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Delay Dependent Local Stabilization Conditions for Time-delay Nonlin-
ear Discrete-time Systems Using Takagi-Sugeno Models
Luís F. P. Silva, Valter J. S. Leite*, Eugênio B. Castelan, and Gang Feng

Abstract: We propose convex conditions for stabilization of nonlinear discrete-time systems with time-varying
delay in states through a fuzzy Takagi-Sugeno (T-S) modeling. These conditions are developed from a fuzzy
Lyapunov-Krasovskii function and they are formulated in terms of linear matrix inequalities (LMIs). The results
can be applied to a class of nonlinear systems that can be exactly represented by T-S fuzzy models inside a specific
region called the region of validity. As a consequence, we need to provide an estimate of the set of safe initial
conditions called the region of attraction such that the closed-loop trajectories starting in this set are assured to
remain in the region of validity and to converge asymptotically to the origin. The estimate of the region of attraction
is done with the aid of two sets: one dealing with the current state, and the other concerning the delayed states.
Then, we can obtain the feedback fuzzy control law depending on the current state, xk, and the maximum delayed
state vector, xk−d̄ . It is shown that such a control law can locally stabilize the nonlinear discrete-time system at
the origin. We also develop convex optimization procedures for the computation of the fuzzy control gains that
maximize the estimates of the region of attraction. We present two examples to demonstrate the efficiency of the
developed approach and to compare it with other approaches in the literature.

Keywords: Fuzzy Lyapunov-Krasovskii function, LMIs, nonlinear discrete-time systems, Takagi-Sugeno fuzzy
models, time-varying delay in states.

1. INTRODUCTION

The problem of controlling delayed systems has re-
ceived a significant amount of attention from both aca-
demics and industrial engineers in the last decades. Its
relevance relies on the fact that most of the industrial pro-
cess involve transfer of mass, energy, or information. Such
a transfer is usually associated with the presence of de-
lay in real systems yielding performance deterioration or
even loss of stability [1]. In special, the control prob-
lem of delayed nonlinear systems has been an important
topic in recent researches as can be seen, for example, in
[2] for continuous-time systems and in [3–5], and [6], for
discrete-time systems. For applications of discrete-time
delayed systems see for instance [7] where an industrial
furnace is modeled and controlled considering delayed
states. In this work, we deal with the problem of local sta-
bilization of nonlinear discrete-time systems with delayed
states described by

xk+1 = f (xk)xk + fd(xk)xk−dk +g(xk)uk, (1)
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where xk ∈ Rn is the state vector, uk ∈ Rm is the control
input vector, and dk ∈ N∗ denotes the time-varying delay
satisfying 1 ≤ d ≤ dk ≤ d̄, with d and d̄ being the lower
and upper bound of the delay, respectively. The functions
f (·) :Rn →Rn×n, fd(·) :Rn →Rn×n, and g(·) :Rn →Rn×m

are continuous and bounded in the region of operation. We
assume that the initial conditions of the nonlinear system
(1) are given by a sequence φd̄,0 defined later.

One way to handle the nonlinear system (1) is through
the approach based on fuzzy Takagi-Sugeno (T-S) models
which has been found a great success to model and control
nonlinear systems (see for example [8–10]). An advantage
of this approach is that the nonlinear system can be exactly
represented by a T-S fuzzy model in a local region, inside
the domain of operation, here called region of validity of
the fuzzy T-S model. Such a local region may be a conse-
quence of physical or security limits of the process. Note
that the use of T-S modeling has been widely exploited in
many contributions in the literature such as [8,11–13]. For
other recent approaches in the context of fuzzy control see,
for instance, [14] for adaptive fuzzy control of nonlinear
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(region of operation) of the fuzzy T-S model as illustrated in
Figure 1: suppose a nonlinear system described by (1) with
n = 2, the equilibrium point of interest being at the origin, at
an initial instant k = 0, and with initial condition where only
the current state, x0, is not null. Also suppose that this system
has been represented by a T-S fuzzy model such that its region
of validity is indicated by the set V0 shown by dashed lines.
There exists a set of possible values x0 such that the trajecto-
ries emanating from these points converges to the origin. This
is the region of attraction, RA, indicated by continuous line in
Figure 1. This region may be nonconvex and its characteri-
zation is widely recognized as a challenging task. Therefore,
we pursue the objective of finding an estimate of RA which is
indicated by Cx ⊆ RA (dotted line) of safe initial conditions.

x1

x2

RA Cx

V0

Fig. 1. Region of operation (V0, dashed line), region of attrac-
tion (RA, continuous line), and an estimate of the re-
gion of attraction (Cx, dotted continuous line).

Due to the delayed states, such an estimate is a more com-
plicated task than that in the delay free case. For instance,
if the norm of the delayed states is increased, the weight of
fd(xk)xk−dk

becomes more relevant on the dynamics of (1)
and, thus, the size of the set Cx can be affected. Thus, it is nec-
essary to characterize the region of safe initial conditions for
all initial states in the sequence ϕd̄,0. We provide an estimate
of the region of attraction, i.e. a safe region from where the
closed-loop trajectories can start and are ensured to stay in the
region of validity and be asymptotically stable. Considering
such an estimate in the controller design is a fundamental is-
sue that is often ignored in fuzzy T-S control approaches with
some exceptions as in [2,13,15,24] for delay free systems and
[8,14,25,26] for systems with delayed states. Moreover, when
time delay is present the estimate of the region of attraction is
more difficult than that for delay free systems because the ini-
tial conditions are defined by a sequence of states instead of
only one initial state vector. It is noted that works dealing with
the problems of stability analysis and controller synthesis for
time-varying delay discrete-time systems represented by T-S
fuzzy models do not consider the local stability issue (see, for
instance [6, 10, 19, 31]).

In this paper, we develop delay-dependent convex condi-
tions based on fuzzy Lyapunov-Krasovskii (L-K) functions

leading to our main contributions include: i) a convex con-
dition to design a fuzzy memory state feedback control uk =
K(αk)xk+K̄(αk)xk−d̄ , where d̄ is the upper bound on the delay
variation interval is developed without using on line knowl-
edge of dk; ii) the obtained T-S fuzzy controller ensures the
local stabilization of the nonlinear system (1) with trajectories
confined in the region of validity; and iii) an estimate of the
region of attraction is also given. It should be noted that delay-
dependent conditions are formulated in terms of linear matrix
inequalities (LMIs). The present approach differs from those
in [25] and [26] where the real time knowledge of the delay
dk and the associated delayed state (xk−dk

) are required. Such
a difference leads to an easier controller implementation. The
estimation of the region of attraction is based on two sets: one
describing a region of allowed values for the current state and
the other one defining the region for the delayed states. Based
on the developed conditions, convex optimization procedures
are proposed to synthesize fuzzy controllers that maximize the
region of attraction with respect to the region of validity of the
T-S fuzzy model, where the dynamics of the nonlinear closed-
loop system are allowed to evolve. We present two numerical
examples to demonstrate the efficiency of the proposed ap-
proach and to compare it with other approaches found in the
literature.

