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Finite-time Sliding Mode Control of Markovian Jump Systems Subject to
Actuator Faults
Zhiru Cao, Yugang Niu*, and Haijuan Zhao

Abstract: This paper addresses the problem of finite-time boundedness (FTB) for a class of Markovian jump
systems (MJSs) via sliding mode control (SMC) technique, in which there may happen actuator faults in all of
control channels and mismatched external disturbance. By means of the available boundary information of actuator
faults, a suitable sliding mode controller is designed such that state trajectories are driven to sliding surface before
a specified finite (possibly short) time interval. Furthermore, a partitioning strategy is introduced to derive the
sufficient conditions for ensuring the FTB of the closed-loop systems over the whole specified finite-time interval
including the reaching phase and the sliding motion phase. Finally, a practical example are provided from an F-404
aircraft engine system to illustrate the proposed method.

Keywords: Actuator faults, finite-time boundedness(FTB), Markovian jump systems(MJSs), sliding mode con-
trol(SMC).

1. INTRODUCTION

The actuator faults often occur in actual physical sys-
tems, which can cause performance deterioration or even
instability of the systems. Thus, it is necessary to develop
an effective control technique to maintain a receivable sta-
bility for the closed-loop systems against actuator failures,
see [1–7] and the references therein.

On the other hand, MJSs have received considerable
attention in the past decades, since MJSs can effec-
tively model many practice systems experiencing abrupt
changes in their structures, e.g., the random failures of
the components, sudden disturbances and variations of the
environment [8, 9]. More recently, the SMC technique
has witnessed increasing applications in MJSs [10–15].
Among them, Chen, et al in [11] proposed the on-line
estimation mechanism on the loss effectiveness of actua-
tors, by which an adaptive sliding mode controller was de-
signed to attenuate the effect of the actuator degradation.
The stabilization problem for MJSs subject to actuator and
sensor faults was also addressed in [15], and a fault toler-
ant control strategy was designed by means of a sliding
mode observer to estimate the disturbances, actuator and
sensor faults simultaneously. It is worthy of noting that the
aforementioned works were based on Lyapunov stability,
that is, the behavior of the controlled system was consid-
ered within a sufficiently long (in principle infinite) time
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interval. However, in a lot of industrial process, FTB is
more practical for analyzing the transient behavior within
a finite (possibly short) interval.

A system is said to be finite-time stable (FTS) if, given
a bound on the initial condition, its state (weighted) norm
does not exceed a certain threshold during the specified
time interval [16], which was further extended to the con-
cept of FTB in [17] when the initial condition and external
disturbances were concerned. Recently, some interesting
results were obtained on FTS/FTB for MJSs, in [18, 19],
etc. The problem of FTB based on SMC technique was in-
vestigated in [20] and a partitioning strategy was proposed
to analyze the FTB over the reaching phase and the sliding
motion phase. However, to the authors’ best knowledge,
few results have been obtained on the FTB of Markovian
jump systems via SMC technique, especially, the case sub-
ject to actuator faults. Moreover, the existing works in-
volving in FTB cannot be extended to the above case, due
to the specific structures of MJSs and SMC. This moti-
vates our present study. Apparently, when analyzing FTB
of MJSs subject to actuator faults via SMC approaches,
the following questions had to be answered, which just
make the present research be challenging:

Q-1: For a given finite time T , how to guarantee that the
state trajectories can arrive at the designed sliding surface
within [0,T ∗] with T ∗ ≤ T and maintain in it within [T ∗,T ]
despite the effect of actuator faults?
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Q-2: Under the effect of the jumping among modes,
how to guarantee FTB over the whole finite-time interval
[0,T ]?

The present work will answer the above questions. The
main contributions of this work are highlighted as follows:
1) The problem of FTB for a class of MJSs with actuator
faults and external disturbance via SMC technique is in-
vestigated. 2) A scalar selection criterion-dependent SMC
law is developed to guarantee the reachability of sliding
surface before the specified finite-time interval. 3) A par-
titioning strategy is introduced to obtain the sufficient con-
ditions for the FTB of the closed-loop systems over the
whole finite-time interval.

Notation: The notation M > (<)0 is used to de-
note a symmetric positive-definite(negative-definite) ma-
trix. λmax(·) and λmin(·) denote the maximum and min-
imum eigenvalues of the corresponding matrix. | · | and
∥ · ∥ refer to the 1-norm and Euclidean vector norm, re-
spectively. In symmetric block matrices, the symbol “∗”
is used as an ellipsis for terms induced for symmetry. The
“wrt” is an abbreviation of “with respect to”. (Ω,F ,P)
is a probability space with Ω the sample space, and F the
σ -algebra of subsets of the sample space, and P is the
probability measure. E{·} denotes the expectation opera-
tor wrt probability measure P . ⌊·⌋ refers to the floor of a
decimal. The symbol He(X) is used to represent X +XT .
Throughout this paper, if not explicitly stated, matrices are
assumed to have compatible to have compatible dimen-
sions.

2. PROBLEM FORMULATION

Consider the following MJSs:

ẋ(t) =(A(rt)+∆A(rt))x(t)+B(rt)(u(t)+ f (x(t),rt))

+D(rt)w(t), (1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the control in-
put; w(t) ∈ Rr is the external disturbance; f (x(t),rt) ∈
Rp is an unknown nonlinear function. {rt , t ≥ 0} is
a right-continuous Markovian chain on the probability
space (Ω,F ,P) taking values in a finite state space S =
{1,2, ...,N} with generator Π = (πi j)N×N given by:

Pr{rt+∆ = j|rt = i}=

{
πi j∆+o(∆), i ̸= j,
1+πi j∆+o(∆), i = j,

where ∆ > 0 and lim∆→0
o(∆)

∆ = 0, πi j is the transi-
tion rate from i to j and satisfies πi j > 0, i ̸= j, and
πii = −∑i̸= j πi j < 0 for ∀i, j ∈ S. A(rt) ∈ Rn×n, B(rt) ∈
Rn×m and D(rt) ∈ Rn×r are system matrices, for each
i ∈ S, A(rt) = Ai, B(rt) = Bi, D(rt) = Di, ∆A(rt) = Ai(t),
f (x(t),rt) = f (x(t), i).

