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Unscented Kalman Filtering for Nonlinear State Estimation with Corre-
lated Noises and Missing Measurements
Long Xu, Kemao Ma*, and Hongxia Fan

Abstract: The unscented Kalman filtering problem is investigated for a class of nonlinear discrete stochastic sys-
tems subject to correlated noises and missing measurements. Here, a random variable obeying Bernoulli distribution
with known conditional probability is introduced to depict the phenomenon of missing measurements occurring in
a stochastic way. Due to taking the correlation of noises into account, a one-step predictor is designed by apply-
ing the innovative analysis and unscented transformation approach. And then, based on one-step predictor and
the minimum mean square error principle, a new unscented Kalman filtering algorithm is proposed such that, for
the correlated noises and missing measurements, the filtering error is minimized. By solving the recursive matrix
equation, the filter gain matrices and the error covariance matrices can be obtained and the proposed results can
be easily verified by using the standard numerical software. We finally provide a numerical example to show the
performance of the proposed approach.

Keywords: Correlated noises, minimum mean square error, missing measurements, nonlinear discrete stochastic
systems, unscented transformation.

1. INTRODUCTION

In the past few decades, the optimal estimation or filter-
ing problems for stochastic systems were extensively in-
vestigated due to its wide application in a variety of direc-
tions such as tracking systems, communication and signal
processing [1–6]. It is well known that Kalman first pro-
vided a new approach (Kalman filter) to investigate the es-
timate problem in [7] for the linear discrete stochastic sys-
tems by employing the principle of minimum mean square
error and the projection theory. However, many practical
systems are nonlinear and a large number of state estima-
tion problems for the nonlinear systems can’t be solved
by applying traditional Kalman filter. Hence, unscented
Kalman filter, as a new method for nonlinear filtering, was
constructed for nonlinear systems in [8]. The unscented
Kalman filtering is the combination of unscented transfor-
mation approach and standard Kalman filtering. The basic
idea of unscented Kalman filtering algorithm is to make
use of unscented transformation approach to approximate
the mean and covariance in order to satisfy the minimum
mean square error principle and the unscented Kalman fil-
ter can get higher accuracy than the extended Kalman fil-
ter. Thus, the unscented Kalman filter is considered to be
an ideal alternative to the traditional extended Kalman fil-
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ter method and the unscented Kalman filtering algorithm
was also attracted wide attention.

Due to the certain factors of unreliable observations of
the communication network, the phenomena of the corre-
lation of noises and missing measurements are inevitable
in many industrial process systems [9–26]. Generally
speaking, the missing measurements are characterized by
the Markov-chain or by the Bernoulli distributed random
variable. Bernoulli distributed random variable is com-
monly utilized to characterize the phenomenon of missing
measurements. For example, in [15], the estimation prob-
lem was considered for time-varying complex networks
with missing measurements. The phenomenon of missing
measurements in the measurement was certain probability
of occurrence in the time-varying complex networks sys-
tems and the phenomenon of missing measurements was
been described by the Bernoulli distributed random vari-
able taking on values of 0 and 1. When Bernoulli dis-
tributed random variable is 1, it stands for that the sensor
occurs the missing measurements; else, it represents that
the sensor receives the data successfully. Therefore, the
accuracy of system state estimation can be improved by
reducing the impact of correlated noise and missing data.
Over the past few years, a large number of efforts were
made to solve the problems of the optimal filtering for the
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systems with correlated noises and missing measurements
[21, 22]. More concretely, the problem of state estima-
tion was solved in [23] for a class of linear discrete-time
stochastic systems subject to missing data and correlated
noises, where the estimators are unbiased and the esti-
mation error covariances are minimized. Based on the
state augmentation approach and the projection theory, the
state estimation problem was investigated in [24] for linear
uncertain systems with correlated noises and incomplete
measurements. In [25], by using the measurement differ-
ence method, a recursive filtering algorithm was proposed
for discrete-time linear systems with fading measurement
and time-correlated channel noise. Based on the same ap-
proach as in [24], the optimal estimation problem was re-
searched in [26] for a class of discrete-time stochastic sys-
tems subject to finite-step auto-correlated process noises,
one-step randomly sensor delayed and data dropout. Com-
pared with the existing results, the model in [26] can re-
flect the practical systems comprehensively and the sys-
tem state was estimated more effective.

