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Adaptive Observer and Fault Tolerant Control for Takagi-Sugeno De-
scriptor Nonlinear Systems with Sensor and Actuator Faults
Dhouha Kharrat, Hamdi Gassara, Ahmed El Hajjaji*, and Mohamed Chaabane

Abstract: This paper concerns the problem of state, fault estimation (FE) and Fault Tolerant Control (FTC) of
Takagi-Sugeno (T-S) descriptor systems affected by sensor, actuator and external disturbances simultaneously. An
Adaptive Fuzzy Observer is firstly proposed to achieve a simultaneous estimation of descriptor system states, actu-
ator and sensor faults by using the H∞ optimization technique. A FTC is secondly proposed to stabilize the faulty
descriptor system. Based on Lyapunov method, stability analysis and design conditions of the resulting closed-loop
system are formulated in a set of Linear Matrices Inequalities (LMIs). The adaptive fuzzy observer and the FTC are
independently designed, in order to avoid the coupling problem. Accordingly, the observer and controller gains are
computed separately by solving a set of LMIs and then used to estimate the unmeasured states, sensor and actuator
faults at the same time. Finally, a truck-trailer system application is given to illustrate the validity of the proposed
approach.

Keywords: Adaptive fuzzy observer, T-S descriptor systems, Actuator/sensor faults estimation, FTC, LMI, Lya-
punov functional.

1. INTRODUCTION

An important number of industrial applications such as
electrical power lines and manufacturing processes can
have an undesirable behavior because of sensor, actuator
and/or process faults or even external disturbances. Gen-
erally speaking, to overcome component malfunctions and
to maintain a certain level of safety, reliability and per-
formance efficiency of a dynamic system, techniques and
tools of fault detection and isolation (FDI), fault estima-
tion (FE) and fault tolerant control (FTC) have been es-
tablished (see [1–7]).

FDI strategy is used to monitor whether a fault occurs
and in which component it is occurred. However, it is
generally difficult in practical systems to have the exact
information of the size of faults from a FDI strategy only.
Accordingly, considerable attention has been devoted to
FE; it provides further accurate information of the fault,
such as shape, size and duration (see [8–10] and references
therein).

Furthermore, FE plays an important role in FTC, which
is developed to preserve overall system stability as well as
acceptable performance. It possesses the ability to accom-
modate component failures automatically. By using the
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obtained fault information, an additional controller can be
designed to compensate the faults. More precisely, FTC
guarantees the stability of a closed-loop system even in
the presence of component malfunctions. Besides main-
taining stability properties, it could also keep desirable
performances.

FTC approach has been firstly adapted for linear sys-
tems (see [1, 11] and references therein). However, most
realistic engineering systems have nonlinear behaviors. It
is well known that T-S fuzzy representation is a good way
to approximate a large class of nonlinear dynamic sys-
tems [12]. T-S fuzzy models are nonlinear systems rep-
resented by a set of local linear models. By fuzzy blend-
ing of the linear system representations the overall fuzzy
model of the system is achieved, which greatly facilitates
observer/controller synthesis for complex nonlinear sys-
tems. One of the primary advantage is that it offers an
effective and simple design strategy to represent a nonlin-
ear system. In the literature, many important results have
been reported in [13–15] and [16].

Consequently, many researchers have interested to FTC
approach for T-S fuzzy systems (see [17–19]). In [20] for
example, authors have extended the adaptive observer pro-
posed in [21] to FTC of T-S fuzzy models.
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The problem of state/fault estimation for T-S fuzzy sys-
tems affected by sensor and actuator faults under external
disturbances, has been investigated in [8]. In this latter,
a fuzzy reduced-order observer has been designed which
can estimate system states, sensor and actuator faults si-
multaneously. Then a FTC has been developed for stan-
dard T-S fuzzy systems.

Recently, T-S fuzzy model has been extended to deal
with descriptor nonlinear systems, many scholars have
been interested to T-S descriptor systems as well as FE
and FTC (see for instance [22–26]). It is well known
that descriptor systems resulting from natural modeling
approaches, can represent a wide class of practical sys-
tems including electrical circuits, robotic systems, aircraft
systems and chemical process (see for example [27–30]
and references therein). It should be pointed that the sta-
bility and stabilization problems for descriptor systems are
much more difficult than for regular ones because it affects
the regularity and impulse-free problems [15, 31, 32].

Reference [23] is an existing work for both state and ac-
tuator faults reconstruction in which a FTC has been de-
signed to stabilize the closed-loop T-S descriptor system
in presence of actuator faults. The work in [3] deals with
the problem of simultaneous sensor and actuator fault es-
timation for descriptor linear parameter varying systems.
However the FTC approach and the stabilization analysis
have not been discussed.

