

|zh(t)|
]
∀ t ∈ [tk−1, tk),

(14)

where Λ = min{Λ1,Λ2}. Taking integral on both sides of
(14) from t to tk−1, we get

V (t)≤V (tk−1)−
∫ t

tk−1

[ n

∑
l=1

|yh(s)|+
n

∑
l=1

|zh(s)|
]
ds,

V (t)≤V (t+k−1)−
∫ t

tk−1

[ n

∑
l=1

|yh(s)|+
n

∑
l=1

|zh(s)|
]
ds

≤V (t−k−1)−
∫ t

tk−1

[ n

∑
l=1

|yh(s)|+
n

∑
l=1

|zh(s)|
]
ds

≤...≤V (t0)−
∫ t

t0

[ n

∑
l=1

|yh(s)|+
n

∑
l=1

|zh(s)|
]
ds.

Thus, we have

V (t)+
∫ t

t0

[ n

∑
l=1

|yh(s)|+
n

∑
l=1

|zh(s)|
]
ds ≤V (t0). (15)

Let H(t) =
[

∑n
l=1 |yh(s)|+∑n

l=1 |zh(s)|
]
. It easy to we can

obtain,
∫ t

t0 H(s)ds has finite limit and H(t) is bounded, it
follows that yh(t) and zh(t) is also bounded. According to
Eq. (9)-(10) and based on the previous description, there
exists a scalars ς such that |Dβ H(t)| ≤ ς . Next we will
prove to H(t) is uniformly continuous on the basis of Bar-
balat’s lemma (2.7). For t0 ≤ t1 ≤ t2, pointed has

|H(t1)−H(t2)| ≤ 2ς
(t2 − t1)β

Γ(β +1)
, (16)

where |t2 − t1|< θ(ε) = [ε Γ(β+1)
2ς ]

1
β . By virtue the defini-

tion of uniformly continuous, H(t) is uniformly continu-
ous.
According to Barbalat’s lemma (2.7), we can get

lim
t→∞

[
∥y(t)∥+∥z(t)∥

]
= 0.

Therefore, the equilibrium point x∗ = (p∗,q∗) of the sys-
tem (1) is globally stable.

Remark 1: In [21], author addressed the asymptotic
stability of delayed fractional-order neural networks with
impulsive effects. In [22], asymptotic stability of de-
layed fractional-order BAM neural networks with impul-
sive effects were studied. In that two results, by apply-
ing Riemann-Liouville definitions and suitable Lyapunov
approach, the equilibrium point of global asymptotic sta-
bility conditions was inspected. So, the main point in this
work is to apply complex valued properties, parameter un-
certainty and infinite time distributed delays.
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3.2. Synchronization condition under adaptive feed-
back control

In this section, a novel sufficient conditions are established
to ensure the global synchronization of fractional order
UCNNs based on the adaptive feedback control. Next we
shall consider the complex valued response system as fol-
lows:

Dβ x̃h(t) =−rhx̃h(t)+
n

∑
l=1

(uhl +∆uhl)gl(x̃l(t))

+
n

∑
l=1

(vhl +∆vhl)gl(x̃l(t − τl(t)))

+
n

∑
l=1

(whl +∆whl)
∫ t

−∞
Lhl(t − s)

×gl(x̃l(s))ds+ Ih +mh(t), t ̸= tk, t ≥ 0,

∆x̃l(tk) = x̃l(t+k )− x̃l(t−k ) = Φhk(x̃l(tk)), k = 1, ...,
(17)

where x̃h(t) = (x̃1(t), ..., x̃n(t)) ∈ Cn denotes the state
variable of the drive response system and mh(t) =
(m1(t), ...,mn(t)) denotes new designed controllers. All
others are similar to defined in (1). The initial values
associated with the system (17) is D−(1−β )x̃h(t) = ρ̃h(t) =
(ρ̃1(t), ...., ρ̃n(t))T ∈C((−∞,0],Cn).
Denote x̃h(t) = p̃h(t) + iq̃h(t), gh(x̃h(t)) = gR

h (p̃h(t),
q̃h(t)) + igI

h(p̃h(t), q̃h(t)), where p̃h(t), q̃h(t) ∈ R,
gR

h (p̃h(t), q̃h(t)), gI
h(p̃h(t), q̃h(t)) : R2 → R. The adap-

tive linear feedback controller is defined as

mR
h (t) =−λh(t)[yh(t)], mI

h(t) =−υh(t)[zh(t)],

λ̇h(t) =
−ξhεh|yh(t)|−ξhεh|yh(t − τh(t))|

λh(t)