It is well known that the existence of the nonlinear phe-
nomena would reduce the accuracy of filtering estimation
[27–31]. Hence, it is necessary to handle the problem
of the nonlinearity and a great number of results were
presented for the nonlinear filtering problem of discrete
stochastic systems. To mention just a few, in [32–34], by
applying the unscented transformation approach, the un-
scented Kalman filter was designed in the sense of min-
imum mean square error for nonlinear discrete stochas-
tic systems with random time delay observation. In [35],
the problem of UKF-based nonlinear filtering was studied
for general nonlinear systems over a wireless sensor net-
work with fading channel and the stochastic stability anal-
ysis was investigated for unscented Kalman filtering algo-
rithm. By using the unscented transformation approach, in
[36], a new unscented Kalman filter was designed for un-
reliable communication networks with Markovian packet
dropouts. The event-triggered nonlinear filtering prob-
lem was investigated in [37] for nonlinear dynamic sys-
tems over a wireless sensor network with packet dropout.
In [41], the nonlinear filtering problem was addressed
for a class of nonlinear discrete time stochastic systems
with missing measurements by applying the extended and
unscented Kalman filtering approach, respectively and it
showed that the unscented Kalman filter is more effective
than the extended Kalman filter. However, to the best of
authors’ knowledge, these researches do not pay much at-
tention to the problem of the nonlinear filtering for nonlin-
ear discrete stochastic systems subject to correlated noises
and missing data in the measurement.

Based on the above discussion, in our paper, the pur-
pose is to discuss the nonlinear filtering problem for dis-
crete stochastic systems with correlated noises and miss-
ing measurements. The correlated noises and missing
measurements exist in the system due to the certain unre-

liable factors. Based on the projection theory and the un-
scented transformation approach, the unscented Kalman
filter is designed which can address the effects of the
correlated noises and missing measurements in a unified
framework. We can recursively compute the filter gain
matrices and the error covariance matrices by using the
new algorithm and Matlab software. Finally, we give a
numerical example to verify the performance of the pro-
posed filtering algorithm. The contribution of this paper:
1). The system model is extended from linear system to
nonlinear system. 2). We make first attempt to propose the
nonlinear filter for systems subject to correlated noises and
missing measurements. 3). A new recursive algorithm is
established to obtain the optimal nonlinear filter which is
suitable for online applications.

Notation: The symbols used in the paper are standard.
Rn denotes the n-dimensional Euclidean space. AT repre-
sents the transpose of a matrix A. E{x} is the expectation
of the random variable x. The identity matrix and the zero
matrix are expressed by I and 0 with appropriate dimen-
sions, respectively. δk− j is the Kronecker delta function.
If k = j, then δk− j = 1; otherwise, δk− j = 0. If the di-
mensions of the matrices are not definitely stated, they are
considered to be well-matched for algebraic operations.

2. PROBLEM FORMULATION

The above arguments are reflected in the following non-
linear discrete stochastic systems with correlated noises
and missing measurements:

xk+1 = fk(xk)+ωk, (1)

zk = λkhk(xk)+νk, (2)

where xk ∈ Rn is the state vector, zk ∈ Rm is the measured
output, fk(·) : Rn → Rn and hk(·) : Rn → Rm are known
nonlinear functions. ωk ∈ Rn and νk ∈ Rm are correlated
Gaussian white noises satisfying the following equations:

E{ωk}= 0, Cov(ωk,ωk) = Qk = QT
k ≥ 0,

E{νk}= 0, Cov(νk,νk) = Rk = RT
k > 0,

Cov(ωk,ν j) = Skδk− j.

The random variable λk, which describes the phe-
nomenon of missing measurements, obeys the Bernoulli
distribution and has the following statistical properties:

Prob{λk = 1}= E{λk}= α,

Prob{λk = 0}= 1−E{λk}= 1−α,

where α ∈ [0,1] is a known scalar. In our paper, we as-
sume that λk and other noise signals are mutually inde-
pendent.

Remark 1: In the model (2), if λk = 1, zk = hk(xk)+νk,
which represents that the sensor receives the data at time
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instant k successfully; if λk = 0, zk = νk, which stands for
that the sensor receives the noises of the time instant k,
i.e., the sensor occurs the phenomenon of missing data.
The same description method was widely utilized in [9,
11, 13, 18].