In Section 2 some definitions and the problem formulation
are provided. In Section 3 we show some preliminary results.
In Section 4 we present the main results: convex conditions
for the synthesis of T-S state feedback control gains and the
optimization procedures to compute the control law maximiz-
ing the region of attraction. In Section 5, we show two numer-
ical examples to demonstrate effectiveness of the proposed ap-
proach. Some conclusions are presented in Section 6.
Notations: The ℓ-th row of the matrix L is denoted as L(ℓ).
The symbol ⋆ represents the transposed blocks with respect
to the diagonal of real square and symmetric matrices. The
matrices I and 0 denote the identity and the null matrices of
appropriate dimensions, respectively. The sets of real num-
bers, non-negative real numbers, integer numbers, and in-
tegers numbers excluding the zero are denoted by R, R

+,
N, and N

∗, respectively. The set of integer numbers be-
longing to the interval from a ∈ N to b ∈ N, b ≥ a, is de-
noted by I[a,b]. If ϑ is a sequence, its j-th element is de-
noted by [ϑ ] j. We define two sequences: the first one is
φd,k ∈ Eφ , with Eφ = E1 × E2 × ·· · × Ed , E j ⊆ R

n, and the
j-th element of φd,k is [φd,k] j = xk+ j−(d+1) ∈ E j, j ∈ I[1,d];
thus, φd,k = {xk−d ,xk−(d−1), . . . ,xk−1}. The second sequence
is ϕd,k ∈ Eϕ , with Eϕ = Eφ ×Ed+1, Ed+1 ⊆R

n, and the j-th el-
ement of ϕd,k is [ϕd,k] j = xk+ j−(d+1) ∈ E j, j ∈ I[1,d+1]; thus,
ϕd,k = {φd,k,xk}. The sequence of difference of delayed initial
conditions is defined as ∆φd,k = {φd,k−d+1 −φd,k−d , . . . ,φd,k −
φd,k−1}. The norm of the sequence of vectors, ϑ with d ele-
ments, is defined as ‖ϑ‖d = sup

j∈I[1,d]
‖[ϑ ] j‖, where ‖ · ‖ is the

euclidean norm. λmax(M) is the maximum eigenvalue of the
(symmetric) matrix M with real entries. For a real number r,
round(r) returns the nearest integer.

2

Fig. 1. Region of operation (V0, dashed line), region of
attraction (RA, continuous line), and an estimate of
the region of attraction (Cx, dotted continuous line).

network systems with input delay, and [15] for fault es-
timation and tolerant control of continuous time fuzzy T-
S systems with time-varying delay. In this paper, we are
concerned with the region of validity (region of operation)
of the fuzzy T-S model as illustrated in Fig. 1: suppose a
nonlinear system described by (1) with n = 2, the equi-
librium point of interest being at the origin, at an initial
instant k = 0, and with initial condition where only the
current state, x0, is not null. Also suppose that this system
has been represented by a T-S fuzzy model such that its re-
gion of validity is indicated by the set V0 shown by dashed
lines. There exists a set of possible values x0 such that the
trajectories emanating from these points converges to the
origin. This is the region of attraction, RA, indicated by
continuous line in Fig. 1. This region may be nonconvex
and its characterization is widely recognized as a challeng-
ing task. Therefore, we pursue the objective of finding an
estimate of RA which is indicated by Cx ⊆ RA (dotted line)
of safe initial conditions.

Due to the delayed states, such an estimate is a more
complicated task than that in the delay free case. For
instance, if the norm of the delayed states is increased,
the weight of fd(xk)xk−dk becomes more relevant on the
dynamics of (1) and, thus, the size of the set Cx can be
affected. Thus, it is necessary to characterize the re-
gion of safe initial conditions for all initial states in the
sequence φd̄,0. We provide an estimate of the region of
attraction, i.e. a safe region from where the closed-loop
trajectories can start and are ensured to stay in the region
of validity and be asymptotically stable. Considering such
an estimate in the controller design is a fundamental is-
sue that is often ignored in fuzzy T-S control approaches
with some exceptions as in [16–19] for delay free systems
and [20–23] for systems with delayed states. Moreover,
when time delay is present the estimate of the region of
attraction is more difficult than that for delay free systems
because the initial conditions are defined by a sequence of
states instead of only one initial state vector. It is noted

that works dealing with the problems of stability analysis
and controller synthesis for time-varying delay discrete-
time systems represented by T-S fuzzy models do not con-
sider the local stability issue (see, for instance [24–27]).

In this paper, we develop delay-dependent convex con-
ditions based on fuzzy Lyapunov-Krasovskii (L-K) func-
tions leading to our main contributions include: i) a con-
vex condition to design a fuzzy memory state feedback
control uk = K(αk)xk + K̄(αk)xk−d̄ , where d̄ is the upper
bound on the delay variation interval is developed without
using on line knowledge of dk; ii) the obtained T-S fuzzy
controller ensures the local stabilization of the nonlinear
system (1) with trajectories confined in the region of va-
lidity; and iii) an estimate of the region of attraction is
also given. It should be noted that delay-dependent con-
ditions are formulated in terms of linear matrix inequal-
ities (LMIs). The present approach differs from those in
[22] and [23] where the real time knowledge of the delay
dk and the associated delayed state (xk−dk ) are required.
Such a difference leads to an easier controller implemen-
tation. The estimation of the region of attraction is based
on two sets: one describing a region of allowed values
for the current state and the other one defining the region
for the delayed states. Based on the developed conditions,
convex optimization procedures are proposed to synthe-
size fuzzy controllers that maximize the region of attrac-
tion with respect to the region of validity of the T-S fuzzy
model, where the dynamics of the nonlinear closed-loop
system are allowed to evolve. We present two numerical
examples to demonstrate the efficiency of the proposed ap-
proach and to compare it with other approaches found in
the literature.

In Section 2 some definitions and the problem formula-
tion are provided. In Section 3 we show some preliminary
results. In Section 4 we present the main results: convex
conditions for the synthesis of T-S state feedback control
gains and the optimization procedures to compute the con-
trol law maximizing the region of attraction. In Section 5,
we show two numerical examples to demonstrate effec-
tiveness of the proposed approach. Some conclusions are
presented in Section 6.

Notations: The ℓ-th row of the matrix L is denoted as
L(ℓ). The symbol ⋆ represents the transposed blocks with
respect to the diagonal of real square and symmetric matri-
ces. The matrices I and 0 denote the identity and the null
matrices of appropriate dimensions, respectively. The sets
of real numbers, non-negative real numbers, integer num-
bers, and integers numbers excluding the zero are denoted
by R, R+, N, and N∗, respectively. The set of integer num-
bers belonging to the interval from a ∈ N to b ∈ N, b ≥ a,
is denoted by I[a,b]. If ϑ is a sequence, its j-th element is
denoted by [ϑ ] j. We define two sequences: the first one is
ϕd,k ∈ Eϕ , with Eϕ = E1 ×E2 ×·· ·×Ed , E j ⊆ Rn, and the
j-th element of ϕd,k is [ϕd,k] j = xk+ j−(d+1) ∈E j, j ∈I[1,d];
thus, ϕd,k = {xk−d ,xk−(d−1), . . . ,xk−1}. The second se-
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quence is φd,k ∈ Eφ , with Eφ = Eϕ × Ed+1, Ed+1 ⊆ Rn,
and the j-th element of φd,k is [φd,k] j = xk+ j−(d+1) ∈ E j,
j ∈ I[1,d + 1]; thus, φd,k = {ϕd,k,xk}. The sequence
of difference of delayed initial conditions is defined as
∆ϕd,k = {ϕd,k−d+1−ϕd,k−d , . . . ,ϕd,k−ϕd,k−1}. The norm of
the sequence of vectors, ϑ with d elements, is defined as
∥ϑ∥d = sup

j∈I[1,d]
∥[ϑ ] j∥, where ∥ · ∥ is the euclidean norm.