+ξh|yh(t)|,

υ̇h(t) =
−δhϕh|zh(t)|−δhψh|zh(t − τh(t))|

υh(t)

+δh|zh(t)|,

(18)

where λh(t), υh(t) denotes the adaptive coupling
strengths, εh, εh, ϕh, ψh, ξh and δh are arbitrary posi-
tive scalars.
Let x̂h(t) = x̃h(t)− xh(t) = yh(t) + izh(t), where yh(t) =
p̃h(t) − ph(t), zh(t) = q̃h(t) − qh(t). Based on drive-
response systems (1) and (17), the error dynamical system
can be expressed by the following form:

Dβ yh(t) =−(rh +λh(t))yh(t)+
n

∑
l=1

(uR
hl +∆uR

hl)

×
[
gR

l (yl(t)+ pl(t),zl(t)+ql(t))

−gR
l (pl(t),ql(t))

]
−

n

∑
l=1

(uI
hl +∆uI

hl)

×
[
gI

l (yl(t)+ pl(t),zl(t)+ql(t))

−gI
l (pl(t),ql(t))

]
+

n

∑
l=1

(vR
hl +∆vR

hl)

×
[
gR

l (yl(t − τl(t))+ pl(t − τl(t)),

zl(t − τl(t))+ql(t − τl(t)))

−gR
l (pl(t − τl(t)),ql(t − τl(t)))

]
−

n

∑
l=1

(vI
hl +∆vI

hl)
[
gI

l (yl(t − τl(t))

+ pl(t − τl(t)),zl(t − τl(t))

+ql(t − τl(t)))−gI
l (pl(t − τl(t)),

ql(t − τl(t)))
]
+

n

∑
l=1

(wR
hl +∆wR

hl)

×
∫ t

−∞
Lhl(t − s)

[
gR

l (yl(s)+ pl(s),zl(s)

+ql(s))−gR
l (pl(s),ql(s))

]
ds

−
n

∑
l=1

(wI
hl +∆wI

hl)
∫ t

−∞
Lhl(t − s)

×
[
gI

l (yl(s)+ pl(s),zl(s)+ql(s))

−gI
l (pl(s),ql(s))

]
ds, t ̸= tk, t ≥ 0,

∆yh(tk) = ΦR
hk(yh(tk)), k = 1,2, ..., (19)

and

Dβ zh(t) =−(rh +υh(t))zh(t)+
n

∑
l=1

(uI
hl +∆uI

hl)

×
[
gR

l (yl(t)+ pl(t),zl(t)+ql(t))

−gR
l (pl(t),ql(t))

]
+

n

∑
l=1

(uR
hl +∆uR

hl)

×
[
gI

l (yl(t)+ pl(t),zl(t)+ql(t))

−gI
l (pl(t),ql(t))

]
+

n

∑
l=1

(vI
hl +∆vI

hl)

×
[
gR

l (yl(t − τl(t))+ pl(t − τl(t)),

zl(t − τl(t))+ql(t − τl(t)))

−gR
l (pl(t − τl(t)),ql(t − τl(t)))

]
+

n

∑
l=1

(vR
hl +∆vR

hl)
[
gI

l (yl(t − τl(t))

+ pl(t − τl(t)),zl(t − τl(t))

+ql(t − τl(t)))−gI
l (pl(t − τl(t)),

ql(t − τl(t)))
]
+

n

∑
l=1

(wI
hl +∆wI

hl)

×
∫ t

−∞
Lhl(t − s)

[
gR

l (yl(s)+ pl(s),zl(s)

+ql(s))−gR
l (pl(s),ql(s))

]
ds
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+
n

∑
l=1

(wR
hl +∆wR

hl)
∫ t

−∞
Lhl(t − s)

×
[
gI

l (yl(s)+ pl(s),zl(s)+ql(s))

−gI
l (pl(s),ql(s))

]
ds, t ̸= tk, t ≥ 0,

∆zh(tk) = ΦI
hk(zh(tk)), k = 1,2, .... (20)

□

Theorem 2: Suppose Assumption 1-5 hold. Then the
drive-response system (1) and (17) can be globally robust
synchronized under the adaptive controller (18) if Λ1 > 0
and Λ2 > 0, where