The purpose of this paper is to design the unscented
Kalman filter for nonlinear discrete stochastic systems (1)-
(2) based on the minimum mean square error principle and
the observation sequence {z1,z2, · · · ,zk}.

3. MAIN RESULTS

In order to facilitate the subsequent developments,
based on the observation sequence {z1,z2, · · · ,zk}, we de-
sign the optimal one-step predictor for nonlinear discrete
stochastic systems (1)-(2) by employing the unscented
transformation approach and the method in the reference
[7].

Lemma 1: The optimal one-step predictor for the sys-
tems (1)-(2) is given as follows:

x̂k+1|k = fk
(
x̂k|k−1

)
+K p

k εk, (3)

εk = zk −α ŷk|k−1, (4)

K p
k =

(
αPxy

k|k−1 +Sk

)(
αPyy

k|k−1

+α(1−α)ŷk|k−1
(
ŷk|k−1

)T
+Rk

)−1

, (5)

Pk+1|k = Pk|k−1 −K p
k

(
αPxy

k|k−1 +Sk

)T
+Qk, (6)

where

fk
(
x̂k|k−1

)
= E{ fk(xk)|Zk−1} , (7)

ŷk|k−1 = hk
(
x̂k|k−1

)
= E{hk(xk)|Zk−1} , (8)

Pxy
k|k−1 = E

{(
fk (xk)− fk

(
x̂k|k−1

))
×
(
yk − ŷk|k−1

)T

}
, (9)

Pyy
k|k−1 = E

{(
yk − ŷk|k−1

)(
yk − ŷk|k−1

)T
}
, (10)

Pk|k−1 = E

{(
fk (xk)− fk

(
x̂k|k−1

))
×
(

fk (xk)− fk
(
x̂k|k−1

))T

}
, (11)

K p
k is the predictor gain matrix and εk is the innovation

sequence. (7)-(11) is approximately computed by the un-
scented transformation approach.

Proof: Firstly, by applying the method in the reference
[7], we have

ẑk|k−1 = E{zk|Zk−1}= αE{hk(xk)|Zk−1} . (12)

Letting yk = hk(xk), then

ŷk|k−1 = hk
(
x̂k|k−1

)
= E{hk(xk)|Zk−1} . (13)

By the definition of the innovation sequence, equation
(4) is satisfied as follows:

εk =zk − ẑk|k−1

=zk −αhk
(
x̂k|k−1

)
=λkhk (xk)−αhk

(
x̂k|k−1

)
+νk

=λk
(
hk (xk)−hk

(
x̂k|k−1

))
+(λk −α)hk

(
x̂k|k−1

)
+νk

=λk
(
yk − ŷk|k−1

)
+(λk −α) ŷk|k−1 +νk. (14)

Obviously, Zk = (Zk−1,zk). By employing the method
in the reference [7], the optimal one-step state prediction
x̂k+1|k at time instant k+1 is calculated as follows:

x̂k+1|k =E{xk+1|Zk}
=E{xk+1|Zk−1}+E

{
x̃k+1|k−1|z̃k|k−1

}
=E{xk+1|Zk−1}+E

{
x̃k+1|k−1z̃T

k|k−1

}
×
(
E
{

z̃k|k−1z̃T
k|k−1

})−1
z̃k|k−1, (15)

where

x̃k+1|k−1 = xk+1 −E{xk+1|Zk−1} , (16)

z̃k|k−1 = zk −E{zk|Zk−1}
= zk − ẑk|k−1 = εk. (17)

By the same derivation of (12), we have

E{xk+1|Zk−1}=E{( fk (xk)+ωk) |Zk−1}
=E{ fk (xk) |Zk−1} . (18)

Then, let

fk
(
x̂k|k−1

)
= E{ fk(xk)|Zk−1} . (19)

Substituting (18) and (19) into (16) leads to

x̃k+1|k−1 = fk (xk)− fk
(
x̂k|k−1

)
+ωk. (20)

By using (14), (17), (20) and E{λk −α} = 0, E{ωk} =
E{νk}= 0, it can be easily deduced that

E
{

x̃k+1|k−1z̃T
k|k−1

}
= E

{(
fk (xk)− fk

(
x̂k|k−1

)
+ωk

)
×
(
λk
(
yk − ŷk|k−1

)
+(λk −α) ŷk|k−1 +νk

)T

}
= αE

{(
fk (xk)− fk

(
x̂k|k−1

))(
yk − ŷk|k−1

)T
}
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+E
{

ωkνT
k

}
= αPxy

k|k−1 +Sk, (21)