Thus, system (1) can be rewritten as

ẋ(t) =(Ai +∆Ai)x(t)+Bi(u(t)+ f (x(t), i))+Diw(t).
(2)

Here, the parameter uncertainty ∆Ai(t) is norm-
bounded, i.e., ∆Ai(t) = MiFi(t)Ni, where Mi and Ni are
known real constant matrices, and Fi(t) is an unknown
matrix function satisfying Fi(t)T Fi(t)≤ I.

Assumption 1: The nonlinear function f (x(t), i) satis-
fies the following condition:

∥ f (x(t), i)∥ ≤ εi∥x(t)∥, (3)

where εi > 0 is a known scalar.
Assumption 2: The disturbance w(t) is assumed to be

bounded peak signal over an assigned finite-time interval
[t1, t2], i.e.,

W[t1,t2],δ ≜
{

wT (t)w(t)≤ δ 2, ∀t ∈ [t1, t2]
}
, (4)

where δ > 0 is a known scalar.
In this work, it is assumed that the actuator faults may

happen according to the following model:

uF(t) = (I −ρ)u(t), (5)

with ρ = diag{ρ1, ...,ρm} satisfying:

0 ≤ ρ
k
≤ ρk ≤ ρ̄k < 1, k = 1,2, ...,m, (6)

where the unknown parameter ρk(k = 1, ...,m) denotes the
loss of effectiveness of the kth actuator. Moreover, it is
assumed ρ = diag{ρ

1
, ...,ρ

m
}, ρ̄ = diag{ρ̄1, ..., ρ̄m}.

Thus, the system (2) subject to actuator faults (5) is de-
scribed by:

ẋ(t) =(Ai +∆Ai)x(t)+Bi(I −ρ)u(t)
+Bi f (x(t), i)+Diw(t). (7)

Remark 1: The actuator model in (5) is normal as ρ
k
=

ρ̄k = 0 and partly faulted as 0 < ρ
k
≤ ρ̄k < 1. Hence, the

case in this work is more general.

The following definitions are generalized from [21],
[22], and [23].

Definition 1: Given a time interval [t1, t2], two positive
scalars c1,c2, with c1 < c2, and a weighted matrix R > 0.
Systems (1) with u(t) = 0 is said to be FTB with respect
to (c1,c2, [t1, t2],R,W[t1,t2],δ ), if, ∀t ∈ [t1, t2],

E{xT (t1)Rx(t2)} ≤ c1 ⇒ E{xT (t)Rx(t)}< c2.

Remark 2: In Definition 1, the scalars c1,c2 and matrix
R are known. In practice, the scalar c2 and the matrix R are
determined directly according to the transient constraints
of physical systems, and the scalar c1 is chosen according
to the initial conditions (see [20–23] and the given simu-
lation example later).

Definition 2 (Weak Infinitesimal Operator): Let
C2(Rn ×S;R+) denote the family of all nonnegative func-
tions V (x(t), i) on Rn × S which are continuously twice
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differentiable in x(t). For V ∈ C2(Rn ×S;R+) and rt = i,
define an infinitesimal operator LV (x(t), i) by

LV (x(t), i) = lim
∆→0+

1
∆
[E{V (x(t+∆),rt+∆)}−V(x(t), i)].

The objective of this work is to design a sliding mode
controller such that the FTB of the MJSs (7) can be at-
tained despite actuator faults and external disturbance.

3. SLIDING SURFACE AND SMC LAW

In this section, a set of mode-dependent sliding func-
tions will be firstly constructed as follows:

s(x(t), i) = Gix(t), i ∈ S, (8)

where Gi = BT
i Xi and the matrix Xi is chosen such that

BT
i XiBi is nonsingular for each i ∈ S, which can be easily

ensured by choosing Xi > 0 due to the full column of Bi.
For the given finite-time interval [0,T ], a suitable slid-

ing mode controller should be designed to drive the states
trajectories onto the specified sliding surface s(x(t), i) = 0
during [0,T ∗] with T ∗ ≤ T and maintain there for the rest
time interval [T ∗,T ]. To this end, we design the following
SMC law:

u(t) =−Kix(t)− γi(t)sgn(s(x(t), i)), (9)

with

γi(t) = ρi +µiδ , (10)

µi =
∥(BT

i XiBi)
−1BT

i XiDi∥
1− ρ̄max

, (11)

and ρi > 0 a adjustable parameter to be further described
in Theorem 1, and ρ̄max = max{ρ̄1, ..., ρ̄m}.

4. THE REACHABILITY WITH T ∗ ≤ T

In this section, it will be proven that the SMC law (9)-
(11) can ensure the reachability of the specified sliding
surfaces s(x(t), i) = 0.