There are, so far as the authors know, no works deal-
ing with adaptive observer-based FTC for T-S descriptor
systems considering simultaneously actuator, sensor faults
and external disturbances. Motivated by the above obser-
vations, an adaptive observer allowing to estimate both
states and sensor/actuator faults is developed. Then an
observer-based FTC is introduced to preserve the stability
of the closed-loop faulty system. Using the H∞ optimiza-
tion technique, we show that the adaptive observer and the
controller could be independently designed and their gains
computed separately by solving a set of LMIs using LMI
Toolbox or Yalmip of MATLAB software [33, 34].

The reminder of this paper is structured as follows: In
the second section an overview of the T-S fuzzy descrip-
tor systems is given and some preliminaries are provided.
Section 3 includes the main results. An adaptive fuzzy ob-
server is proposed to estimate system states, actuator and
sensor faults simultaneously. Sufficient conditions are ex-
pressed in the form of LMI for the observer-based FTC.
A simulation example is given in Section 4 to illustrate
the validity of the proposed approach. Finally, Section 5
concludes this contribution.

Notations: The following notations are considered.
A ∈ Rn indicates the n-dimensional Euclidean space,
whereas A ∈ Rn×p denotes the set of all n× p real ma-
trices. A real symmetric positive definite matrix (respec-
tively, negative definite matrix) is represented by A > 0
(respectively, A< 0). Notation (∗) signifies the transposed

element in the symmetric position of a matrix and sym(A)
signifies A+AT . λmax(A) and λmin(A) represent the max-
imum and minimum eigenvalues of A, respectively. A†

stands for the generalized inverse of A and ∀ denotes "for
all".

2. PROBLEM FORMULATION

Consider a T-S fuzzy descriptor system composed of a
set of If-Then rules. The ith rule of the system is given as
follows:

Plant Rule i(i = 1,2, ..,r): If θ1 is µi1 and, · · · , and θp

is µip , Then
Eẋ(t) = Aix(t)+Bi(u(t)+ fa(t))+Did(t),

y(t) =Cx(t)+F fs(t),

z(t) =CLi x(t).

(1)

where θ j(x(t)) are the premise variables which are sup-
posed to be measurable, µi j(i = 1, · · · ,r, j = 1, · · · , p) are
the fuzzy sets which are characterized by the membership
functions, r and p are the total number of If-Then rules
and the premise variables, respectively. x(t) ∈ Rn is the
state vector, u(t) ∈ Rm is the control input, y(t) ∈ Rp is
the measured output, d(t)∈Rν is the external disturbance,
fa(t) ∈ Rm and fs(t) ∈ Rw represent actuator and sensor
fault, respectively. They can be constant or time-varying
function. z(t) ∈ Rp1 is the controlled output. Matrix
E ∈ Rn×n is assumed to be singular and we suppose that
rank(E) = q ≤ n. Ai,Bi,Di,C,F and CLi are known real
constant matrices of appropriate dimensions. We assume
that p ≥ m + w, (Ai,Bi) are controllable, rank(Bi) = m,
rank(F) = w, rank([C,F ]) = p.

By fuzzy blending, the overall fuzzy system is given as
follows:

Eẋ(t) =
r

∑
i=1

hi(θ(x(t)))

× [Aix(t)+Bi(u(t)+ fa(t))+Did(t)], (2)

y(t) =Cx(t)+F fs(t), (3)

z(t) =
r

∑
i=1

hi(θ(x(t)))[CLi x(t)], (4)

in which

θ(x(t)) = [θ1(x(t)), ...,θp(x(t))],

hi(θ(x(t))) =
νi(θ(x(t)))

r

∑
i=1

νi(θ(x(t)))
,νi(θ(x(t)))

=
p

∏
j=1

µi j(θi(x(t))),

where µi j(θi(x(t)) is the membership degree of θi(x(t))
in µi j. It is evident that 0 ≤ hi(θ(x(t))) ≤ 1 and

r

∑
i=1

hi(θ(x(t))) = 1.
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In the following, for briefness we get hi to stand for
hi(θ(x(t))).

Before giving the main results, the following three as-
sumptions and two lemmas are needed.

Assumption 1 [35]: System (E,Ai,C) is observable,

rank
[

E
C

]
= n, (5)

and

rank
[

sE −Ai

C

]
= n,∀s ∈ C,Re(s)≥ 0,∀i = [1, · · · ,r].