E
{

z̃k|k−1z̃T
k|k−1

}
= E

{
εkεT

k

}
= E

{(
λk
(
yk − ŷk|k−1

)
+(λk −α) ŷk|k−1 +νk

)
×
(
λk
(
yk − ŷk|k−1

)
+(λk −α) ŷk|k−1 +νk

)T
}

= αE
{(

yk − ŷk|k−1
)(

yk − ŷk|k−1
)T
}

+E
{
(λk −α)2

}
ŷk|k−1

(
ŷk|k−1

)T
+E

{
νkνT

k

}
= αPyy

k|k−1 +α(1−α)ŷk|k−1
(
ŷk|k−1

)T
+Rk, (22)

where

Pxy
k|k−1 = E

{(
fk (xk)− fk

(
x̂k|k−1

))(
yk − ŷk|k−1

)T
}
,

Pyy
k|k−1 = E

{(
yk − ŷk|k−1

)(
yk − ŷk|k−1

)T
}
.

Define the predictor gain matrix K p
k as follows:

K p
k =E

{
x̃k+1|k−1z̃T

k|k−1

}(
E
{

z̃k|k−1z̃T
k|k−1

})−1
. (23)

Obviously,

K p
k =

(
αPxy

k|k−1 +Sk

)
×
(

αPyy
k|k−1 +α(1−α)ŷk|k−1

(
ŷk|k−1

)T
+Rk

)−1
.

(24)

Substituting (17), (18) and (24) into (15) yields

x̂k+1|k =E{xk+1|Zk−1}+K p
k z̃k|k−1

=E{xk+1|Zk−1}+K p
k εk

= fk
(
x̂k|k−1

)
+K p

k εk. (25)

Next, compute the error covariance matrix Pk+1|k of
one-step prediction x̂k+1|k. By combining (20) and (25),
we have the error x̃k+1|k of one-step prediction x̂k+1|k as
follows:

x̃k+1|k =xk+1 − x̂k+1|k

=xk+1 −E{xk+1|Zk−1}−K p
k z̃k|k−1

=x̃k+1|k−1 −K p
k z̃k|k−1. (26)

Accordingly,

Pk+1|k

= E
{

x̃k+1|kx̃T
k+1|k

}
= E

{(
x̃k+1|k−1 −K p

k z̃k|k−1
)(

x̃k+1|k−1 −K p
k z̃k|k−1

)T
}

= E
{

x̃k+1|k−1x̃T
k+1|k−1

}
−E

{
x̃k+1|k−1z̃T

k|k−1

}(
K p

k

)T

−K p
k E
{

z̃k|k−1x̃T
k+1|k−1

}

+K p
k E
{

z̃k|k−1z̃T
k|k−1

}(
K p

k

)T

= E

{(
fk (xk)− fk

(
x̂k|k−1

)
+ωk

)(
fk (xk)− fk

(
x̂k|k−1

)
+ωk)

T

}
−K p

k E
{

z̃k|k−1x̃T
k+1|k−1

}
= E

{(
fk (xk)− fk

(
x̂k|k−1

))(
fk (xk)− fk

(
x̂k|k−1

))T
}

+Qk −K p
k

(
αPxy

k|k−1 +Sk

)T

= Pk|k−1 −K p
k

(
αPxy

k|k−1 +Sk

)T
+Qk, (27)

where

Pk|k−1

= E
{(

fk (xk)− fk
(
x̂k|k−1

))(
fk (xk)− fk

(
x̂k|k−1

))T
}
.

The proof of this theorem is complete. □

Remark 2: It is worth noting that, in Theorem 1, the
recursive optimal one-step predictor is designed for the
addressed nonlinear discrete stochastic systems with cor-
related noises and missing measurements. Due to the fac-
tors of the sudden changes in the environment and unre-
liability of the communication network, the phenomena
of correlated noises and missing measurements exist com-
monly. Therefore, in this paper, we consider the nonlin-
ear discrete stochastic systems with correlated noises and
missing measurements. In order to deal with the corre-
lated noises and missing measurements, and then further
improve the accuracy of filtering estimation for the sys-
tems, we take the innovative analysis approach to design
optimal one-step predictor and the covariance matrix Sk of
correlated noises is reflected by the predictor gain matrix
K p

k . Compared with the existing results without consider-
ing the correlation of noises, in this paper, the following
nonlinear filter is designed based on one-step predictor.