λmax(M) is the maximum eigenvalue of the (symmetric)
matrix M with real entries. For a real number r, round(r)
returns the nearest integer.

2. PROBLEM STATEMENT

Consider a class of discrete-time nonlinear systems
with time-varying delay in states given by (1), which can
be exactly represented by a Takagi-Sugeno (T-S) fuzzy
model with N = 2p rules as follows (see [13] for details):

Rule i :

IF z1(k) is Mi1 and · · · and zp(k) is Mip,

THEN xk+1 = Aixk +Adixk−dk +Biuk, (2)

where z j(k), j ∈ I[1, p], are the scalar premise variables
which depend only on the state xk, Mi j, i ∈ I[1,N], are
the fuzzy sets, and p is the number of premise variables.
The matrices Ai ∈ Rn×n, Adi ∈ Rn×n and Bi ∈ Rn×m are
supposed to be known. The delay satisfies 1 ≤ d ≤ dk ≤
d̄, where d and d̄ are known natural numbers related to
the minimal and maximal values assumed by the delay,
respectively. Note that if at least one of the nonlinear
functions in (1) depends on xk−dk , the real-time knowledge
of the dk would be necessary to ensure the synchronism
of the premise variables. The initial conditions of (1) are
given by a sequence φd̄,0 ∈ Eφ .

The defuzzification process of the model (2) can be rep-
resented as [12]

xk+1 = A(αk)xk +Ad(αk)xk−dk +B(αk)uk, (3)

where αk(i) = wi(z(k))/∑N
j=1 w j(z(k)) with wi =

∏p
j=1 Mi j(z j(k)), and z(k) =

[
z1(k) z2(k) . . . zp(k)

]T .
The membership function vector αk ∈ Ξ is a state-
dependent time-varying parameter that is supposed to
be available in real time, and Ξ is the unitary simplex:

Ξ =
{

αk ∈ RN ;
N

∑
i=1

αk(i) = 1, αk(i) ≥ 0, i ∈ I[1,N]
}
.

(4)

The matrices in (3) can be rewritten as:[
A(αk) Ad(αk) B(αk)

]
=

N

∑
i=1

αk(i)
[
Ai Adi Bi

]
, αk ∈ Ξ. (5)

It is worth highlighting that the exact representation of
the nonlinear system (1) by the T-S fuzzy model (2)–(5)
inside a bounded region in the state space can be estab-
lished by using the same modeling T-S fuzzy technique as
in [12]. In this technique, the domain of each premise vari-
able zi is a bounded region in the state space whose lim-
its are considered in the fuzzy T-S modeling process (see
[17] for details). Besides, it is often required in real sys-
tems to consider a domain of operation that may include
safety operational conditions, physical constraints, levels
of energy consumption, etc. Motivated by these require-
ments, we consider a nonempty and possibly open subre-
gion V0 ⊂ Rn, called the region of validity, characterized
by the intersection of a finite number of half spaces:

V0 = {xk ∈ Rn; |L(ℓ)xk| ≤ η(ℓ)}, (6)

where η(ℓ) > 0, L(ℓ) ∈ R1×n, ℓ ∈ I[1,κ] and κ represents
the number of constraints that characterize the allowed
state-space region for the closed-loop system. For in-
stance, consider a system with a state vector given by
xk =

[
x1,k x2,k

]T , where x1,k is constrained to −0.05 ≤
x1,k ≤ 0.05, and x2,k is free. Then, the region of validity V0

can be characterized by (6) with κ = ℓ= 1,

L =
[
1 0

]
, and η(1) = 0.05. (7)

Thus, any state vector verifying |L(1)xk| ≤ 0.05 belongs to
V0. Thus, through the fuzzy modeling considered in this
paper, we can exactly represent a real plant modeled by
the nonlinear system (1) taking into consideration physi-
cal and operational constraints described in (6). Note that
whenever the state trajectories evolve inside the region of
validity, xk ∈ V0, it is verified that αk ∈ Ξ.

Using the parallel distributed compensation, we pro-
pose a feedback fuzzy control law as:

uk = K(αk)xk + K̄(αk)xk−d̄ , (8)

where the matrices of the controller depend on the mem-
bership function as follows:

[
K(αk) K̄(αk)

]
=

N

∑
i=1

αk(i)
[
Ki K̄i

]
, αk ∈ Ξ, (9)

with Ki ∈ Rm×n and K̄i ∈ Rm×n being the control gains as-
sociated with the i-th rule in (2).

Remark 1: The control law (8)–(9) does not need the
real time knowledge of dk, because only the maximum de-
lay, d̄, is used. Thus, (8)–(9) is simpler to be implemented
than the control law found in [21–23] where xk−dk is used,
requiring the real time knowledge of dk. Moreover, the use
of the delayed term into (8) adds more information on the
control law, which is known to lead to less conservative
control action [25].
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By replacing (8) into (3), we get the closed-loop system
as:

xk+1 =(A(αk)+B(αk)K(αk))xk +Ad(αk)xk−dk

+B(αk)K̄(αk)xk−d̄ . (10)

Our interest is to characterize a region ϒφ ⊆ V0, such
that the trajectories of the nonlinear system (1) with con-
trol law (8)–(9) and initial conditions given by the se-
quence φd̄,0 with elements [φd̄,0] j, j ∈ I[1, d̄ + 1], be-
longing to ϒφ remain confined in V0. Also note that the
mathematical description of such a region is a challenging
task. Therefore, we can formulate the main problem in
this work as follows.

Problem 1: Determine the T-S fuzzy gains Ki and K̄i,
for i∈I[1,N], of the controller (8)–(9) and characterize an
estimate of the region of attraction, ϒφ , such that trajecto-
ries of the closed-loop system consisting of (1), (8)–(9)
remain in V0 and converge asymptotically to the origin,
for any initial condition given by the sequence φd̄,0 with
elements [φd̄,0] j ∈ ϒφ , j ∈ I[1, d̄ +1].

3. PRELIMINARIES AND TECHNICAL
LEMMAS

Inspired by [26], we rewrite the T-S fuzzy model (3)
with the aid of the variable ωdk = xk−dk − xk−d̄ , yielding:

xk+1 =A(αk)xk +Ad(αk)xk−d̄ +Ad(αk)ωdk

+B(αk)uk. (11)

By using the fuzzy control law (8) into (11), the closed-
loop system given by (10) can be equivalently written as:

xk+1 = Â(αk)xk + Âd(αk)xk−d̄ +Ad(αk)ωdk , (12)

where the matrices Â(αk) and Âd(αk) are

Â(αk) = A(αk)+B(αk)K(αk)

=
N

∑
i=1

N

∑
j=i

µi jαk(i)αk( j)
Ai +BiK j +A j +B jKi

2
,

(13)

and

Âd(αk) = Ad(αk)+B(αk)K̄(αk)

=
N

∑
i=1

N

∑
j=i

µi jαk(i)αk( j)
Adi +BiK̄ j +Ad j +B jK̄i

2
,

(14)

with

µi j = 2 if i ̸= j, or µi j = 1 if i = j. (15)

Consider now the fuzzy L-K function candidate
V (φd̄,k,αk) : Eφ ×Ξ 7→ R+:

V (φd̄,k,αk) =
4

∑
v=1

Vv(φd̄,k,αk)> 0, (16)

where V1(φd̄,k,αk) = xT
k Q−1(αk)xk, V2(φd̄,k,αk) = ∑k−1

j=k−dk

xT
j S(α j)x j + ∑1−d

ℓ=2−d̄ ∑k−1
j=k+ℓ−1 xT

j S(α j)x j, V3(φd̄,k) =

∑k−1
j=k−d̄ xT

j Rx j, V4(φd̄,k) = xT
k−1Z1xk−1 + (d̄ − 1)∑−2

ℓ=−d̄

∑k−2
m=k+ℓ(xm+1 − xm)

T Z2(xm+1 − xm), Q(αk) = ∑N
i=1 αk(i)Qi,

and S(αk) = ∑N
i=1 αk(i)Si, where Qi = QT

i ∈ Rn×n,
Si = ST

i ∈ Rn×n, R = RT ∈ Rn×n, Z1 = ZT
1 ∈ Rn×n, and

Z2 = ZT
2 ∈ Rn×n. This fuzzy L-K function candidate is

used to search for solutions to the Problem 1. Then, we
define the estimate of the region of attraction and present
three lemmas used to obtain the main results of this work.