Theorem 1: For a given finite-time (possibly short) in-
terval T , the SMC law is designed as (9)-(11) and the ad-
justable parameters ρi > 0 satisfies

ρi ≥
κi +χi

√
c2/λmin(R)

1− ρ̄max
, (12)

where

κi ≥
λmax[(BT

i XiBi)
−1]

T
∥BT

i Xix(0)∥, (13)

χi =∥(BT
i XiBi)

−1BT
i XiAi∥+∥I −ρ∥∥Ki∥

+∥(BT
i XiBi)

−1BT
i XiMi∥∥Ni∥+ εi

+
1
2
∥

N

∑
j=1

[λi j(BT
j X jB j)

−1]BT
i Xi∥, (14)

then the state trajectories can be driven onto the sliding
surface s(x(t), i) = 0 during the interval [0,T ∗] with T ∗ ≤
T and remain there in the subsequent time.

Proof: Choose the Lyapunov function:

V1(x(t), i) = sT (x(t), i)(BT
i XiBi)

−1s(x(t), i). (15)

Then, by Definition 2, we obtain the infinitesimal operator
as

LV1(x(t), i)

= 2sT(x(t), i)(BT
i XiBi)

−1(BT
i XiMiFi(t)Ni+BT

i XiAi)x(t)

+2sT (x(t), i) f (x(t), t, i)

+2sT (x(t), i)(BT
i XiBi)

−1BT
i XiDiw(t)

+ sT (x(t), i)
N

∑
j=1

[λi j(BT
j X jB j)

−1]s(x(t), i)

+2sT (x(t), i)(I −ρ)u(t). (16)

Substituting the control law (9)-(14) into (16) and noting
∥s(x(t), i)∥ ≤ |s(x(t), i)|, we can obtain

LV1(x(t), i)≤2∥s(x(t), i)∥[χi∥x(t)∥
− ((1− ρ̄max)ρi −κi)−κi]. (17)

If the adjustable parameter ρi satisfies the expression (12),
one has (1− ρ̄max)ρi −κi ≥ 0 and

(1− ρ̄max)ρi −κi

χi
≥
√

c2

λmin(R)
. (18)

Now, define the following domains:

Φ1 = {x(t) : χi∥x(t)∥ ≤ (1− ρ̄max)ρi −κi}, (19)

Φ2 = {x(t) :
√

λmin(R)∥x(t)∥ ≤
√

c2}. (20)

Apparently, one has Φ2 ⊆ Φ1. It will be proven in The-
orem 2 later that the FTB of the system (1) over the
finite-time interval [0,T ] can be ensured, that is, one has
xT (t)Rx(t) < c2 in the mean square. That implies that
one has ∥x(t)∥ ≤

√
c2/λmin(R) during the interval [0,T ]

in the mean square. Thus, the state trajectories will re-
main within the set Φ1 in the interval [0,T ] in the mean
square, which yields from (17):

LV1(x(t), i)≤−2κi∥s(x(t), i)∥. (21)

The following will further give the reaching instant T ∗.
To this end, by Rayleigh’s inequality, we obtain from (15)
V1(x(t), i) ≤ λmax[(BT

i XiBi)
−1]∥s(x(t), i)∥2 Then, we have

from (21):

LV1(x(t), i)≤− 2κi√
λmax[(BT

i XiBi)−1]

√
V1(x(t), i).

(22)
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Integrating (22) from 0 to t, one can ensure that there ex-
ists an instant T ∗ satisfying

T ∗ ≤
√

λmax[(BT
i XiBi)−1]

κi

√
V1(x(0), i), (23)

such that E{V1(x(t), i)} = 0 for t ≥ T ∗, and consequently
s(x(t), i) = 0 (in the mean square).

Note that one has by Rayleigh’s inequality and the fact
s(x(0), i) = BT

i Xix(0):

T ∗ ≤ λmax[(BT
i XiBi)

−1]

κi
∥BT

i Xix(0)∥. (24)

Thus, from (12) and (24), one obtains T ∗ ≤ T , which
means that the state trajectories of system (1) will be
driven onto the specified sliding surface s(x(t), i) = 0 in
finite time T ∗ with T ∗ ≤ T . □

Remark 3: It should be pointed out that the designed
SMC law (9)-(11) depends on the given time T and the
bounds of actuator faults ρ̄ via the selection on the scalar
ρi. Hence, the proposed SMC law can effectively attenu-
ate the effect of actuator faults during the specified finite-
time interval. This just answers the first question (Q-1).

5. FTB OVER THE WHOLE FINITE-TIME
INTERVAL [0,T ]

As is well known, there exist two phases for the state
trajectories of SMC systems: the reaching phase within
[0,T ∗] and the sliding motion phase within [T ∗,T ]. In
this section, by analyzing FTB problem of the MJSs (7)
during the reaching phase and the sliding motion phase
respectively, a sufficient condition will be given to guar-
antee FTB over the whole finite-time interval [0,T ]. By
substituting SMC law (9) into (7), we obtain the follow-
ing closed-loop system:

ẋ(t) =[Ai +∆Ai(t)−Bi(I −ρ)Ki]x(t)+Bi f (x(t), t, i)

+Diw(t)−Bi(I −ρ)γsi(t), (25)

where γsi(t) = γi(t)sgn(s(x(t), i)).
In the following, a partitioning strategy is generalized

from the nonlinear system in [20] to MJSs case:

Lemma 1: (Partitioning Strategy) For the sys-
tem (1) with the specified parameters (c1,c2, [0,T ],R,
W[0,T ],δ ), the closed-loop system (25) is FTB wrt
(c1,c2, [0,T ],R,W[0,T ],δ ), if only if there exists an auxiliary
scalar c∗i satisfying c1 < c∗i < c2 such that this system is
FTB wrt (c1,c∗, [0,T ∗],R,W[0,T ],δ ) during reaching phase
and FTB with respect to (c∗,c2, [T ∗,T ],R,W[0,T ],δ ) during
sliding motion phase, where c∗ = max

i∈S
{c∗i }.