(6)

Assumption 2 [36, 37] :

rank
[

Ē
C̄

]
= rank

[
E 0
C F

]
= n+w. (7)

Assumption 3 [20]: Actuator fault fa(t) and sensor
fault fs(t) satisfy ∥ fa(t)∥ ≤ αa and ∥ fs(t)∥ ≤ αs, respec-
tively. The derivative of fa(t) and fs(t) with respect to
time are norm bounded i.e. ∥ ḟa(t)∥ ≤ famax and 0 ≤ αa,
famax < ∞ and ∥ ḟs(t)∥ ≤ fsmax and 0 ≤ αs, fsmax < ∞.

Lemma 1 [38]: For a symmetric positive definite ma-
trix R and a scalar µ ∈R+ we have the following inequal-
ity

2u⊺v ≤ 1
µ

u⊺Ru+µv⊺R−1v , u,v ∈ Rn. (8)

Lemma 2 [15, 20]: Given a negative definite matrix
ϒ < 0. Consider a matrix Y of appropriate dimension such
that Y TϒY < 0, then ∃ λ > 0 such that

Y TϒY ≤−λ (Y +Y T )−λ 2ϒ−1. (9)

Remark 1: Assumption 2 implies that there exists a
full-row rank matrix

[
T H

]
=

[
Ē
C̄

]†

(10)

such that

[
T H

][ Ē
C̄

]
= In+w. (11)

It also guarantees the impulse observability of the triple
matrix (Ē, Āi,C̄),∀i∈ [1, · · · ,r]. It should be noted that the
designed observer (13) require necessary conditions intro-
duced in Assumptions 1 and 2. Similar assumptions can
be also found in [35] and [29] and the references therein.

3. MAIN RESULTS

3.1. Augmented system

Using the descriptor approach and by taking sensor
fault fs as an auxiliary state, an augmented system can
be constructed. The faulty system given by (2- 4) can be
rewritten as follows:

Ē ˙̄x(t) =
r

∑
i=1

hi[Āix̄(t)+Bi(u(t)+ fa(t))+Did(t)],

y(t) = C̄x̄(t),

z(t) =
r

∑
i=1

hi[CLi x(t)].

(12)

where

x̄(t) =
[

x(t)
fs(t)

]
, Ē =

[
E 0n×w

]
, Āi =

[
Ai 0n×w

]
,

C̄ =
[
C F

]
.

3.2. Design of adaptive fuzzy observer

In this part, an adaptive fuzzy observer is proposed to a
simultaneous estimation of descriptor system states, actu-
ator and sensor faults for system (12).

ẇ(t) =
r

∑
i=1

hi[T Āi ˆ̄x(t)+T Bi(u(t)+ f̂a(t))

+Li(y(t)− ŷ(t))],
ˆ̄x(t) = w(t)+Hy(t),

ey(t) = y(t)− ŷ(t),

ŷ(t) = C̄ ˆ̄x(t),

˙̂fa(t) = Γ
r

∑
i=1

hiNi(ėy(t)+σey(t)),

(13)

where w(t) ∈ Rn+w and ˆ̄x(t) ∈ Rn+w are the observer state
and the estimation of state vector, respectively. ŷ(t) ∈ Rp

is the estimation of the output vector. ey(t) ∈ Rp is the
output estimation error and f̂a(t) ∈ Rm is the estimated of
the actuator fault fa(t), and T , H, Li and Ni are gain ma-
trices with appropriate dimensions to be solved. σ ∈ R is
a positive scalar. Γ ∈ Rm×m is the learning rate which is
chosen to be symmetric, positive definite matrix and set to
balance the convergence speeds of the states and actuator
fault. Under assumption 2, there exist nonsingular matri-
ces T ∈ Rn+w×n and H ∈ Rn+w×p such that

T Ē +HC̄ = In+w. (14)

State and fault estimation errors are given as follows:

ex(t) = x̄(t)− ˆ̄x(t), e f (t) = fa(t)− f̂a(t).
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Fig. 1. Adaptive fuzzy observer-based fault tolerant con-
trol scheme.

By taking into account (12), (13) and by using relation
(14), estimation error dynamics ex(t) and output estima-
tion error ey(t) are given by:

ėx(t) =
r

∑
i=1

hi[(T Āi −LiC̄)ex(t)+T Bie f (t)

+T Did(t)], (15)

ey(t) = C̄ex(t). (16)

Matrices T and H can be found simultaneously from (10).
In contrast to the constant fault giving in [21] and

[38]. In this work, time-varying faults are considered (i.e.
ḟ (t) ̸= 0). Consequently, the dynamic of fault estimation
error is given by the following expression:

ė f (t) = ḟa(t)− ˙̂fa(t), (17)

Then

ė f (t) = ḟa(t)−Γ
r

∑
i=1

hiNi(ėy(t)+σey(t)). (18)