Definition 1: The estimate of the region of attraction
ϒφ ⊆ Eφ is defined as

ϒφ =

{
φd̄,0 ∈ Eφ ; ∀ j ∈ I[1, d̄ +1],

[φd̄,0] j ∈
{ Cx, j = d̄ +1,

Bϕ , otherwise.

}
, (17)

where

Cx =
{

x0 ∈ Ed̄+1; V1(x0,α0)≤ c(ϕd̄,0)
}
⊆ V0, (18)

Bϕ =
{
[ϕd̄,0] j ∈ E j, j ∈ I[1, d̄]; ∥ϕd̄,0∥d̄ ≤ r1

∥∆ϕd̄,0∥d̄ ≤ r2, and [ϕd̄,0] j ∈ V0, j ∈ I[1, d̄]
}
,

(19)

c(ϕd̄,0) is a function Eϕ 7→ R+ and ri ∈ R+, for i = 1,2.

In the characterization of ϒφ , set Cx describes a re-
gion of allowable values for the current state while the
set Bϕ defines the region for the elements [ϕd̄,0] j ∈ E j, for
j ∈ I[1, d̄]. The case discussed in the Section “I. Intro-
duction,” with the aid of Fig. 1 has an ϒφ given by Cx and
Bϕ = {0}. The next lemma presents a tool necessary to
compute the set Cx.

Lemma 1: Assume that function (16) is a fuzzy L-K
function. An associated level set is given by the intersec-
tion of ellipsoidal sets related to matrices QT

i = Qi > 0,
i ∈ I[1,N]:

LV1(c) =
{
E(Q−1

i ,c), ∀αk ∈ Ξ
}

=
∩

αk∈Ξ
E(Q−1(αk),c)

=
∩

i∈I[1,N]

E(Q−1
i ,c)⊆ V0, (20)

where c is a positive scalar, and E(Q−1
i ,c), for i ∈ I[1,N],

denotes the ellipsoidal sets defined as follows:

E(Q−1
i ,c) =

{
xk ∈ Rn; xT

k Q−1
i xk ≤ c

}
. (21)
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The proof of Lemma 1 can be found in [28, Lemma 4].
Equations (20)–(21) are used to characterize the sets

where corresponding trajectories of the system remain
confined when they start in ϒφ . In case of c= 1, we use the
simplified notation LV1 =LV1(1) and E(Q−1

i )= E(Q−1
i ,1).

The following lemma allows the computation and the def-
inition of parameters to characterize the sets Cx and Bϕ ,
and, thus, ϒφ .

Lemma 2: Assume that function (16) is a fuzzy L-K
function. The set Cx is characterized as

Cx =
{

x0 ∈ Rn; V1(x0,α0)≤ 1−ρ1∥ϕd̄,0∥2
d̄

−ρ2∥∆ϕd̄,0∥2
d̄

}
⊆ V0, (22)

with

ρ1 = max
i∈I[1,N]

(λmax (Si))

(
δ +

(δ −1)2 − (δ −1)
2

)
+λmax(R)d̄ +λmax(Z1), (23)

ρ2 =λmax(Z2)
d̄(d̄ −1)2

2
, (24)

and δ = d̄ −d +1. Then, we can choose r1 and r2 in (19)
satisfying

0 ≤ r1 ≤ ρ− 1
2

1 , 0 ≤ r2 ≤ ρ− 1
2

2 , and ρ1r2
1 +ρ2r2

2 ≤ 1.
(25)

Proof: Consider Lemma 1 with c = 1 − ρ1∥ϕd̄,0∥2
d̄ −

ρ2∥∆ϕd̄,0∥2
d̄ . Then, we have

Cx = LV1(1−ρ1∥ϕd̄,0∥2
d̄ −ρ2∥∆ϕd̄,0∥2

d̄)

= {x0 ∈ Rn;

xT
0 Q−1(α0)x0 ≤ 1−ρ1∥ϕd̄,0∥2

d̄ −ρ2∥∆ϕd̄,0∥2
d̄

}
⊆ V0. (26)

From Vi, i = 2,4, using ŝ ≡ maxi∈I[1,N] λmaxSi, r̂ ≡ λmaxR,
ẑ1 ≡ λmaxZ1, ẑ2 ≡ λmaxZ2, and ∑N

i=1 αi, jI = I, we have that

V2(φd̄,k,αk)+V3(φd̄,k)+V4(∆ϕd̄,k)

≤
−1

∑
j=−dk

[ϕd̄,0]
T
d̄+1+ jS(α j)[ϕd̄,0]d̄+1+ j

+
1−d

∑
ℓ=2−d̄

−1

∑
j=ℓ−1

[ϕd̄,0]
T
d̄+1+ jS(α j)[ϕd̄,0]d̄+1+ j

+
−1

∑
j=−d̄

[ϕd̄,0]
T
d̄+1+ jR[ϕd̄,0]d̄+1+ j +[ϕd̄,0]

T
d̄ Z1[ϕd̄,0]d̄

+(d̄ −1)
−2

∑
ℓ=−d̄

−2

∑
m=ℓ

[∆ϕd̄,0]
T
d̄+1+ jZ2[∆ϕd̄,0]d̄+1+ j

≤
−1

∑
j=−dk

[ϕd̄,0]
T
d̄+1+ j(ŝ

N

∑
i=1

αi, jI)[ϕd̄,0]d̄+1+ j

+
1−d

∑
ℓ=2−d̄

−1

∑
j=ℓ−1

[ϕd̄,0]
T
d̄+1+ j(ŝ

N

∑
i=1

αi, jI)[ϕd̄,0]d̄+1+ j

+
−1

∑
j=−d̄

[ϕd̄,0]
T
d̄+1+ j(r̂I)[ϕd̄,0]d̄+1+ j+[ϕd̄,0]

T
d̄ (ẑ1I)[ϕd̄,0]d̄

+(d̄ −1)
−2

∑
ℓ=−d̄

−2

∑
m=ℓ

[∆ϕd̄,0]
T
d̄+1+ j(ẑ2I)[∆ϕd̄,0]d̄+1+ j

≤ δ ŝ∥ϕd̄,0∥2
d̄ +(δ 2 −3δ +2)ŝ/2∥ϕd̄,0∥2

d̄ + d̄r̂∥ϕd̄,0∥2
d̄

+ ẑ1∥ϕd̄,0∥2
d̄ +(d̄(d̄ −1)2)ẑ2/2∥∆ϕd̄,0∥2

d̄

= ρ1∥ϕd̄,0∥2
d̄ +ρ2∥∆ϕd̄,0∥2

d̄ , (27)

where ρ1 and ρ2 are given in (23) and (24), respectively,
and δ = d̄ − d + 1. Furthermore, it is necessary that 0 ≤
c ≤ 1 and this is possible only if in (19) 0 ≤ r1 ≤ ρ− 1

2
1 ,

0 ≤ r2 ≤ ρ− 1
2

2 , and ρ1r2
1 +ρ2r2

2 ≤ 1. □

The following lemma establishes the relationship be-
tween the sets Cx and Bϕ in terms of the confinement of
trajectories in LV1 and local asymptotic stability.