Theorem 1: Based on the observation sequence
{z1,z2, · · · ,zk} and the principle of minimum mean square
error, the optimal filter for the nonlinear systems (1)-(2) is
given as follows:

x̂k+1|k+1 = x̂k+1|k +Kk+1εk+1, (28)

εk+1 = zk+1 −α ŷk+1|k, (29)

Kk+1 = αPxy
k+1|k

(
αPyy

k+1|k

+α (1−α) ŷk+1|k
(
ŷk+1|k

)T
+Rk+1

)−1
, (30)

Pk+1|k+1 = Pk+1|k −αKk+1

(
Pxy

k+1|k

)T
, (31)

where Kk+1 is the filter gain matrix.

Proof: Obviously, Zk+1 = (Zk,zk+1). By using the
method in the reference [7], we can obtain the optimal
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estimation x̂k+1|k+1 at time instant k+1 as follows:

x̂k+1|k+1

= E{xk+1|Zk+1}
= E{xk+1|Zk}+E

{
x̃k+1|k|z̃k+1|k

}
= x̂k+1|k +E

{
x̃k+1|k z̃T

k+1|k

}
×
(
E
{

z̃k+1|k z̃T
k+1|k

})−1
z̃k+1|k, (32)

where

x̃k+1|k =xk+1 − x̂k+1|k, (33)

z̃k+1|k =zk+1 − ẑk+1|k

=εk+1

=λk+1
(
yk+1 − ŷk+1|k

)
+(λk+1 −α) ŷk+1|k +νk+1. (34)

Along the same method of the derivation of (21) and (22),
we obtain

E
{

x̃k+1|k z̃T
k+1|k

}
= E

{
x̃k+1|k

(
λk+1

(
yk+1 − ŷk+1|k

)
+(λk+1 −α) ŷk+1|k +νk+1

)T
}

= αE
{(

xk+1 − x̂k+1|k
)(

yk+1 − ŷk+1|k
)T
}

= αPxy
k+1|k, (35)

E
{

z̃k+1|k z̃T
k+1|k

}
= αPyy

k+1|k

+α (1−α) ŷk+1|k
(
ŷk+1|k

)T
+Rk+1. (36)

Define the filter gain matrix Kk+1 as follows:

Kk+1 =E
{

x̃k+1|k z̃T
k+1|k

}(
E
{

z̃k+1|k z̃T
k+1|k

})−1
. (37)

Obviously,

Kk+1 =αPxy
k+1|k

(
αPyy

k+1|k

+α (1−α) ŷk+1|k
(
ŷk+1|k

)T
+Rk+1

)−1
. (38)

Hence, (32) is equivalent to the following equation:

x̂k+1|k+1 =x̂k+1|k +Kk+1z̃k+1|k

=x̂k+1|k +Kk+1εk+1. (39)

Subsequently, the following derivations are given to ob-
tain the error covariance matrix Pk+1|k+1 of optimal esti-
mation x̂k+1|k+1. By using the equations (33) and (39), one
has

x̃k+1|k+1 =xk+1 − x̂k+1|k+1

=xk+1 − x̂k+1|k −Kk+1z̃k+1|k

=x̃k+1|k −Kk+1z̃k+1|k. (40)

Accordingly,

Pk+1|k+1

= E
{

x̃k+1|k+1x̃T
k+1|k+1

}
= E

{(
x̃k+1|k −Kk+1z̃k+1|k

)(
x̃k+1|k −Kk+1z̃k+1|k

)T
}

= E
{

x̃k+1|kx̃T
k+1|k

}
−E

{
x̃k+1|k z̃T

k+1|k

}
KT

k+1

−Kk+1E
{

z̃k+1|x̃T
k+1|k

}
+Kk+1E

{
z̃k+1|z̃T

k+1|k

}
KT

k+1

= Pk+1|k −Kk+1E
{

z̃k+1|x̃T
k+1|k

}
= Pk+1|k −αKk+1|k

(
Pxy

k+1|k

)T
. (41)

Then, the proof of this theorem is complete. □

According to Theorem 1, a new recursive algorithm can
be established to obtain the optimal nonlinear filter for the
addressed discrete stochastic nonlinear systems with cor-
relate noises and missing measurements. The following
algorithm shows how to design the unscented Kalman fil-
ter in Theorem 1.