Λ1 = min
1≤h≤n

{
rh + εh + εh −

n

∑
l=1

{ûR
lh + ûI

lh}κR
h

−
n

∑
l=1

{v̂R
lh + v̂I

lh}κR
h

1− τ̂
−

n

∑
l=1

{ŵR
lh + ŵI

lh}κR
h ζlh

}
,

Λ2 = min
1≤h≤n

{
rh +ϕh +ψh −

n

∑
l=1

{ûR
lhκ I

h + ûI
lhκ I

h}

−
n

∑
l=1

{v̂R
lh + v̂I

lh}κ I
h

1− τ̂
−

n

∑
l=1

{ŵR
lh + ŵI

lh}κ I
hζlh

}
,

ûα
lh = |uα

lh|+ |µα
lh|, v̂α

lh = |vα
lh|+ |ϑ α

lh |, ŵα
lh = |wα

lh|
+ |ωα

lh|, κR
h = κRR

h +κ IR
h , κ I

h = κ IR
h +κ II

h ,

(α = R, I),

Proof: Construct the following Lyapunov functions:

V (t) =D−(1−β )
[ n

∑
h=1

|yh(t)|+
n

∑
h=1

|zh(t)|
]

+
n

∑
h=1

1
2ξh

[λh(t)]2 +
n

∑
h=1

1
2δh

[υh(t)]2

+
1

(1− τ̂)

n

∑
h=1

Θ1

∫ t−τh(t)

t
|yh(m)|dm

+
1

(1− τ̂)

n

∑
h=1

Θ2

∫ t−τh(t)

t
|zh(m)|dm

+
n

∑
h=1

Θ3

∫ 0

−∞

∫ t

t+s
Llh(−s)|yh(m)|dmds

+
n

∑
h=1

Θ4

∫ 0

−∞

∫ t

t+s
Llh(−s)|zh(m)|dmds, (21)

where

Θ1 = εh −
n

∑
l=1

{v̂R
lh + v̂I

lh}κR
h , Θ3 =

n

∑
l=1

{ŵR
lh + ŵI

lh}κR
h ,

Θ2 = ψh −
n

∑
l=1

{v̂R
lh + v̂I

lh}κ I
h, Θ4 =

n

∑
l=1

{ŵR
lh + ŵI

lh}κ I
h.

On the other hand, according to Assumption 5 and we con-
sider the case t = tk, k = 1,2,3, ... and t > 0, one has

V (t+k )< D−(1−β )
[ n

∑
h=1

|yh(t−k )|+
n

∑
h=1

|zh(t−k )|
]

+
n

∑
h=1

1
2ξh

[λh(t+k )]
2 +

n

∑
h=1

1
2δh

[υh(t+k )]
2

+
1

(1− τ̂)

n

∑
h=1

Θ1

∫ t+k −τh(t+k )

t+k
|yh(m)|dm

+
1

(1− τ̂)

n

∑
h=1

Θ2

∫ t+k −τh(t+k )

t+k
|zh(m)|dm

+
n

∑
h=1

Θ3

∫ 0

−∞

∫ t+k

t+k +s
Llh(−s)|yh(m)|dmds

+
n

∑
h=1

Θ4

∫ 0

−∞

∫ t+k

t+k +s
Llh(−s)|zh(m)|dmds

=V (t−k ),

V̇ (t)≤
n

∑
h=1

sgn(yh(t))Dβ yh(t)

+
n

∑
h=1

sgn(zh(t))Dβ zh(t)

−
n

∑
h=1

[εh|yh(t)|+ εh|yh(t − τh(t))|+λh(t)

×|yh(t)|
]
−

n

∑
h=1

[
ϕh|zh(t)|+ψh|zh(t − τh(t))|)

−υh(t)|zh(t)|
]
+

n

∑
h=1

Θ1|yh(t − τh(t))|

− 1
(1− τ̂)

n

∑
h=1

Θ1|yh(t)|+
n

∑
h=1

Θ2|zh(t − τh(t))|

− 1
(1− τ̂)

n

∑
h=1

Θ2|zh(t)|+
n

∑
h=1

Θ3ζlh|yh(t)|

+
n

∑
h=1

Θ4ζlh|zh(t)|−
n

∑
h=1

Θ3

∫ t

−∞
Llh(t − s)

×|yh(s)|ds−
n

∑
h=1

Θ4

∫ t

−∞
Llh(t − s)|zh(s)|ds.