Remark 4: It is shown from Lemma 1 that the reaching
phase within [0,T ∗] and the sliding motion phase within

[T ∗,T ] can be connected by parameters c∗ and T ∗. There-
fore, when FTB during the reaching phase and the slid-
ing motion phase are guaranteed simultaneously, the FTB
over the whole finite-time interval [0,T ] will be attained.
This answers the second question(Q-2).

In the following theorem, the sufficient condition is de-
rived via the above partitioning strategy to guarantee FTB
over the whole finite-time interval [0,T ].

Theorem 2: For the given the parameters (c1,c2, [0,T ],
R,W[0,T ],δ ) and a feasible scalar ηi, if there exist positive
constants c∗,ϑ ,αi,βi,ζi,ξi, and matrices Pi > 0 and Li for
any i ∈ S, satisfying the following linear matrix inequali-
ties (LMIs):[

Λ11i Λ12i

∗ Λ22i

]
< 0, (26)[

Ω11i Ω12i

∗ Ω22i

]
< 0, (27)

c1 < c∗ < c2, (28)

ϑR−1 < Pi < R−1, (29)[
−e−ηiT c∗+(2ρ2

i T +(1+2µ2
i )δ 2T )ηi

√
c1

∗ −ϑ I

]
< 0,

(30)

− e−ηiT c2ϑ + c∗+ηiδ 2T ϑ < 0, (31)

where

Λ11i =

[
Ξ1i Di

∗ −ηiI

]
,

Λ12i =
[

−Bi(I−ρ̄) αiMi PiNT
i βiBi εiPiI Bi LT

i ρ̄T Mk
i

0 0 0 0 0 0 0 0

]
,

Λ22i =−diag{ηiI,αiI,αiI,βiI,βiI,ζiI,ζiI,Nk
i },

Ξ1i = PiAT
i +AiPi −LT

i BT
i −BiLi +(λii −ηi)Pi,

Ω11i =

[
Ξ2i ΓiDi

∗ −ηiI

]
, Ω12i =

[
ξiΓiMi PiNT

i Mk
i

0 0 0

]
,

Ω22i =−diag{ξiI,ξiI,Nk
i }, Γi = I −Bi(BT

i XiBi)
−1BT

i Xi,

Ξ2i = PiAT
i ΓT

i +ΓiAiPi +(λii −ηi)Pi,

Mk
i = [

√
λi1Pi,

√
λi2Pi, ...,

√
λiNPi],

Nk
i = diag{P1,P2, ...,PN}, i ̸= j,

the closed-loop system (25) is FTB wrt (c1,c2, [0,T ],R,
W[0,T ],δ ) and the control gain in (9) is given by Ki =LiP−1

i .

Proof: We shall analyze the FTB during the two
phases, respectively, over the finite-time interval [0,T ].

Case 1: FTB during reaching phase within [0,T ∗].
For the following Lyapunov functional candidate:

V2(x(t), i) = xT (t)Pix(t), (32)

we obtain its infinitesimal operator as

LV2(x(t), i)
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= xT (t)

(
ĀT

i Pi +PiĀi +
N

∑
j=1

(λi jPj)

)
x(t)

+wT (t)DT
i Pix(t)+ xT (t)PiDiw(t)

+2xT (t)Pi∆Ai(t)x(t)+2xT (t)PiBiρKix(t)

− γT
si (t)(I −ρ)T BT

i Pix(t)− xT (t)PiBi(I −ρ)γsi(t)

+2xT (t)PiBi f (x(t), t, i), (33)

where Āi = Ai −BiKi.
For αi > 0, βi > 0 and ζi > 0, one has

2xT (t)Pi∆Ai(t)x(t)≤ αixT (t)PiMiMT
i Pix(t)

+α−1
i xT (t)NT

i Nix(t), (34)

2xT (t)PiBi f (x(t), t, i)≤ βixT (t)PiBiBT
i Pix(t)

+β−1
i ε2

i xT (t)x(t), (35)

2xT (t)PiBiρKix(t)≤ ζ−1
i xT (t)KT

i ρ̄T ρ̄Kix(t)

+ζixT (t)PiBiBT
i Pix(t). (36)

Define an auxiliary function as follows:

J1(x(t), i) =LV2(x(t), i)−ηiV2(x(t), i)

−ηiwT (t)w(t)−ηiγT
si (t)γsi(t). (37)

We have J1(x(t), i) ≤ ϖT (t)Ψ1iϖ(t) from (33)-(36),
where ϖ(t) = [x(t) w(t) γsi(t)]T .

Let Pi ≜ P−1
i and Li ≜ KiPi. it is easily shown that

Ψ1i < 0 can be ensured by (26).
Moreover, it follows from J1(x(t), i)< 0 that

LV2(x(t), i)<ηiV2(x(t), i)+ηiwT (t)w(t)

+ηiγT
si (t)γsi(t). (38)

Besides, γsi(t) satisfies the following inequality:

γT
si (t)γsi(t) = γT

i (t)γi(t)≤ 2ρ2
i +2µ2

i wT (t)w(t). (39)

Multiplying both sides of expression (38) by e−ηit and
integrating the obtained inequality from 0 to t with t ∈
[0,T ∗], we have

e−ηitE{V2(x(t), i)}

<V2(0)+2ρ2
i ηi

∫ t

0
e−ηiτ dτ

+(1+2µ2
i )ηi

∫ t

0
e−ηiτ wT (τ)w(τ)dτ

≤ σ̄Pc1 +2ρ2
i T ηi +(1+2µ2

i )ηiδ 2T. (40)

On the other hand, it follows from (32) that

e−ηitE{V2(x(t), i)} ≥ e−ηiT σ PE{xT (t)Rx(t)}. (41)

It yields from (40) and (41) that

E{xT (t)Rx(t)} ≤ σ̄Pc1 +2ρ2
i T ηi +(1+2µ2

i )ηiδ 2T
e−ηiT σ P

,

(42)

where

σ̄P = max
i∈S

(λmax(R−1/2PiR−1/2)),

σ P = min
i∈S

(λmin(R−1/2PiR−1/2)).