Algorithm: The steps of the design of the unscented
Kalman filter are shown as follows:

Step 1: Choose the sigma points.
We choose 2n+1 points as a sigma points set, i.e.

χ0
k−1|k−1 = x̂k−1|k−1,

χ s
k−1|k−1 = x̂k−1|k−1 +

(√
(n+κ)Pk−1|k−1

)
s
,

s = 1, · · · ,n,

χ s
k−1|k−1 = x̂k−1|k−1 −

(√
(n+κ)Pk−1|k−1

)
s−n

,

s = n+1, · · · ,2n,

where κ is the scaling factor and
(√

(n+κ)Pk−1|k−1
)

s is
either the s-th row or the s-th column of the matrix square
root of (n+κ)Pk−1|k−1.

Now, compute the transformed values of the sigma
points by using the nonlinear function fk−1(xk−1).

χ s
k|k−1 = fk−1

(
χ s

k−1|k−1

)
, s = 0,1, · · · ,2n,

Then, the one-step prediction x̂k|k−1 and error covari-
ance matrix Pk|k−1 can be calculated by recombining the
weighted sigma points as follows:

x̂k|k−1 =
2n

∑
s=0

W sχ s
k|k−1,

Pk|k−1 =
2n

∑
s=0

W s
(

χ s
k|k−1 − x̂k|k−1

)(
χ s

k|k−1 − x̂k|k−1

)T
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+Qk−1,

according to weights

W s =

{ κ
n+κ , s = 0

1
2(n+κ) , s = 1,2, · · · ,2n . (42)

On the other hand, we choose another 2n+ 1 points as
another sigma points set. Then,

δ 0
k|k−1 = x̂k|k−1,

δ s
k|k−1 = x̂k|k−1 +

(√
(n+κ)Pk|k−1

)
s
,

s = 1, · · · ,n,

δ s
k|k−1 = x̂k|k−1 −

(√
(n+κ)Pk|k−1

)
s−n

,

s = n+1, · · · ,2n. (43)

Step 2: Calculate the one-step predictor x̂k+1|k at time
instant k+1.

From Theorem 1, we can obtain one-step prediction
x̂k+1|k at time instant k+1 by applying the unscented trans-
formation approach to compute the mean and covariance
of one-step prediction x̂k|k−1 at time instant k.

By (43), the sigma points δ s
k|k−1, which are computed

by x̂k|k−1 and Pk|k−1, are transmitted to the sigma points
ξ s

k|k−1 and γ s
k|k−1 by the state function fk(·) and observation

function hk(·), respectively. We apply the ξ s
k|k−1 and γ s

k|k−1

to calculate the following mean fk
(
x̂k|k−1

)
, hk
(
x̂k|k−1

)
and

covariances Pk|k−1, Pyy
k|k−1 and cross covariance Pxy

k|k−1

ξ s
k|k−1 = fk

(
δ s

k|k−1

)
, s = 0,1, · · · ,2n, (44)

γ s
k|k−1 = hk

(
δ s

k|k−1

)
, s = 0,1, · · · ,2n, (45)

fk
(
x̂k|k−1

)
=

2n

∑
s=0

W sξ s
k|k−1 =

2n

∑
s=0

W s fk

(
δ s

k|k−1

)
, (46)

ŷk|k−1 = hk
(
x̂k|k−1

)
=

2n

∑
s=0

W sγ s
k|k−1

=
2n

∑
s=0

W shk

(
δ s

k|k−1

)
, (47)

Pk|k−1 =
2n

∑
s=0

W s
(

ξ s
k|k−1 − fk

(
x̂k|k−1

))
×
(

ξ s
k|k−1 − fk

(
x̂k|k−1

))T
, (48)

Pyy
k|k−1 =

2n

∑
s=0

W s
(

γ s
k|k−1 − ŷk|k−1

)
×
(

γ s
k|k−1 − ŷk|k−1

)T
, (49)

Pxy
k|k−1 =

2n

∑
s=0

W s
(

ξ s
k|k−1 − fk

(
x̂k|k−1

))
×
(

γ s
k|k−1 − ŷk|k−1

)T
, (50)

where W s satisfies the equation (42). Substituting (44)-
(50) into (3)-(6), we can compute the one-step prediction
x̂k+1|k and error covariance matrix Pk+1|k.