By taking into consideration (15) and (16), one can obtain

ė f (t) = ḟa(t)−Γ
r

∑
i=1

r

∑
j=1

hih jNiC̄
([

(T Ā j −L jC̄)ex(t)

+T B je f (t)+T D jd(t)
]
+σex(t)

)
. (19)

3.3. Stability and stabilization analysis
3.3.1 Stability analysis of the adaptive fuzzy observer

Theorem 1: Consider system (12) under assumptions
1−3. Given a real positive scalar γ1 > 0, two scalar tuning
parameters σ and µ > 0, and definite positive matrices
M1, M2 and M3, the adaptive fuzzy observer can ensure
the asymptotic stability of the error dynamics under H∞
performance level γ1, that is∫ ∞

0
(eT

x (s)M1ex(s)+ eT
f (s)M2e f (s))ds

≤ γ2
1

∫ ∞

0
dT (s)M3d(s)ds, (20)

if there exist symmetric positive definite matrix P1 and
positive definite matrices Ni and M such that ∀i∈ [1, · · · ,r]
the following conditions hold:

(T Bi)
T P1 = NiC̄, i = 1,2, · · · ,r, (21)

ϕi j +ϕ ji < 0, i, j = 1,2, · · · ,r, i ≤ j, (22)

where

ϕi j =

 φ11
i φ12

i j φ13
i

∗ φ22
i j φ23

i j
∗ ∗ −ρ1M3

 , (23)

in which

φ11
i = sym(P1T Āi −YiC̄)+M1,

φ12
i j =− 1

σ
(ĀT

j T T P1T Bi −C̄TY T
j T Bi),

φ13
i = P1T Di,

φ22
i j =

M
σ µ

− 1
σ

sym((T Bi)
T P1(T B j))+M2,

φ23
i j =− 1

σ
(T Bi)

T P1T D j,

The observer gains can then be computed from Li =P−1
1 Yi.

Proof: Taking the following Lyapunov function:

V1(t) = eT
x (t)P1ex(t)+

1
σ

eT
f (t)Γ

−1e f (t).

The time derivative of V1(t) can be shown to be

V̇1(t) =ėT
x (t)P1ex(t)+ eT

x (t)P1ėx(t)

+
2
σ

eT
f (t)Γ

−1ė f (t). (24)

Considering Lemma 1 we have

2
σ

eT
f (t)Γ

−1 ḟa(t)⩽
1

σ µ
eT

f (t)Me f (t)

+
µ
σ

ḟ T
a (t)Γ

−1M−1Γ−1 ḟa(t), (25)

2
σ

eT
f (t)Γ

−1 ḟa(t)⩽
1

σ µ
eT

f (t)Me f (t)+δ , (26)

where

δ =
µ
σ

f 2
amax

λmax(Γ−1M−1Γ−1). (27)

By substituting (15), (19) into equation (24) and by con-
sidering (26), one can obtain

V̇1(t)≤
r

∑
i=1

r

∑
j=1

hih j{eT
x (t)[P1(T Āi −LiC̄)
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+(T Āi −LiC̄)T P1]ex(t)+2eT
x (t)P1T Bie f (t)

+2eT
x (t)P1T Did(t)−2eT

f (t)NiC̄ex(t)

− 2
σ

eT
f (t)NiC̄(T Ā j −L jC̄)ex(t)

− 1
σ

eT
f (t)sym(NiC̄T B j)e f (t)

+
1

σ µ
eT

f (t)Me f (t)

− 2
σ

eT
f (t)NiC̄T D jd(t)+δ}. (28)

Taking into account equation (21), one can obtain

V̇1(t)≤
r

∑
i=1

r

∑
j=1

hih j{eT
x (t)sym(P1(T Āi −LiC̄))ex(t)

+2eT
x (t)P1T Did(t)+

1
σ µ

eT
f (t)Me f (t)

− 2
σ

eT
f (t)(T Bi)

T P1(T Ā j −L jC̄)ex(t)

− 1
σ

eT
f (t)sym((T Bi)

T P1T B j)e f (t)

− 2
σ

eT
f (t)(T Bi)

T P1T D jd(t)+δ}. (29)

Let

J1(t) = V̇1(t)+ eT
x (t)M1ex(t)+ eT

f (t)M2e f (t)

− γ2
1 dT (t)M3d(t), (30)

J1(t)≤
r

∑
i=1

r

∑
j=1

hih j{eT
x (t)(sym(P1(T Āi −LiC̄))

+M1)ex(t)+2eT
x (t)P1T Did(t)

+
1

σ µ
eT

f (t)Me f (t)

− 2
σ

eT
f (t)(T Bi)