Lemma 3: If V (φd̄,k,αk) given by (16) is a L-K
function, then for all x0 ∈ Cx = LV1(1 − ρ1∥ϕd̄,0∥2

d̄ −
ρ2∥∆ϕd̄,0∥2

d̄) ⊆ V0 and [ϕd̄,0] j ∈ Bϕ , j ∈ I[1, d̄], it is en-
sured that xk ∈ LV1 , for all k ≥ 0 and lim

k→∞
[φd̄,k] j = 0,

j ∈ I[1, d̄ +1].

Proof: If (16) is a L-K function then it verifies
∆V (φd̄,k,αk) < 0, αk ∈ Ξ, k > 0. By using Lemma 2, we
have

V (φd̄,k,αk)<V (φd̄,0,α0)

≤xT
0 Q−1(α0)x0

+ρ1∥ϕd̄,0∥2
d̄ +ρ2∥∆ϕd̄,0∥2

d̄ . (28)

Therefore, we can check that if xT
0 Q−1(α0)x0 ≤ 1 −

ρ1∥ϕd̄,0∥2
d̄ −ρ2∥∆ϕd̄,0∥2

d̄ , then xT
k Q−1(αk)xk ≤ 1. Because

(16) is a L-K function, then lim
k→∞

[φd̄,k] j = 0, j ∈ I[1, d̄+1].

and thus the local asymptotic stability of the closed-loop
system is ensured. □

4. MAIN RESULTS

In this section, we present our main contributions which
are summarized in the following theorem.

Theorem 1: Suppose there exist symmetric positive
definite matrices Qi ∈ Rn×n, S̃i ∈ Rn×n, i ∈ I[1,N], R̃ ∈
Rn×n, Z̃1 ∈ Rn×n, Z̃2 ∈ Rn×n, and matrices H ∈ Rn×n,
U ∈ Rn×n, X̃ j ∈ Rn×n, for j ∈ I[1,4], Yi ∈ Rm×n, and
Ȳi ∈ Rm×n satisfying ∀i, p,q ∈ I[1,N], j ∈ I[i,N], and
∀ℓ ∈ I[1,κ] the LMIs:

Πi jpq < 0, (29)
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and [
−Qi QiLT

(ℓ)

⋆ −η2
(ℓ)

]
≤ 0, (30)

with

Πi jpq

=



−H −HT 0.5(AiU +BiYj +A jU +B jYi)

⋆
0.5(Qi +Q j)−UT −U
+0.5δ (S̃i + S̃ j)+ R̃
+Z̃1 +(d̄ −1)2Z̃2

⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆

0 0
−(d̄ −1)2Z̃2 X̃1

d̄(d̄ −2)Z̃2 − Z̃1 X̃2

⋆ R̃− S̃p + X̃3 + X̃T
3

⋆ ⋆
⋆ ⋆
⋆ ⋆

0.5(AdiU +BiȲj

+Ad jU +B jȲi)
0.5(Adi +Ad j)U HT

−X̃1 −X̃1 0
Z̃2 − X̃2 −X̃2 0

−R̃− X̃3 + X̃T
4 −X̃3 0

−Z̃2 − X̃4 − X̃T
4 −X̃4 0

⋆ −R̃ 0
⋆ ⋆ −Qq


.

Then, the controller matrices (9) obtained with

Ki = YiU−1 and K̄i = ȲiU−1 (31)

ensure that the origin of the closed-loop control system
consisting of (1), (8), and (9) subject to constraints (6)
is asymptotically stable for every initial conditions φd̄,0,
[φd̄,0] j ∈ ϒφ , j ∈ I[1, d̄ +1], with the sets Cx and Bϕ (see
(18) and (19)) with parameters ρ and r computed accord-
ing to Lemma 2, and also that the respective trajectories
remain in LV1 ⊆ V0. Besides, (16) is a fuzzy L-K func-
tion with the matrices Qi, Si =U−T S̃iU−1, i ∈ I[1,N], and
R =U−T R̃U−1, that are obtained in (29)–(30) and appear
in (16).

Proof: Firstly, we show the asymptotic stability of the
closed-loop system consisting of (1), (8), (9) with (31)
whenever αk ∈ Ξ. Secondly, we demonstrate the inclu-
sion of the contractive set LV1 in V0. This is used to ensure
the closed-loop system trajectories remain in V0 whenever
they evolve from ϒφ .

Considering the positivity of Z̃1 and Z̃2, if (29) is sat-
isfied, then matrices Qi ∈ Rn×n, S̃i ∈ Rn×n, i ∈ I[1,N],

and R̃ ∈ Rn×n are symmetric definite positive and, there-
fore, V (φd̄,k,αk) is positive verifying (16). Replace Yi and
Ȳi by KiU and K̄iU in (29), respectively, multiply the re-
sulting inequality successively by αk(i), αk( j), αk−dk(p), and
αk+1(q), and sum up on i ∈ I[1,N], j ∈ I[i,N], q ∈ I[1,N],
p ∈ I[1,N]. The resulting inequality can be over bounded
by replacing into block (2,2) the term Q(αk)−UT −U
by −UT Q(αk)

−1U [29] which allows to apply the Schur’s
complement to get Θ̃k < 0, with

Θ̃k

=



HT Q−1(α+
k )H

−H −HT Â(αk)U

⋆
−UT Q−1(αk)U +δ S̃(αk)
+R̃+ Z̃1 +(d̄ −1)2Z̃2

⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆

0 0
−(d̄ −1)2Z̃2 X̃1

d̄(d̄ −2)Z̃2 − Z̃1 X̃2

⋆ R̃− S̃(α−
k )+ X̃3 + X̃T

3
⋆ ⋆
⋆ ⋆

Âd(αk)U Ad(αk)U
−X̃1 −X̃1

Z̃2 − X̃2 −X̃2

−R̃− X̃3 + X̃T
4 −X̃3

−Z̃2 − X̃4 − X̃T
4 −X̃4

⋆ −R̃

 ,

where the shorthands α−
k ≡ αk−dk and α+

k ≡ αk+1 were
used, and the matrices Â(αk) and Âd(αk) are given in (13)
and (14), respectively.

Then, by taking into account the regularity of H and
U , and Xi = U−T X̃iU−1, for i ∈ I[1,4], and F = H−T , let
us consider the congruence transformation Θk = T T Θ̃kT
with T = diag{H−1,U−1,U−1,U−1,U−1,U−1}. To ver-
ify ∆V (φd̄,k,αk) < 0, note that we can assume ξk =[
xT

k+1 xT
k xT

k−1 xT
k−dk

xT
k−d̄ ωT

dk

]T
and take Ωk =

ξ T
k Θkξk which leads to

Ωk =xT
k+1Q−1(αk+1)xk+1 + xT

k

[
−Q−1(αk)

+δS(αk)+R+Z1 +(d̄ −1)2Z2
]

xk

+2xT
k [−(d̄ −1)2Z2]xk−1

+ xT
k−1[d̄(d̄ −2)Z2 −Z1]xk−1 +2xT

k−1Z2xk−d̄

+ xT
k−dk

[−S(αk−dk)+R]xk−dk +2xT
k−dk

[−R]xk−d̄

+ xk−d̄ [−Z2]xk−d̄ +ωT
dk[−R]ωdk. (32)

By considering ωdk = xk−dk −xk−d̄ , the feasibility of LMIs
(29) ensures that ∆V (φd̄,k,αk)≤ Ωk < 0 is verified when-
ever αk ∈ Ξ, with ∆V (φd̄,k,αk) computed as done in
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[30]. Then, we can also conclude about the negativity of
V (φd̄,k,αk), ∀ αk ∈ Ξ.