Step 3: Calculate the estimation x̂k+1|k+1 at time instant
k+1.

By Theorem 1, the estimation x̂k+1|k+1 at time instant
k + 1 can be computed by applying the unscented trans-
formation approach to calculate the mean and covariance
of one-step prediction x̂k+1|k at time instant k+1.

Hence, we choose the sigma points, which are com-
puted by x̂k+1|k and Pk+1|k, as follows:

η0
k+1|k = x̂k+1|k,

η s
k+1|k = x̂k+1|k +

(√
(n+κ)Pk+1|k

)
s
,

s = 1, · · · ,n,

η s
k+1|k = x̂k+1|k −

(√
(n+κ)Pk+1|k

)
s−n

,

s = n+1, · · · ,2n,

Then, the sigma points η s
k+1|k are transmitted to the sigma

points σ s
k+1|k by the observation function hk+1(·). The

mean ŷk+1|k, covariance Pyy
k+1|k and cross covariance Pxy

k+1|k
can be obtained by the sigma points σ s

k+1|k as follows:

σ s
k+1|k = hk+1

(
η s

k+1|k

)
, s = 0,1, · · · ,2n, (51)

ŷk+1|k = hk+1
(
x̂k+1|k

)
=

2n

∑
s=0

W sσ s
k+1|k

=
2n

∑
s=0

W shk+1

(
σ s

k+1|k

)
, (52)

Pyy
k+1|k =

2n

∑
s=0

W s
(

σ s
k+1|k − ŷk+1|k

)(
σ s

k+1|k − ŷk+1|k

)T
,

(53)

Pxy
k+1|k =

2n

∑
s=0

W s
(

η s
k+1|k − x̂k+1|k

)(
σ s

k+1|k − ŷk+1|k

)T
,

(54)

where W s satisfies (42). The estimation x̂k+1|k+1 and error
covariance matrix Pk+1|k+1 are computed by substituting
(51)-(54) into (28)-(31).

Remark 3: In general, if the square root A of the ma-
trix P is the form of P = AT A, the sigma points are formed
from the row of A. Otherwise, the columns of A are em-
ployed if P = AAT [8]. Therefore, we utilize the s-th col-
umn of the matrix square root of (n+κ)Pk−1|k−1 in our al-
gorithm. In addition, it can be seen clearly from the algo-
rithm that unscented Kalman filter with correlated noises
and missing measurements could be implemented by two
blocks: one is state prediction and the other is state esti-
mation. The state prediction can be calculated indepen-



Unscented Kalman Filtering for Nonlinear State Estimation with Correlated Noises and Missing Measurements 1017

dently. However, the state estimation can be derived by
employing the state prediction.

Remark 4: From the above algorithm, the estimation
x̂k+1|k+1 can be computed by using the one-step predic-
tion x̂k+1|k. Hence, in Step 1, we choose the sigma points
χ s

k−1|k−1 by using the value of estimation x̂k−1|k−1. Based
on the nonlinear state function fk−1(·) and χ s

k−1|k−1, com-
pute the value of x̂k|k−1 and Pk|k−1. Then, the sigma points
δ s

k|k−1 are chosen by using the value of x̂k|k−1 and Pk|k−1; In
Step 2, by the state function fk(·) and observation function
hk(·), the sigma points δ s

k|k−1 are transmitted to the sigma
points ξ s

k|k−1 and γ s
k|k−1, respectively. Therefore, the one-

step predictor x̂k+1|k can be calculated based on the mean
fk
(
x̂k|k−1

)
, hk

(
x̂k|k−1

)
and covariances Pk|k−1, Pyy

k|k−1 and
cross covariance Pxy

k|k−1; In Step 3, we compute the esti-
mation x̂k+1|k+1 by applying the unscented transformation
approach and the one-step prediction x̂k+1|k.