T P1(T Ā j −L jC̄)ex(t)

− 1
σ

eT
f (t)sym((T Bi)

T P1T B j)e f (t)

− 2
σ

eT
f (t)(T Bi)

T P1T D jd(t)+ eT
f (t)M2e f (t)

− γ2
1 dT (t)M3d(t)+δ}. (31)

Let ξ (t) =
[

eT
x eT

f (t) dT (t)
]T

, then we obtain

J1(t)≤
r

∑
i=1

r

∑
j=1

hih j{ξ T (t)ϕi jξ (t)+δ}. (32)

If condition (22) holds we can obtain

J1(t)≤−ζ∥ξ (t)∥2 +δ , (33)

where ζ = λmin(−ϕi j).
It follows that

V̇1(t)+ eT
x (t)M1ex(t)+ eT

f (t)M2e f (t)

− γ2
1 dT (t)M3d(t)≤ 0,

for ζ∥ξ (t)∥2 > δ , (34)

when d(t) = 0, (34) means V̇1(t) ≤ 0 for ζ∥ξ (t)∥2 > δ
and under the Lyapunov stability theory, ξ (t) will con-
verge to a small set Ψ = {ξ (t)/∥ξ (t)∥2 ≤ δ

ζ }; thus ξ (t) is
uniformly bounded in the case of d(t) = 0.

When d(t) ̸= 0, integrating both sides of (34) with re-
spect to t over time period [0 ∞] yields∫ ∞

0
V̇1(s)ds+

∫ ∞

0
eT

x (s)M1ex(s)ds

+
∫ ∞

0
eT

f (s)M2e f (s)ds− γ2
1

∫ ∞

0
dT (s)M3d(s)ds

≤ 0, for ζ∥ξ (t)∥2 > δ . (35)

As V1(∞) ≥ 0, and with zero initial condition V1(0) = 0,
one obtains∫ ∞

0
eT

x (s)M1ex(s)ds+
∫ ∞

0
eT

f (s)M2e f (s)ds

≤ γ2
1

∫ ∞

0
dT (s)M3d(s)ds, for ζ∥ξ (t)∥2 > δ . (36)

Therefore, J1 < 0 for ζ∥ξ (t)∥2 > δ .
By posing Yi = P1Li and ρ1 = γ2

1 we obtain (23). □

Remark 2: By making a transformation into the fol-
lowing optimization problem, inequality (21) in Theorem
1 can be easily solved thanks to LMI Toolbox.

Minimize η > 0 subject to[
ηIq (T Bi)

T P1 −NiC̄
∗ ηIn+w

]
> 0, i = 1,2, · · · ,r.

(37)

3.3.2 Design of observer-based FTC
In this part, an observer-based FTC is proposed to com-

pensate the effects of actuator faults and to stabilize the
closed-loop faulty descriptor system.

The observer-based FTC can be given as follows:

u(t) =−
r

∑
i=1

hiKix̂(t)− f̂a(t). (38)

The closed-loop of the T-S Descriptor System becomes

Eẋ(t) =
r

∑
i=1

r

∑
j=1

hih j[(Ai −BiK j)x(t)+BiK jex(t)

+Bie f (t)+Did(t)], (39)

z(t) =
r

∑
i=1

hi(θ(x(t)))[CLi x(t)]. (40)

Theorem 2: Given the H∞ performance level γ2, and
positive definite matrices M44, M5 = diag(M11,M22,M33),
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systems (39)-(40) are robustly asymptotically stable under
H∞ performance level γ2, that is∫ ∞

0
zT (s)M4z(s)ds ≤ γ2

2

∫ ∞

0
ηT (s)M5η(s)ds (41)

with η(t) =
[

eT
x (t) eT

f (t) dT (t)
]T

if there exist posi-
tive definite matrices X and Wi (i = 1, · · · ,r) such that the
following conditions hold:

EX = XT ET ≥ 0, (42)

Ξi j +Ξ ji < 0, i, j = 1,2, · · · ,r, i ≤ j, (43)

where

Ξi j =


ψ11

i j BiWj Bi Di XTCT
Li

∗ ψ22 0 0 0
∗ ∗ −ρ2M22 0 0
∗ ∗ ∗ −ρ2M33 0
∗ ∗ ∗ ∗ −M44

 ,

(44)

in which

ψ11
i j = sym(AiX −BiWj),

ψ22 =−ρ2λ (XM11 +M11X)+ρ2λM11,

with ρ2 = γ2
2 .

In this case, the gains of the controller are given by Ki =
WiX−1.

Proof: Considering the Lyapunov function as follows:
V2(t) = xT (t)ET P2x(t).