Further, if there exists scalar c∗ ∈ (c1,c2) satisfying

σ̄Pc1 +2ρ2
i T ηi +(1+2µ2

i )ηiδ 2T
σ P

< e−ηiT c∗, (43)

we obtain from (42) that E{xT (t)Rx(t)} < c∗ for all t ∈
[0,T ∗]. Thus, according to Definition 2, the closed-loop
system (25) is FTB wrt (c1,c∗, [0,T ∗],R,W[0,T ∗],δ ). By the
condition (29), one has 1 < σ P, σ̄P < 1

ϑ . Thus, it is eas-
ily shown that the inequality (43) can be ensured by the
inequality (30).

Case 2: FTB over sliding motion phase within [T ∗,T ].
According to SMC theory, when the state trajectories

maintain in the sliding surface s(t) = 0, we have the fol-
lowing equivalent controller:

ueq(t) =− (I −ρ)−1(BT
i XiBi)

−1BT
i Xi

×
[
(Ai +∆Ai(t))x(t)+Diw(t)

]
− (I −ρ)−1 f (x(t), t, i). (44)

By substituting (44) into (7), we get the following sys-
tem:

ẋ(t) = (Ãi +∆Ãi(t))x(t)+ D̃iw(t), (45)

where Ãi = ΓiAi, ∆Ãi(t) = Γi∆Ai(t) and D̃i = ΓiDi.
Choose the following Lyapunov functional candidate:

V2(x(t), i) = xT (t)Pix(t). (46)

We obtain the infinitesimal operator as

LV2(x(t), i)

= xT (t)
(

He(Pi(Ãi +∆Ãi))+
N

∑
j=1

(λi jPj)

)
x(t)

+wT (t)D̃T
i Pix(t)+ xT (t)PiD̃iw(t). (47)

For ξi > 0, one has

2xT (t)PiTi∆Ai(t)x(t)≤ξixT (t)PiTiMiMT
i T T

i Pix(t)

+ξ−1
i xT (t)NT

i Nix(t). (48)

Define an auxiliary function as follows:

J2(x(t), i) =LV2(x(t), i)−ηiV2(x(t), i)

−ηiwT (t)w(t). (49)

We have J1(x(t), i) ≤ ς T (t)Ψ2iς(t) from (47)-(48),
where ς(t) = [x(t) w(t)]T .

It is easily shown that Ψ2i can be ensured by (27).
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By means of J2(x(t), i)< 0, we obtain

LV2(x(t), i)< ηiV2(x(t), i)+ηiwT (t)w(t). (50)

It is shown in Case 1 that the closed-loop system is FTB
wrt (c1,c∗, [0,T ∗],R,W[0,T ∗],δ ) over the reaching phase,
which implies that the initial condition of sliding mo-
tion phase at instant T ∗ satisfies E{xT (T ∗)Rx(T ∗)} < c∗.
Thus, by multiplying both sides of expression (50) by e−ηit

and integrating the obtained inequality from T ∗ to t with
t ∈ [T ∗,T ], we have

e−ηitE{V2(x(t), i)}

< e−ηiT ∗
E{V2(x(T ∗), i)}+ηi

∫ t

T ∗
e−ηiτ wT (τ)w(τ)dτ

< xT (T ∗)Pix(T ∗)+ηiδ 2T

≤ σ̄Pc∗+ηiδ 2T. (51)

In addition, it follows from (46) that

e−ηitE{V2(x(t), i)} ≥ e−ηiT σ PE{xT (t)Rx(t)}. (52)

Putting together (51) and (52), we have

E{xT (t)Rx(t)} ≤ σ̄Pc∗+ηiδ 2T
e−ηiT σ P

. (53)

Further, if c∗ ∈ (c1,c2) satisfies

σ̄Pc∗+ηiδ 2T
σ P

< e−ηiT c2, (54)

we obtain from (53) that E{xT (t)Rx(t)} < c2 for all t ∈
[T ∗,T ]. Moreover, it is easily shown that the inequalities
(54) can be ensured by (31). □

Remark 5: When solving LMIs (28)-(31) in Theorem
2, the parameters ρi and ηi should be given in advance.
However, it is seen from (12) that ρi is dependent on
the norm of the control gain Ki. Since Ki will be ob-
tain only after solving LMIs in Theorem 2, it is difficult
to choose the parameter ρi according to expression (12).
On the other hand, it can be seen from (28), (29), and
(31) that the scalar ηi should be selected in the range of
(0, 1

T ln c2
c1
). Apparently, a desirable ηi within (0, 1

T ln c2
c1
)

should make the obtained control gain matrix Ki to have
minimum norm. To this end, this work will give a Search
Algorithm for suitable parameters ρi and ηi in this follow-
ing.

Search Algorithm: find parameters ρi and ηi simulta-
neously.
1: Choose an initial parameter candidate ρc

i =
κi+χ1i

√
c2/λmin(R)

1−ρ̄max
+ 0.1, where χ1i = χi − ∥I −

ρ∥∥Ki∥ with χi as in (14), that is, χ1i is equal
to χi without the term ∥I −ρ∥∥Ki∥.