Remark 5: Note that, compared with linear system
with correlated noises and missing measurements, we de-
sign the unscented Kalman filter to solve the state estima-
tion problem for nonlinear system based on the unscented
transformation approach. The technical difficulties are to
deal with the correlated noises and missing measurements
by using the unscented transformation method. In order
to deal with the correlated noises and missing measure-
ments, and then further improve the accuracy of filter-
ing estimation for the systems, we compute the parame-
ters fk

(
x̂k|k−1

)
, ŷk|k−1, Pxy

k|k−1, Pyy
k|k−1, and Pk|k−1 to obtain

one-step predictor x̂k+1|k. Then, by using the one-step
predictor x̂k+1|k and calculating the parameter Pxy

k+1|k, the
new recursive unscented Kalman filtering algorithm has
been employed to estimate the system state. On the other
hand, in the former results, these researches do not pay
much attention to the problem of the nonlinear filtering
for nonlinear discrete stochastic systems with correlated
noises and missing data in the measurement. Hence, we
make the first attempt to propose the nonlinear filter for
systems subject to correlated noises and missing measure-
ments and proposed filtering algorithm accuracy can be
improved because we have made great efforts to compen-
sate the effects from correlated noises and missing mea-
surements. In the following part, we make the comparison
with the unscented Kalman filter and extended Kalman fil-
ter in [41] for nonlinear systems with missing measure-
ments.

4. AN ILLUSTRATIVE EXAMPLE

We give a simulation example to illustrate the perfor-
mance of the developed filtering algorithm in this section.

Consider the following nonlinear discrete stochastic
systems:

0 5 10 15 20 25 30 35 40 45 50

k/time step

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1. The trajectories of λk.

xk+1 =

[
sin(x1

k)x
1
k + cos(2k)x2

k
cos(x2

k)x
2
k +0.75x2

k

]
+ωk

zk = λk

[
sin(2k)x1

k + x1
kx2

k
cos(2x2

k)x
1
k + sin(k)x2

k

]
+νk

where xk =
[

x1
k x2

k

]T , ωk and νk are correlated Gaus-
sian white noises with covariances Qk = 0.2I2, Rk = 0.1I2

and cross covariance Sk =

[
0.08 0

0 0.05

]
.

Let

x0 =
[

2 2
]T ; x̂0|0 =

[
2 2

]T ;

P0|0 = I2; α = 0.85

and ei
k denote the error for the estimation of xi

k, i.e., ei
k =

xi
k − x̂i

k|k, where i = 1,2.
According to Theorem 1, the nonlinear recursive filter

can be constructed by applying the unscented transforma-
tion approach and MMSE estimation principle. The fil-
ter gain matrices Kk+1 and the error covariance matrices
Pk+1|k+1 at every time step can be recursively computed
by utilizing the given algorithm and Matlab software. The
results are shown in Figs. 1-5. The trajectories of random
variable λk are plotted in Fig. 1. We can easily know that
λk is 1 or 0 at every time step. Fig. 2 and Fig. 3 plot the
filtering errors ei

k (i = 1,2). From the simulations, we can
see that the range of error fluctuation in our paper is rela-
tively small compared with the error of UKF and EKF in
the references [41]. The actual system states xi

k and their
estimates x̂i

k|k (i= 1,2) are plotted in Fig. 4 and Fig. 5. It is
easily seen that, due to making a lot of efforts to reduce the
effects from correlate noises and missing measurements,
the proposed filter can estimate the system state effectively
and the recursive algorithm is feasible.
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0 5 10 15 20 25 30 35 40 45 50

k/time step
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Fig. 2. The error e1
k .

0 5 10 15 20 25 30 35 40 45 50

k/time step

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Fig. 3. The error e2
k .

5. CONCLUSION

The problem of nonlinear estimation has been inves-
tigated for a class of nonlinear discrete stochastic sys-
tems subject to correlated noises and missing measure-
ments. Firstly, by applying the innovative analysis and
unscented transformation approach, an optimal one-step
predictor has been designed to address the effects of the
correlated noises and missing measurements. Then, based
on the one-step predictor, the projection theory and the
minimum mean square error (MMSE) principle, the non-
linear unscented Kalman filter has been constructed which
can estimate the system state effectively. Finally, a recur-
sive algorithm has been given to design the nonlinear fil-
ter and a simulation example has been given to show the
feasibility and usefulness of the proposed approach. Fur-
ther research topics include the stability analysis of the

0 5 10 15 20 25 30 35 40 45 50

k/time step

-0.5

0

0.5

1

1.5

2

Fig. 4. The trajectories of x1
k and x̂1

k|k.

0 5 10 15 20 25 30 35 40 45 50

k/time step

-1

-0.5

0

0.5

1

1.5

2

Fig. 5. The trajectories of x2
k and x̂2

k|k.

proposed algorithm and dealing with the UKF with miss-
ing measurements described by Markov-chain. The corre-
sponding results will appear in the near future.
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