The time derivative of V2(t) can then be written as

V̇2(t) = ẋT (t)ET P2x(t)+ xT (t)ET P2ẋ(t). (45)

Define

ET P2 = PT
2 E ≥ 0. (46)

By considering (39) and (46) we obtain

V̇2(t) =
r

∑
i=1

r

∑
j=1

hih j{xT (t)sym(PT
2 (Ai −BiK j))x(t)

+2xT (t)PT
2 BiK jex(t)+2xT (t)PT

2 Bie f (t)

+2xT (t)PT
2 Did(t)}. (47)

Let

J2(t) = V̇2(t)+ zT (t)M4z(t)− γ2
2 ηT (t)M5η(t). (48)

It proceeds that

V̇2(t)+ zT (t)M4z(t)− γ2
2 ηT (t)M5η(t)< 0, (49)

when η(t) = 0, (49) means V̇2(t) ≤ 0, then closed-loop
systems (39)-(40) are robustly asymptotically stable in the
case of η(t) = 0.

When η(t) ̸= 0, integrating both sides of (49) with re-
spect to t over time period [0 ∞] yields∫ ∞

0
V̇2(s)ds+

∫ ∞

0
zT (s)M4z(s)ds

− γ2
2

∫ ∞

0
ηT (s)M5η(s)ds ≤ 0. (50)

As V2(∞) ≥ 0, and with zero initial condition V2(0) = 0,
one obtains∫ ∞

0
zT (s)M4z(s)ds ≤ γ2

2

∫ ∞

0
ηT (s)M5η(s)ds. (51)

Therefore, J2 < 0.
By replacing (47) and (40) into (48), one can obtain

J2(t) =
r

∑
i=1

r

∑
j=1

hih j{xT (t)sym(PT
2 (Ai −BiK j))x(t)

+2xT (t)PT
2 BiK jex(t)+2xT (t)PT

2 Bie f (t)

+2xT (t)PT
2 Did(t)+ xT (t)CT

Li
M4CLi x(t)

− γ2
2 ηT (t)M5η(t)}, (52)

then,

J2(t)

=
r

∑
i=1

r

∑
j=1

hih j

{[
x(t)
η(t)

]T[ Θ11
i j Θ12

i j
∗ −γ2

2 M5

][
x(t)
η(t)

]}
,

where

η(t) =

 ex(t)
e f (t)
d(t)

 ,

Θ11
i j = θi j +CT

Li
M4CLi ,θi j = sym(PT

2 (Ai −BiK j)),

Θ12
i j =

[
PT

2 BiK j PT
2 Bi PT

2 Di
]
,

M5 =

 M11 0 0
∗ M22 0
∗ ∗ M33

 .

By applying the Schur complement,

r

∑
i=1

r

∑
j=1

hih j

[
Θ11

i j Θ12
i j

∗ −γ2
2 M5

]
< 0 (53)

can be written as

r

∑
i=1

r

∑
j=1

hih j


θi j PT

2 BiK j PT
2 Bi PT

2 Di CT
Li

∗ −γ2
2 M11 0 0 0

∗ ∗ −γ2
2 M22 0 0

∗ ∗ ∗ −γ2
2 M33 0

∗ ∗ ∗ ∗ −M−1
4


< 0. (54)

Consider the following symmetric matrix:

X= diag(P−T
2 ,P−T

2 , I, I, I).
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We can transform inequality (54) by pre and post multi-
plying it by X, we obtain:

r

∑
i=1

r

∑
j=1

hih j


ϑi j BiK jP−1

2 Bi Di P−T
2 CT

Li
∗ ϑ 22 0 0 0
∗ ∗ −γ2

2 M22 0 0
∗ ∗ ∗ −γ2

2 M33 0
∗ ∗ ∗ ∗ −M−1

4


< 0, (55)

where ϑ 11
i j = sym((Ai − BiK j)P−1

2 ) and ϑ 22
i j =

−γ2
2 P−T

2 M11P−1
2 .

Considering Lemma 2, the following inequality can be
obtained

− γ2
2 P−T

2 M11P−1
2

≤−λγ2
2 (P

−T
2 M11 +M11P−1

2 )+λ 2γ2
2 M11. (56)

By posing X = P−1
2 , Wi = KiP−1

2 , M44 = M−1
4 and ρ2 = γ2

2
we obtain inequality (44). □

Remark 3: From augmented estimation vector ˆ̄x(t),
we can deduce easily the estimation of states and sen-
sor faults as follows: x̂(t) =

[
In 0w

]
ˆ̄x(t) and f̂s(t) =[

0n Iw
]

ˆ̄x(t). The actuator faults can be regulated by
the adaptive observer proposed in (13).