2: Let L = 1
T ln c2

c1
and ρi = ρc

i , and substitute ρi

into LMIs (26)-(31).
3: for j = 1 to ⌊100L⌋
4: Let η j

i = 0.01 j and ηi = η j
i , and substitute ηi

into LMIs (26)-(31).
5: Solve LMIs (26)-(31).
6: if LMIs (26)-(31) is feasible.
7: Calculate ∥Ki∥ by Ki = Li(Pi)

−1 where Li

and Pi is the solution of LMIs (26)-(31).
8: Let K j

i = Ki.
9: else

10: ∥K j
i ∥= inf

11: end if
12: end for
13: Ki = min{∥K1

i ∥,∥K2
i ∥, ...,∥K⌊100L⌋∥

i }. Let the
superscript of the minimum be min.

14: Let ηi = ηmin
i

15: if ρc
i ≥

κi+χi

√
c2/λmin(R)

1−ρ̄max
where κi and χi are given

as in (13)-(14).
16: ρi = ρc

i
17: else
18: Set ρc

i = ρc
i +0.1. Go to step 2.

19: end if

6. SIMULATION

In this section, consider the linearized model of the GE
F-404 aircraft engine system as a modified version of the
example in [12], whose system matrix is taken as follows:

A(t) =
[

−1.46 0
0.1643+0.5g(t) −0.4+g(t)

]
, (55)

where g(t) is an uncertain model parameter, whose value
is taken as −0.5 or −2 according to a Markovian process
rt ∈ {1,2} with the transition rate matrix as:

Π =

[
−0.5 0.5
0.7 −0.7

]
,

Thus, we have the following two subsystems:
Subsystem 1:

A1 =

[
−1.46 0
−0.0857 −0.9

]
, B1 =

[
0.05
0.1

]
, D1 =

[
0.02
0.03

]
,

M1 =

[
0.01
0.02

]
, N1 =

[
0.01 0.01

]
, F1(t) = 0.5cos(t),

Subsystem 2:

A2 =

[
−1.46 0
−0.8357 −2.4

]
, B2 =

[
0.1
0.1

]
, D2 =

[
0.01
0.02

]
,
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Fig. 1. Control signal u(t) without fault (ρ = 0).

Fig. 2. Control signal u(t) with faults.

M2 =

[
0.01
0.02

]
, N2 =

[
0.02 0.02

]
, F1(t) = 0.5sin(t),

and f (x(t), t, i) = 0.02sin(
√

x2
1 + x2

2)(i = 1,2), w(t) =
0.15e−t , with δ = 0.15 and ε1 = ε2 = 0.02. The actuator
faults occur with bounds ρ = 0.5, ρ̄ = 0.9 in this example.

Now, the objective of this work is to design an SMC law
to achieve the FTB with c1 = 2, c2 = 12, T = 10 and R =
diag{40,36} for the MJSs (1) subject to actuator faults. To
this end, by using the Search Algorithm, the parameters
ρi and ηi can be obtained as ρ1 = 0.2555, ρ2 = 0.6488,
η1 = 0.03, η2 = 0.01, and the parameter µi in (11) is given
as µ1 = 3.2100, µ2 = 1.3433. By solving the LMIs in
Theroem 2, we obtain c∗ = 10.5979 and

K1 = [−0.0458 0.0351], K2 = [−0.2263 −0.3372].

Then, for the chosen matrices X1 = diag{4,1} and
X2 = diag{1.5,2}, the simulation results with initial state
x0 = [−0.03 0.02]T are shown in Figs. 1-4, when the sys-
tem is subject to actuator faults or not, respectively. It is
seen from Fig. 2 the control signal has greater chattering
when the actuator degradation occur. It is shown in Fig. 3
that the closed-loop system can not only attain the FTB
over the interval [0,10], but also has a quick convergence
despite the effect of mode switching and actuator faults.

Fig. 3. Trajectories of state x(t) with faults.

Fig. 4. Sliding variable s(t) with faults.

7. CONCLUSION

In this paper, we have investigated the FTB problem
via SMC methods for a class of MJSs subject to actua-
tor faults. By using a partitioning strategy, the sufficient
conditions achieving FTB during both reaching phase and
sliding motion phase have been obtained, respectively. In
practical application, the actuator faults may happen with
stuck and outage as in [25], which is worth further inves-
tigating in future work.

REFERENCES

[1] A. Fekih, “Fault-tolerant flight control design for effective
and reliable aircraft systems,” Journal of Control and De-
cision, vol. 1, no. 4, pp. 299-316, 2014.

[2] G. Tao, “Direct adaptive actuator failure compensation
control: a tutorial,” Journal of Control and Decision, vol.
1, no. 1, pp. 75-101, 2014.

[3] M. Yadegar, A. Afshar, and N. Meskin, “Fault-tolerant con-
trol of non-linear systems based on adaptive virtual actua-
tor,” IET Control Theory & Applications, vol. 11, no. 9, pp.
1371-1379, 2017.

[4] Y. Niu and X. Wang, “Sliding mode control design for un-
certain delay systems with partial actuator degradation,”

http://dx.doi.org/10.1080/23307706.2014.960554
http://dx.doi.org/10.1080/23307706.2014.960554
http://dx.doi.org/10.1080/23307706.2014.960554
http://dx.doi.org/10.1080/23307706.2014.885292
http://dx.doi.org/10.1080/23307706.2014.885292
http://dx.doi.org/10.1080/23307706.2014.885292
http://dx.doi.org/10.1049/iet-cta.2016.1169
http://dx.doi.org/10.1049/iet-cta.2016.1169
http://dx.doi.org/10.1049/iet-cta.2016.1169
http://dx.doi.org/10.1049/iet-cta.2016.1169
http://dx.doi.org/10.1080/00207720802436265
http://dx.doi.org/10.1080/00207720802436265


Finite-time Sliding Mode Control of Markovian Jump Systems Subject to Actuator Faults 2289

International Journal of Systems Science, vol. 40, no. 4,
pp. 403-409, 2009.