Then, we can conclude that the feasibility of (29) pro-
vides the negativity of ∆V (φd̄,k,αk). However, via the
Lyapunov-Krasovskii’s theorem [1], only the local the
asymptotic stability of the closed-loop system (10) can be
ensured with the control gains given by (9) and (31) by
guaranteeing that the state trajectories evolve only inside
the set V0, where αk ∈ Ξ. Thus, consider that besides in-
equalities (29), the LMIs in (30) are also verified. Then,
we multiply (30) by αk(i) and sum up on i ∈ I[1,N], get-
ting:

Λ =

[
−Q(αk) Q(αk)LT

(ℓ)

⋆ −η2
(ℓ)

]
≤ 0. (33)

By using the congruence transformation FT ΛF = Λ̃ with
F = diag{Q−1(αk),1}, we get

Λ̃ =

[
−Q−1(αk) LT

(ℓ)

⋆ −η2
(ℓ)

]
≤ 0, (34)

which is equivalent, by Schur’s complement, to
LT
(ℓ)η

−2
(ℓ) L(ℓ) − Q−1(αk) ≤ 0. In this inequality, we can

pre- and post-multiply by xT
k and xk, getting

xT
k LT

(ℓ)η
−2
(ℓ) L(ℓ)xk ≤ 1,∀xk ∈ LV1 = xT

k Q−1(αk)xk ≤ 1.
(35)

Thus, we prove that LV1 ⊆ V0. From lemmas 1 and 3, one
can conclude that any trajectory starting in ϒφ remains in
LV1 and, therefore, the local stability of the closed-loop
control system consisting of (1), (8), and (9) with the gains
given by (31) is ensured. □

By means of Theorem 1, we provided a solution to
Problem 1, allowing the implementation of the control
law (8) which is simpler than that used, for instance, in
[3–6, 21–23]. Furthermore, by means of the feasibility of
the LMIs in Theorem 1 we can compute the set ϒφ that
characterizes initial conditions from which the closed loop
trajectories are asymptotically stable and do not leave the
region of validity,V0.

The estimated region of attraction ϒφ of the closed-loop
nonlinear system consisting of (1), (8), and (9) – see Def-
inition 2 and Theorem 1 – can be maximized by a convex
optimization algorithm. For this purpose, we consider the
maximization of an ellipsoidal set included in the level set
LV1 as follows,

E (W ) =
{

x ∈ Rn;xTWx ≤ 1
}
⊆ LV1 . (36)

This condition is equivalent to:[
W I
I Qi

]
≥ 0, i ∈ I[1,N]. (37)

Thus, the following convex optimization procedure is pro-
posed aiming to maximize the set Cx and, in consequence,
ϒφ (see [23]):

PW

{
min trace(W )

subject to (29), (30), and (37).
(38)

Remark 2: A quadratic stabilization condition may be
obtained from Theorem 1 by imposing Qi = Q and S̃i = S̃,
for i ∈ I[1,N]. In this case, functions (16) are not depen-
dent on the membership function αk, and thus they are not
a fuzzy function anymore. This leads to the well known
quadratic stability approach [31] which can yield conser-
vative results.

Remark 3: Whenever functions f (·) and fd(·) in (1)
depend on the delayed state, xk−dk , the membership func-
tions also depend on dk which is supposed to be unknown.
In this case, by imposing Yi = Y and Ȳi = Ȳ , i ∈ I[1,N],
in Theorem 1, constant gain matrices K and K̄ can be ob-
tained. This is equivalent to removing the weights αk from
the control law (8) and usually leads to more conservative
results.

Remark 4: The conditions in Theorem 1 can recover
the case where the delay is time-invariant and uncertain.
To this end, one can impose d̄ = d which results in δ = 1.

The proposed procedure can be summarized as follows:
Algorithm 1: (Fuzzy control design)

1) Determine the region of operation of the nonlinear sys-
tem (1) and obtain a T-S fuzzy model as in (2)–(5).

2) Write constraints by using (6) to describe the region of
validity, V0.

3) Solve the convex optimization procedure (38) to com-
pute the fuzzy control gains for the control law (8)–(9)
and the estimate of the region of attraction ϒφ (17)–
(19).

4) If step 3) fails, then return to the step 1) and, if pos-
sible, determine a smaller region of operation and the
respective T-S fuzzy model.

5. NUMERICAL EXAMPLES

We present two examples to illustrate our approach and
also to compare it with other approaches in the literature.
The first example is motivated by the model of a magnetic
suspension and the second one has been randomly gener-
ated.

5.1. Example 1
Consider the model of a magnetic suspension system

investigated in [33]:

ẋ1(t) = x2(t),

ẋ2(t) =
gµ(µx1(t)+2µy0 +2)x1(t)

(1+µ(x1(t)+ y0))2 x1(t)
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− Km

m
x2(t)+

λ µ
2m(1+µ(x1(t)+ y0))2 u(t),

(39)

where x1(t) and x2(t) are the ball deviation around its de-
sired position and vertical velocity, respectively, and y0 =
0.05m is the desired position. From [33], the physical pa-
rameters are: m = 0.068kg the mass of the suspended ball,
g = 9.8ms−2 the gravity acceleration, Km = 0.001Nsm−1

the viscous friction coefficient, λ = 0.46H the inductance,
and µ = 2m−1 the coefficient of inductance variation. The
following discretized version of model (39) can be ob-
tained through Euler discretization with sampling period
T = 0.01s,

x1,k+1 = x1,k + cT x2,k +(1− c)T x2,k−dk ,

x2,k+1 =
T gµ(µx1,k +2µy0 +2)x1,k

(1+µ(x1,k + y0))2 x1,k

+ c
(

1− T Km

m

)
x2,k

+(1− c)
(

1− T Km

m

)
x2,k−dk

+
T λ µ

2m(1+µ(x1,k + y0))2 uk, (40)

where a delay in state x2 is included to match, for exam-
ple, practical sensor dynamics in the measured velocity,
the time varying delay is assumed to be bounded by d = 1
and d̄ = 4, i.e., dk ∈ I[1,4]. The parameter c was arbitrar-
ily chosen as c = 0.7. The physical structure of the assem-
bling imposes that 0 ≤ x̄1,k ≤ 0.1, where x̄1,k = x1,k + y0

and, thus, we have −0.05 ≤ x1,k ≤ 0.05 in (40). The re-
gion of validity V0 for this system can be modeled by (6),
with L =

[
1 0

]
and η = 0.05 as in (7). Considering

such a region, an exact T-S model for (40) can be ob-
tained with i ∈ I[1,4], p = 1,2, B1 = B2 =