Algorithm 1: The design of the proposed adaptive ob-
server and the fault tolerant controller can be summarized
as follows.

• Compute the matrices T and H by solving equation
(10).

• Compute the gains of the adaptive observer by solv-
ing the optimization problem given by (37) and the
LMI constraints given by (22).

• Compute the gains of the FTC by solving the LMI
constraints given by (42) and (43).

• Implement the observer (13) to estimate both states
and sensor/actuator faults, then the FTC (38) to
achieve the objectives of the FTC.

4. NUMERICAL EXAMPLE

In this part we consider a truck-trailer system to show
the effectiveness of our results.
Considering the following dynamic model of the truck-
trailer system [23, 38]

ẋ1(t) =− vt̄
Lt0

x1(t)+
vt̄
lt0

u(t),

ẋ2(t) =
vt̄
Lt0

x1(t), (57)

ẋ3(t) =
vt̄
t0

sin[x2(t)+
vt̄
2L

x1(t)],

The model parameters are l = 2.8, L = 5.5, v =−1, t̄ = 2
and t0 = 0.5.
To have the T-S descriptor representation, the following
state variable is introduced:

x4(t) = x2(t)−
vt̄
Lt0

x1(t). (58)

The following fuzzy rules can be employed:
Rule 1: If θ(t) = x2(t)+ vt̄

Lt0
x1(t) is about 0, Then{

Eẋ(t) = A1x(t)+B1u(t)+Dd(t),

y(t) =Cx(t).

Rule 2: If θ(t)= x2(t)+ vt̄
Lt0

x1(t) is about π or −π , Then{
Eẋ(t) = A2x(t)+B2u(t)+Dd(t),

y(t) =Cx(t),

where

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , A1 =


− vt̄

Lt0
0 0 0

vt̄
Lt0

0 0 0
− v2 t̄2

2Lt0
vt̄
t0

0 0
− vt̄

Lt0
1 0 −1

 ,

B1 =


vt̄
lt0
0
0
0

 , A2 =


− vt̄

Lt0
0 0 0

vt̄
Lt0

0 0 0

−φv2 t̄2

2Lt0
φvt̄
t0

0 0
− vt̄

Lt0
1 0 −1

 ,

B2 =


vt̄
lt0
0
0
0

 , D =


0
0
vt̄
t0
0

 , C = I4, F =


2
1
1
1

 ,

CL1 =
[

2 1 0 1
]
, CL2 =

[
0 −1 −1 1

]
.

We set φ = 10t0
π and d(t) = 0.2sin(θ(t))−θ(t).

The membership functions for Rules 1 and 2 are as fol-
lows:

h1(θ(t)) =
(

1
1+ exp(−3(θ(t)+0.5π))

)
×
(

1− 1
1+ exp(−3(θ(t)−0.5π))

)
,

h2(θ(t)) =1−h1(θ(t)).

By solving (10), T and H can be given as follows

T =


0.8333 0.1667 0.1667 0
0.1667 0.5833 0.0833 0
0.1667 0.0833 0.5833 0
0.3333 0.1667 0.1667 0
−0.3333 −0.1667 −0.1667 0

 ,

H =


0.1667 −0.1667 −0.1667 0
−0.1667 0.4167 −0.0833 0
−0.1667 −0.0833 0.4167 0
−0.3333 −0.1667 −0.1667 1
0.3333 0.1667 0.1667 0

 .
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By choosing the tuning parameter values as follows: σ =
2, µ = 0.5, η = 10−4 and ρ1 = 1 to satisfy Theorem 1 and
Remark 1 then λ = 2, ρ2 = 1 and M11 = eye(4) to satisfy
Theorem 2.

Using MATLAB LMI Toolbox, the optimization prob-
lem of theorem 1 and 2 can be easily solved.

The gains of the Adaptive Fuzzy Observer:

L1 =


5.4503 −5.3322 −4.4967 −0.3343
1.5950 −2.3439 −0.6450 −0.0142
4.2856 −16.3160 6.5687 0.4703
2.3915 −5.0311 −0.7733 0.9286
−2.5356 4.8958 0.7645 0.2876

 ,

L2 =


5.9981 −6.0296 −5.5375 −0.9673
1.7971 −2.5434 −1.1143 −0.2667
3.9047 −15.5800 6.7274 1.3254
2.6698 −4.9917 −1.2290 0.8808
−2.5629 5.3867 0.9408 −0.0410

 ,

and controller gains:

K1 =
[
−2.7152 5.2551 −0.5846 −0.1428

]
,

K2 =
[
−2.6972 5.7485 −0.5806 −0.1003

]
.