(22)

According to Assumptions 1, 4 and by proceeding the
similar way of Theorem 1, we can get

n

∑
h=1

sgn(yh(t))Dβ yh(t)

≤
n

∑
h=1

{
− [rh +λh(t)]|yh(t)|+

n

∑
l=1

ûR
hl

[
κRR

l |yl(t)|

+κRI
l |zl(t)|

]
+

n

∑
l=1

ûI
hl ×

[
κ IR

l |yl(t)|+κ II
l |zl(t)|

]
+

n

∑
l=1

v̂R
hl

[
κRR

l |yl(t − τl(t))|+κRI
l |zl(t − τl(t))|

]
+

n

∑
l=1

v̂I
hl |
[
κ IR

l |yl(t − τl(t))|+κ II
l |zl(t − τl(t))|

]
+

n

∑
l=1

ŵR
hl

∫ t

−∞
Lhl(t − s)

[
κRR

l |yl(s)|+κRI
l |zl(s)|

]
ds
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+
n

∑
l=1

ŵI
hl

∫ t

−∞
Lhl(t−s)

[
κ IR

l |yl(s)|+κ II
l |zl(s)|

]
ds
}
,

(23)
n

∑
h=1

sgn(zh(t))Dβ zh(t)

≤
n

∑
h=1

{
− [rh +υh(t)]|zh(t)|+

n

∑
l=1

ûI
hl

[
κRR

l |yl(t)|

+κRI
l |zl(t)|

]
+

n

∑
l=1

ûR
hl

[
κ IR

l |yl(t)|+κ II
l |zl(t)|

]
+

n

∑
l=1

v̂I
hl

[
κRR

l |yl(t − τl(t))|+κRI
l |zl(t − τl(t))|

]
+

n

∑
l=1

v̂R
hl

[
κ IR

l |yl(t − τl(t))|+κ II
l |zl(t − τl(t))|

]
+

n

∑
l=1

ŵI
hl

∫ t

−∞
Lhl(t − s)

[
κRR

l |yl(s)|+κRI
l |zl(s)|

]
ds

+
n

∑
l=1

ŵR
hl

∫ t

−∞
Lhl(t−s)

[
κ IR

l |yl(s)|+κ II
l |zl(s)|

]
ds
}
.

(24)

From (23) and (24) to (22), it yields that

V̇ (t)≤−Λ
[ n

∑
l=1

|yh(t)|+
n

∑
l=1

|zh(t)|
]
∀t ∈ [tk−1, tk).

Where Λ = min{Λ1,Λ2}. By proceeding the simi-
lar way to the proof of Theorem 1 and we conclude
that limt→∞

[
∥y(t)∥+ ∥z(t)∥

]
= 0. Therefore, the drive-

response systems are globally synchronized based on the
controller (18). □

Remark 2: In [1], authors proposed Caputo sense of
synchronization conditions for fractional order delayed
complex valued neural networks and derived some syn-
chronization criteria. In [30], authors studied the com-
plex projective synchronization of integer order complex-
valued neural network with structure identification. In
above mentioned papers, impulses, infinite time dis-
tributed delay, parameter uncertainty was ignored, while
these parameters are considered in in this paper by em-
ploying the adaptive feedback control and R-L properties.
When the state variable, connection weights, activations
are assumed to real values, the problem turn to robust
adaptive synchronization of fractional order real valued
neural networks with mixed time varying delays and im-
pulses.

3.3. Numerical examples
In this section, two numerical simulations are presented

to prove the effectiveness of the proposed main results.
Example 1: In system (1), choose β = 0.97, x(t) =

(x1(t), x2(t))T , xl(t) = pl(t) + iql(t), τ(t) = exp(t)
1+exp(t) ,

ϒR
1k = ϒR

2k = 1.4, ϒI
1k = ϒI

2k = 0.9, τ̇ j(t) ≤ 1
5 < τ̂ =

Fig. 1. Transient states of equilibrium point of the system
in Example 1.

0.5, Ih = 1
7 (0.7 + 1.2i,0.6i)T , fl(xl(t)) =

1−exp(−pl(t))
1+exp(−pl(t))

+

i 1
1+exp(−ql(t))

, (l = 1, 2), and

R =

[
7 0
0 9

]
, U =

1
7

[
1−2i −0.5+3i
−2+7i 0.7+5i

]
,

V =
1
7

[
1+3i −0.2+5i

0.4+2i −0.9−1.2i

]
,

W =
1
9

[
−1.8+2i 0.8+1.4i
0.3+0.9i −1−0.8i

]
,

∆U = (0.1sin(t)−0.3icos(t))
[

1 1
1 1

]
,

∆V = (0.4sin(t)−0.2icos(t))
[

1 1
1 1

]
,

∆W = (0.3sin(t)−0.6icos(t))
[

1 1
1 1

]
.