[
0 0.6765

]T ,

B3 = B4 =
[
0 0.0676

]T , A1 = A3 =

[
1 0.007

0.0157 0.6999

]
,

A2 = A4 =

[
1 0.007

−0.02068 0.6999

]
, Ad1 = Ad2 = Ad3 =

Ad4 =

[
0 0.003
0 0.3

]
. The fuzzy sets Mip are com-

puted as M11(z1(x1,k)) = M31(z1(x1,k)) =
z1(x1,k)−a2

a1−a2
,

M21(z1(x1,k)) = M41(z1(x1,k)) =
a1−z1(x1,k)

a1−a2
, M12(z2(x1,k)) =

M22(z2(x1,k)) =
z2(x1,k)−b2

b1−b2
, M32(z2(x1,k)) = M42(z2(x1,k)) =

b1−z2(x1,k)
b1−b2

, where z1(x1,k) =
T gµ(µx1,k+2µy0+2)x1,k

(1+µ(x1,k+y0))2 , a1 =

max(z1(x1,k)), a2 =min(z1(x1,k)), z2(x1,k)=
T λ µ

2m(1+µ(x1,k+y0))2 ,
b1 = max(z2(x1,k)), and b2 = min(z2(x1,k)). From these
fuzzy sets, it is possible to compute the membership func-
tion αk : αki = Mi1(z1(x1,k))Mi2(z2(x1,k)), i ∈ I[1,4].

By using the optimization procedure (38), we obtain

W =

[
402.7012 2.7203

2.7203 2.7416

]
,

Fig. 2. Estimate sets Cx as a function of ∥ϕ4,0∥4.

and the following gains for the control law (8)–(9):

K1=−
[
23.5892 10.1660

]
, K̄1=

[
0.0095 −0.0949

]
,

K2=−
[
22.9383 10.1551

]
, K̄2=

[
0.0100 −0.0917

]
,

K3=−
[
33.7967 14.6231

]
, K̄3=

[
0.0136 −0.1308

]
,

K4=−
[
33.1612 14.6206

]
, K̄4=

[
0.0137 −0.1336

]
.

(41)

Furthermore, we obtain ρ1 = 5.4959 and ρ2 = 0.8133 by
using (23) and (24), respectively. From these values and
considering the set V0 given by (7), we can determine
the value of r1 and r2 through Lemma 2 which yields
r1 ≤ ρ−1/2

1 = 0.4266 and r2 ≤ ρ−1/2
2 = 1.1089. There-

fore, we can choose the value of r1 and r2 verifying
0 ≤ ∥ϕd̄,0∥4 ≤ r1 ≤ 0.4266, 0 ≤ ∥∆ϕd̄,0∥4 ≤ r2 ≤ 1.1089,
and ϕ1r2

1 +ρ2r2
2 ≤ 1, and, in consequence, we have the sets

Bϕ given as in (19). It is important to say that the range
obtained for ∥ϕd̄,0∥4 and ∥∆ϕd̄,0∥4 allows intersections be-
tween regions V0 and Bϕ such that the admissible velocity
can be |x2,k| ≥ 0.05m/s. Note that the obtained result re-
duces the conservatism in the estimation of the region of
stability, because a larger region is obtained. In the se-
quel we perform two kinds of analysis: one concerning
the area of the region Cx, the set of the current initial con-
ditions, and the other regarding the state space trajectories
of the fuzzy closed-loop system.

5.1.1 Analysis of Cx

From the sets Bϕ computed in the previous paragraph,
we can calculate the set Cx, given in (18) and (22). This
allows us to investigate the set Cx as a function of ∥ϕ4,0∥4

and ∥∆ϕ4,0∥4. The resulting level sets and their projec-
tions in the plane x1k × x2k are shown in Fig. 2, where it
is considered r2 = 0 yielding ∥∆ϕ4,0∥4 = 0. Note that, as
expected, the area of Cx decreases whenever ∥ϕ4,0∥4 in-
creases. If all the initial past states of the nonlinear sys-
tem (40) are null, then we have r1 = 0 yielding ∥ϕ4,0∥4 = 0
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and c(ϕ4,0) = 1. In this case, the set Cx is the same as LV1 .
We also present in Fig. 2 two sets of closed-loop trajecto-
ries: one with trajectories starting from × marks, where
the current state is always given by x0k =

[
0.045 0.12

]T ,
and the other with trajectories starting from ◦ marks where
the current state x0k is always taken in the border of the re-
spective Cx set. In both cases the the same sequence of
delayed states given by ϕ4,0 where [ϕ4,0] j = r1

[
0 1

]T ,
j ∈ I[1,4] is used; therefore, due the structure of the el-
ements of ϕ4,0, we have ∥ϕ4,0∥ = r1. The trajectories are
simulated for different values of 0 ≤ r1 ≤ 0.42. Consid-
ering the trajectories marked with ×, from bottom to top
in Fig. 2, note that: in the first three x0k belonging to Cx,
the trajectories are asymptotically stable as ensured by our
approach. The fourth to sixth trajectories have x0k outside
of Cx but these trajectories still converge to the origin. The
last three trajectories, from the seventh to the nine-th, have
x0k outside of set Cx and they go out of the region of va-
lidity. These simulations illustrate the relevance of the set
of initial conditions and the influence of the delayed states
on the convergence to the origin in the local stability. As a
complement, we present the other set of trajectories start-
ing at ◦ marks in Fig. 2: in all cases the x0k is taken at
the border of the respective set Cx with the same set of
delayed states that has been used for the respective tra-
jectories marked with ×. In these cases, the sequence of
initial conditions, given by φ4,0 matches the set ϒφ and the
asymptotic stability of the trajectories without leaving the
region of validity is ensured by Theorem 1.

We can estimate the size of set LV1 , given as in (18)
and (22), through the size of E (W ). Such estimated
can be computed by noting that the area of this ellip-
soidal set, named sE , is proportional to (det(W ))−1/2 [32].
Thus, we can compare the estimates of LV1 obtained from
this work with the ones obtained from the approaches in
[22, 23]. The computed values for each estimate is nor-
malized by the value achieved in the present approach,
i.e., s̄E = 0.0302 that corresponds to the maximum area
of Cx reached with ∥ϕ4,0∥4 = 0. The normalized estimates
are shown in Table 1.

The conditions presented in this paper are less restric-
tive as they do not need dk as required in [22, 23]. As
shown in Table 1, our approach yields the estimate of the
size for Cx without requiring the knowledge of dk, being
23.75% bigger than the region computed by [22, Theorem
1] and 2% smaller than the size of the region achieved
by [23, Theorem 5] which requires the on line knowledge
of dk. This demonstrates that the choice of control law
(8) does not introduce conservatism meanwhile it requires
less prior knowledge. The main reason for our approach
achieves a bigger estimation of the region of attraction is
the candidate L-K function used and the slack variables in
the present formulation, that relax the numerical optimiza-
tion problems.

Table 1. Normalized areas of the regions of stability.

Opt. Procedures Control law Area
(38) uk = K(αk)xk + K̄(αk)xk−d̄ 1

[23, Theorem 5] uk = K(αk)xk +Kd(αk)xk−dk 1.02
[22, Theorem 1] uk = K(αk)xk +Kd(αk)xk−dk 0.7476

5.1.2 Fuzzy closed-loop trajectories

We have used the results in [24], [27], and [26] to com-
pare the behavior of the fuzzy closed-loop trajectories for
different initial conditions. It should be noted that differ-
ently from our approach, all these approaches do not con-
sider the region of validity, their control laws only rely on
the current state, i. e., uk = K(αk)xk, and their design de-
pend on a scalar design parameter ε which we adopt here
ε = 10. For the approaches in [24] and [27], we found
feasible solutions while for the approach in [26], no solu-
tion has been found even with other values of ε taken on
a large interval of positive real numbers. We have tested
two cases: one with null initial past states and the other
with past states different from zero.