Let us consider in the first time the sensor fault fs1(t) as a
square-wave signal between 10s and 25s, and the actuator
fault as

fa1(t) =

{
0, t < 5,

5(1− exp(−0.5(t −5))), 5 ≤ t ≤ 30.
(59)

Consider now the sensor fault fs2(t) as a square-wave
signal between 10 s and 25 s, and the actuator fault as

fa2(t) =


0, t ≤ 5,

5+0.5sin(0.2π(t −5)), 5 < t ≤ 17,

5.5, 17 < t ≤ 30.
(60)

The simulation initial states in the first case
are set as x0 =

[
−0.1 −0.1 −0.2

]T and w0 =[
0.1 0.1 0.1 0.2 0

]T . And in the second case,

they are set as x0 =
[
−0.1 −0.1 −0.2

]T and w0 =[
0.2 0.1 0.2 0.1 0

]T . By choosing Γ = 2.5 in
the simulation example, for the two types of actuator
faults, the derivative of fa1(t) and fa2(t) over time are
norm bounded by fa1max = 2.5 and fa2max = 0.31, respec-
tively. δ1 = µ

σ f 2
a1max

λmax(Γ−1M−1Γ−1) = 8.6.10−3 and
δ2 = µ

σ f 2
a2max

λmax(Γ−1M−1Γ−1) = 1.35.10−4 reduce the
radius of the ball in which the estimation errors converge.

It should be noted that when selecting the learning rate
Γ = 2.5, based on the proposed adaptive fault estima-
tion algorithm, the fault-tolerant controller can rapidly re-
cover the performance of the system in the presence of

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
1
(t)

estimation of x
1
(t)

Time(s)

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

x
2
(t)

estimation of x
2
(t)

Time(s)

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

x
3
(t)

estimation of x
3
(t)

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
4
(t)

estimation of x
4
(t)

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
1
(t)

estimation of x
1
(t)

Time(s)

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

x
2
(t)

estimation of x
2
(t)

Time(s)

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

x
3
(t)

estimation of x
3
(t)

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
4
(t)

estimation of x
4
(t)

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
1
(t)

estimation of x
1
(t)

Time(s)

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

x
2
(t)

estimation of x
2
(t)

Time(s)

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

x
3
(t)

estimation of x
3
(t)

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
4
(t)

estimation of x
4
(t)

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
1
(t)

estimation of x
1
(t)

Time(s)

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

x
2
(t)

estimation of x
2
(t)

Time(s)

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

x
3
(t)

estimation of x
3
(t)

Time(s)

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

x
4
(t)

estimation of x
4
(t)

Fig. 2. System states and their estimations under FTC law.
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Fig. 3. Actuator fault fa1 (t) and its estimated f̂a1 (t) under
FTC law.

sensor/actuator faults and external disturbances simulta-
neously. The learning rate should be minutely selected,
otherwise, increasing or decreasing this value will lead to
an unsatisfactory accuracy and rapidity of estimation. The
evolutions of system states, sensor and actuator faults as
well as their estimated are depicted in Figs. 2-7 in the two
cases. It is quite clear to remark that the adaptive observer
designed in this work leads to a good estimation of system
states, actuator and sensor faults. Based on the simulation
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Fig. 4. Sensor fault fs1 (t) and its estimated f̂s1 (t) under
FTC law.
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Fig. 5. System states and their estimations under FTC law.

results, we can conclude that the adaptive fuzzy observer-
based FTC used in this paper can rapidly recover the per-
formance and the stability of the closed-loop descriptor
system despite the presence of actuator, sensor faults and
external disturbances.

5. CONCLUSION

In this paper, we have proposed a strategy of fault es-
timation and fault tolerant control for T-S descriptor sys-
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Fig. 6. Actuator fault fa2 (t) and its estimated f̂a2 (t) under
FTC law.
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Fig. 7. Sensor fault fs2 (t) and its estimated f̂s2 (t) under
FTC law.

tems. This kind of systems may be affected by actuator,
sensor faults and external disturbances. By considering
the sensor faults as an auxiliary state vector, the original
descriptor system has been transformed into another one.
Using the H∞ optimization technique, an Adaptive Fuzzy
Observer has been firstly proposed to achieve a simulta-
neous estimation of descriptor system states, actuator and
sensor faults. Secondly, we have introduced an observer-
based FTC to stabilize the closed-loop faulty descriptor
system. Considering the H∞ performance index, it is im-
portant to mention that the coupling issue resulting from
the observer and the controller design can be avoided by
introducing them independently. Thus, sufficient condi-
tions are presented in terms of LMIs. The effectiveness of
the proposed method has been proven by simulation on a
truck-trailer system.
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