[5] D. Ye, L. Su, J. Wang, and Y. Pan, “Adaptive reliable H∞
optimization control for linear systems with time-varying
actuator fault and delays,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1635-
1643, 2017.

[6] M. Liu, L. Zhang, and W. Zheng, “Fault reconstruction for
stochastic hybrid systems with adaptive discontinuous ob-
server and non-homogeneous differentiator,” Automatica,
vol. 85, pp. 339-348, 2017.

[7] S. Mobayen and F. Tchier, “A novel robust adaptive
second-order sliding mode tracking control technique for
uncertain dynamical systems with matched and unmatched
disturbances,” International Journal of Control, Automa-
tion and Systems, vol. 15, no. 3, pp. 1097-1106, 2017.

[8] O. L. V. Costa, M. D. Fragoso, and M. G. Todorov.
Continuous-time Markov Jump Linear Systems, Springer,
London, 2012.

[9] P. Shi and F. Li, “A survey on Markovian jump systems:
modeling and design,” International Journal of Control,
Automation and Systems, vol. 13, no. 1, pp. 1-16, 2015.

[10] Y. Niu, D. W. C. Ho, and X. Wang, “Sliding mode control
for Itô stochastic jump systems with Markovian switch-
ing,” Automatica, vol. 43, no. 10, pp. 1784-1790, 2007.

[11] B. Chen, Y. Niu, and Y. Zou, “Adaptive sliding mode con-
trol for stochastic Markovian jumping systems with actu-
ator degradation,” Automatica, vol. 49, no. 6, pp. 1748-
1754, 2013.

[12] L. Chen, M. Liu, and S. Fu, “Adaptive sliding mode con-
trol for stochastic jump systems against sensor and actuator
failures,” IET Control Theory & Applications, vol. 10, no.
16, pp. 2000-2009, 2016.

[13] J. Zhu and G. Yang, “Adaptive sliding-mode control
for stochastic Markovian jumping systems with actuator
faults,” IET Control Theory & Applications, vol. 10, no.
6, pp. 664-674, 2016.

[14] H. Li, P. Shi, and D. Yao, “Adaptive sliding-mode control
of Markov jump nonlinear systems with actuator faults,”
IEEE Transactions on Automatic Control, vol. 82, no. 4,
pp. 1933-1939, 2017.

[15] S. Yin, H. Yang, and O. Kaynak, “Sliding mode observer-
based FTC for Markovian jump systems with actuator and
sensor faults,” IEEE Transactions on Automatic Control,
vol. 82, no. 4, pp. 1933-1939, 2017.

[16] P. Dorato, “Short time stability in linear time-varying sys-
tems,” Proceedings of the IRE International Convention
Record, vol. 4, pp. 83-87, 1961.

[17] F. Amato, M. Ariola, and P. Dorato, “Finite-time control
of linear systems subject to parametric uncertainties and
disturbances,” Automatica, vol. 37, no. 9, pp. 1459-1463,
2001.

[18] M. Shen, S. Yan, G. Zhang and J. H. Park, “Finite-time H∞
static output control of Markov jump systems with an aux-
iliary approach,” Applied Mathematics and Computation,
vol. 273, pp. 553-561, 2016.

[19] M. Shen, S. Yan, Z. Tang, and Z. Gu, “Finite-time H∞ fil-
tering of Markov jump systems with incomplete transition
probabilities: a probability approach,” IET Signal Process-
ing, vol. 9, no. 7, pp. 572-578, 2015.

[20] J. Song, Y. Niu, and Y. Zou, “Finite-time stabilization via
sliding mode control,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1478-1483, 2017.

[21] G. Garcia, S. Tarbouriech, and J. Bernussou, “Finite-time
stabilization of linear time-varying continuous systems,”
IEEE Transactions on Automatic Control, vol. 54, no.2, pp.
364-369, 2009.

[22] F. Amato, C. Cosentino, G. de Tommasi, and A. Pironti,
“New conditions for the finite-time stability of stochas-
tic linear time-varying systems,” Proceedings of European
Control Conference, pp. 1219-1224, 2015.

[23] J. Song, Y. Niu, and Y. Zou, “Asynchronous output feed-
back control of time-varying Markovian jump systems
within a finite-time interval,” Journal of the Franklin In-
stitute, vol. 354, no.15, pp. 6747-6765, 2017.

[24] J. Song, Y. Niu, and Y. Zou, “Robust finite-time bounded
control for discrete-time stochastic systems with commu-
nication constraint,” IET Control Theory & Applications,
vol. 9, no. 13, pp. 2015-2021, 2015.

[25] C. Deng and G.-H. Yang, “Decentralized fault-tolerant
control for a class of nonlinear large-scale systems with ac-
tuator faults,” Information Sciences, vol. 382-383, pp. 334-
349, 2017.

Zhiru Cao received her B.S. degree from
Nanjing Tech University, China, in 2016.
She is now pursuing a Ph.D. degree in
Control Science & Engineering at East
China University of Science and Technol-
ogy, China. Her current research areas are
Markovian jump systems, sliding mode
control, and finite-time control.