From Assumption 4, we can choose the uncertain pa-
rameter values given by µR

hl = 0.1, µ I
hl =−0.3, ϑ R

hl = 0.4,
ϑ I

hl = −0.2, ωR
hl = 0.3 and ω I

hl = −0.6, while we select
κRR

h = 0.75, κ II
h = 1, κRI

h = κ IR
h = 0 and ζlh = 1 for h,

l = 1, 2, then Assumptions 1-5 are satisfied. After the
simple manipulation, it is easy to derive that the condi-
tions of Theorem 1 are 5.238 < 7, Λ1 = 0.6765 > 0 and
Λ2 = 0.721> 0. Thus, the equilibrium point of the FOUC-
NNs system (1) is globally robust stable, which is depicted
in Fig. 1.

Example 2: In drive system (1), choose β = 0.98,
x(t) = (x1(t), x2(t))T , xl(t) = pl(t)+ql(t), τ(t) = exp(t)

1+exp(t) ,
ϒR

1k = 0.8, ϒR
2k = 1.6, ϒI

1k = 1.3, ϒI
2k = 0.9, τ̇ j(t) ≤ 1

4 <

τ̂ = 0.4, Ih = (0.8,1.7+0.6i)T , fl(xl(t)) =
1−exp(−pl(t))
1+exp(−pl(t))

+
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Fig. 2. Transient states of drive-response synchronization
errors in Example 2.

i 1
1+exp(−ql(t))

, (l = 1, 2),

R =

[
3.5 0
0 4

]
, U =

[
1+2i −1.5+2i
0.5+ i 1.2+0.8i

]
,

V =

[
−1.3+ i 2.2+1.3i
0.8+2i 0.5+1.2i

]
,

W =

[
3+1.3i −0.9−2i

0.7+1.5i 1.7+2.1i

]
,

∆U = (0.4sin(t)−0.2icos(t))
[

1 1
1 1

]
,

∆V = (0.9sin(t)−2.1icos(t))
[

1 1
1 1

]
,

∆W = (1.4sin(t)−1.9icos(t))
[

1 1
1 1

]
.

From Assumption 4, we can choose the uncertain parame-
ter values are µR

hl = 0.4, µ I
hl =−1.2, ϑ R

hl = 0.9, ϑ I
hl =−2.1,

ωR
hl = 1.4 and ω I

hl = −1.9, while we select κRR
h = 0.25,

κ II
h = 0.5, κRI

h = κ IR
h = 0 and ζlh = 1.5 for h, l = 1, 2.

Assumptions 1-5 hold. In controller (18), we choose the
control gains are λh(0)=υh(0)= 0.1 (h= 1, 2), ε1 = 4.25,
ε2 = 3.5, ε1 = 4.7, ε2 = 3.8, ϕ1 = 9.1, ϕ2 = 7.6, ψ1 = 8.2,
ψ2 = 8.8. Thus the conditions of Theorem 2, it is easily
to verified that Λ1 = 1.8 > 0 and Λ2 = 1.375 > 0. The
simulations of the synchronization errors are showed in
Fig. 3. Therefore the drive-response FOUCNNs systems
are achieved to globally robust adaptive synchronization
and the adaptive coupling strengths converges to some
positive scalars, which confirm the effectiveness of The-
orem 2.

Fig. 3. Time response of λh(t) and υh(t) in Example 2.

4. CONCLUSIONS

In this article, Robust adaptive synchronization of frac-
tional order complex valued neural networks with mixed
varying delays and impulses is investigated. By employ-
ing the Banach contraction mapping principle, the exis-
tence, uniqueness and global stability of equilibrium point
for such UCNNs are established. A new sufficient criteria
ensuring the robust synchronization of UCNNs have been
investigated based on the valid adaptive control, Barbalat’s
lemma and the application of robust stability principle.
At the end, we have presented two numerical simulations
to provide the obtained theoretical main results. Further-
more, the adaptive state feedback control approach pro-
posed in this paper can be applied for solving global pro-
jective synchronization of complex-valued competitive-
type neural networks, and we will consider the interesting
issue for future work.
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