In the first case, we use the control law (8)–(9) with
gains shown in (41) and assume ∥ϕ4,0∥4 = 0, i.e., all the
delayed states are equal to zero. Thus, we have the sets
Cx = LV1 and Bϕ = {0}. In the Fig. 3, it is shown the
set Cx = LV1 (dashed line) and the stable trajectories for
seven initial conditions φ4,0 = {ϕ4,0,x0} ∈ Eφ , ϕ4,0 ∈ Eϕ ,
x0 ∈ Rn, [ϕ4,0] j =

[
0 0

]T
, j ∈ I[1,4], indicated by ×.

In these simulations, we consider that dk =
round(2.5− 1.5cos(0.2k)), |x1,k| ≤ 0.05, and if |x1,k| =
0.05, then x2,k = 0 due to physical constraints in the
system. Note that all these stable trajectories evolve in-
side the region of stability, Cx. Furthermore, there is a
trajectory, that does not go to the origin, marked by ◦.
This trajectory starts outside the region of stability and it

Fig. 3. V0, Cx, and trajectories for case 1.
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Fig. 4. LV1 , Cx, and a trajectory for case 2.

goes to an equilibrium point outside the region of valid-
ity. Now, we consider the control law obtained by using
[24, Theorem 2] and [27, Theorem 4]. We simulated
the nonlinear closed-loop system with two initial condi-
tions φ4,0 = {ϕ4,0,x0} ∈ Eφ , ϕ4,0 ∈ Eϕ , and x0 ∈ Rn, with
[ϕ4,0] j =

[
0 0

]T
, j ∈ I[1,4], and xi

0 =
[
x1,0 x2,0

]T , for

i ∈ I[1,2], where x1
0 =

[
0.04679 0.1662

]T marked by

∗ for [24] and x1
0 =

[
−0.04769 −0.1331

]T marked by
□ for [27]. The two trajectories go to equilibrium points
outside the region of validity as one can see in Fig. 3.
Note that these initial conditions are inside the region of
stability estimated by our work, but the trajectories are not
asymptotically stable to the origin for those approaches
in [24] and [27]. Note that, because the recent conditions
proposed in [21] handle only constant and known delay,
they are are not applicable to the system considered in this
example.

For the second case, we consider ∥ϕ4,0∥4 = 0.2, there-
fore Cx ⊂ LV1 , Bϕ is defined as (19) with r1 = 0.2 and
r2 = 0. In this situation, we choose φ4,0 = {ϕ4,0,x0} ∈
Eφ with [ϕ4,0] j =

[
0 0.2

]T
, j ∈ I[1,4] and x0 =[

0.03893 −0.01499
]T . In Fig. 4, it is shown that the

resulting trajectory evolves outside Cx, however always
inside LV1 .

5.2. Example 2

Consider the T-S fuzzy model (3)–(5) randomly

generated with A1 =

[
−1.536 0.2844
−1.28 0.7396

]
, A2 =[

1.536 0.2844
−1.28 0.7396

]
, A3 =

[
−1.536 0.16
−1.28 0.416

]
, A4 =[

1.536 0.16
−1.28 0.416

]
, Ad1 = Ad3 =

[
0.0672 −0.1344

0 −0.0672

]
,

Ad2 = Ad4 =

[
−0.0672 0.1344

0 0.0672

]
, Bi =

[
1

0.8

]
, dk ∈ [1, d̄],

and the operational region for this system has been fixed
by (6) with L = I and η =

[
0.8 4

]T . The fuzzy sets
are given by M11(x1,k) = M31(x1,k) = 1

2 (1 + 1.25x1,k),
M21(x1,k) = M41(x1,k) = 1

2 (1 − 1.25x1,k). Besides, if
|x2,k| < 3 then M12(x2,k) = M22(x2,k) = 0 and M32(x2,k) =
M42(x2,k) = 1, else M12(x2,k) = M22(x2,k) = (x2

2,k −9)/7,
M32(x2,k) = M42(x2,k) = (16− x2

2,k)/7. The membership
function is αk : αki = Mi1(x1,k)Mi2(x2,k), i ∈ I[1,4]. We
have used the conditions proposed in Theorem 1 and
in [27], [26], [24], and [25] to search for the maximum
admissible delay d̄ such that the closed loop system is
asymptotically stable. The condition in [27] failed to
design a controller even for d̄ = 1. From [26, Theorem
4] and [24, Theorem 2], we found feasible solutions for
d̄ ∈ I[1,2] and d̄ ∈ I[1,3], respectively. On the other
hand, by using Theorem 1, we found feasible solution for
a wider interval of delay, d̄ ∈ I[1,4], which indicates that
our approach is less conservative than those in [24,26,27].
Another condition presented in [25, Theorem 4] can be
used to compute a non PDC control law that feedbacks
the states with minimal delay and with maximal delay. By
using such a condition one can find feasible solution for
the same interval found by our proposed method. How-
ever the PDC control law obtained through the Theorem 1
is simpler to implement than that in [25]. It is worth to say
that among all these works, only ours takes into account
the region of validity of the T-S fuzzy model.

5.2.1 Time-invariant delay
As in Example 1, the conditions proposed in [21] are

not applicable in this case because of the time-varying
nature of the delay. Thus, to consider the approach pre-
sented in [21], that requires time-invariant and known de-
lay, assume the specific case of known time-invariant de-
lay equal d = dk = 4, ∀k ≥ 0. It is possible to verify
that the synthesis conditions in [21, Theorem 2] lead to a
smaller estimate of the region of attraction than that com-
puted by our approach with δ = 1. This shows that our
approach is more general because in our case the delay
is unknown and uncertain (please see Remark 4). This is
illustrated in Fig. 5 where the estimates of the region of
attraction computed by our approach (set Cx, dashed line)
and that by [21, Theorem 2] (set Ω(1), dotted line) are
shown, assuming that only x0 can differs from zero, i.e.
all the delayed states are null. It is clear that our approach
yields a bigger region (about 9.5 times bigger than that
achieved by [21, Theorem 2]) illustrating the relevance
and the efficacy of our approach.

6. CONCLUSIONS

In this paper, we developed convex local delay-
dependent conditions for synthesis of fuzzy stabilizing
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Fig. 5. Estimates of the region of attraction for null de-
layed states (Bϕ = {0}) computed by our approach
with δ = 1 (set Cx, dashed line) and, with known
time-invariant delay by [21, Theorem 2] (set Ω(1),
dotted line).

feedback controllers. The conditions were based on a
fuzzy Lyapunov-Krasovskii function candidate and they
were formulated in terms of convex optimization proce-
dures, which can be efficiently solved in a polynomial
time. The upper bound d̄ of the time varying delay is
used in the state feedback control law instead of more
restrictive on line delay value. We provided an estimate
of the region of attraction, such that the trajectories ema-
nating from this region are guaranteed to asymptotically
converge to the origin. The estimate of the region of at-
traction was characterized through two sets, where the first
one describes a region of allowed values for the current
states and the other one defines the region for the elements
of the delayed initial conditions. From the proposed con-
vex optimization procedures, we can compute controller
gains maximizing the estimate of the region of attraction.
Finally, we showed two examples to demonstrate the effi-
ciency of the developed approach and to compare it with
other approaches in the literature.
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