Yugang Niu is a professor with the East
China University of Science & Technol-
ogy. His research Areas includes sliding
mode control, stochastic systems, wireless
sensor networks, microgrid.

Haijuan Zhao received her B.S. and M.S.
degrees from Qufu Normal University,
China, in 2013 and 2016, respectively.
She is now pursuing a Ph.D. degree in
Control Science & Engineering at East
China University of Science and Technol-
ogy, China. Her current research interests
include switched systems, finite-time sta-
bility, and sliding mode control.

http://dx.doi.org/10.1080/00207720802436265
http://dx.doi.org/10.1080/00207720802436265
http://dx.doi.org/10.1080/00207720802436265
http://dx.doi.org/10.1109/TSMC.2017.2656386
http://dx.doi.org/10.1109/TSMC.2017.2656386
http://dx.doi.org/10.1109/TSMC.2017.2656386
http://dx.doi.org/10.1109/TSMC.2017.2656386
http://dx.doi.org/10.1109/TSMC.2017.2656386
http://dx.doi.org/10.1016/j.automatica.2017.07.071
http://dx.doi.org/10.1016/j.automatica.2017.07.071
http://dx.doi.org/10.1016/j.automatica.2017.07.071
http://dx.doi.org/10.1016/j.automatica.2017.07.071
http://dx.doi.org/10.1007/s12555-015-0477-1
http://dx.doi.org/10.1007/s12555-015-0477-1
http://dx.doi.org/10.1007/s12555-015-0477-1
http://dx.doi.org/10.1007/s12555-015-0477-1
http://dx.doi.org/10.1007/s12555-015-0477-1
http://dx.doi.org/10.1007/s12555-014-0576-4
http://dx.doi.org/10.1007/s12555-014-0576-4
http://dx.doi.org/10.1007/s12555-014-0576-4
http://dx.doi.org/10.1016/j.automatica.2007.02.023
http://dx.doi.org/10.1016/j.automatica.2007.02.023
http://dx.doi.org/10.1016/j.automatica.2007.02.023
http://dx.doi.org/10.1016/j.automatica.2013.02.014
http://dx.doi.org/10.1016/j.automatica.2013.02.014
http://dx.doi.org/10.1016/j.automatica.2013.02.014
http://dx.doi.org/10.1016/j.automatica.2013.02.014
http://dx.doi.org/10.1049/iet-cta.2015.1321
http://dx.doi.org/10.1049/iet-cta.2015.1321
http://dx.doi.org/10.1049/iet-cta.2015.1321
http://dx.doi.org/10.1049/iet-cta.2015.1321
http://dx.doi.org/10.1049/iet-cta.2015.0840
http://dx.doi.org/10.1049/iet-cta.2015.0840
http://dx.doi.org/10.1049/iet-cta.2015.0840
http://dx.doi.org/10.1049/iet-cta.2015.0840
http://dx.doi.org/10.1109/TAC.2016.2588885
http://dx.doi.org/10.1109/TAC.2016.2588885
http://dx.doi.org/10.1109/TAC.2016.2588885
http://dx.doi.org/10.1109/TAC.2016.2588885
http://dx.doi.org/10.1109/TAC.2017.2669189
http://dx.doi.org/10.1109/TAC.2017.2669189
http://dx.doi.org/10.1109/TAC.2017.2669189
http://dx.doi.org/10.1109/TAC.2017.2669189
http://dx.doi.org/10.1016/S0005-1098(01)00087-5
http://dx.doi.org/10.1016/S0005-1098(01)00087-5
http://dx.doi.org/10.1016/S0005-1098(01)00087-5
http://dx.doi.org/10.1016/j.amc.2015.10.038
http://dx.doi.org/10.1016/j.amc.2015.10.038
http://dx.doi.org/10.1016/j.amc.2015.10.038
http://dx.doi.org/10.1016/j.amc.2015.10.038
http://dx.doi.org/10.1049/iet-spr.2014.0376
http://dx.doi.org/10.1049/iet-spr.2014.0376
http://dx.doi.org/10.1049/iet-spr.2014.0376
http://dx.doi.org/10.1049/iet-spr.2014.0376
http://dx.doi.org/10.1109/TAC.2016.2578300
http://dx.doi.org/10.1109/TAC.2016.2578300
http://dx.doi.org/10.1109/TAC.2016.2578300
http://dx.doi.org/10.1109/TAC.2008.2008325
http://dx.doi.org/10.1109/TAC.2008.2008325
http://dx.doi.org/10.1109/TAC.2008.2008325
http://dx.doi.org/10.1109/TAC.2008.2008325
http://dx.doi.org/10.1109/ECC.2015.7330706
http://dx.doi.org/10.1109/ECC.2015.7330706
http://dx.doi.org/10.1109/ECC.2015.7330706
http://dx.doi.org/10.1109/ECC.2015.7330706
http://dx.doi.org/10.1016/j.jfranklin.2017.08.028
http://dx.doi.org/10.1016/j.jfranklin.2017.08.028
http://dx.doi.org/10.1016/j.jfranklin.2017.08.028
http://dx.doi.org/10.1016/j.jfranklin.2017.08.028
http://dx.doi.org/10.1049/iet-cta.2014.1173
http://dx.doi.org/10.1049/iet-cta.2014.1173
http://dx.doi.org/10.1049/iet-cta.2014.1173
http://dx.doi.org/10.1049/iet-cta.2014.1173
http://dx.doi.org/10.1016/j.ins.2016.12.017
http://dx.doi.org/10.1016/j.ins.2016.12.017
http://dx.doi.org/10.1016/j.ins.2016.12.017
http://dx.doi.org/10.1016/j.ins.2016.12.017

