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Sliding Mode Control for A Class of Uncertain Discrete Switched Systems
Yonghui Liu

Abstract: This paper considers the discrete-time quasi-sliding mode control for a class of uncertain switched sys-
tems. Since the input matrices are different, a weighted sum approach is proposed such that a common sliding
surface is designed. Moreover, by designing a sliding mode control law, the state trajectories are driven into a
certain band of the sliding surface. Furthermore, to guarantee the exponential stability of the sliding mode dynam-
ics, a sufficient condition based on the average dwell time technology is given. Finally, a simulation is given to
demonstrate the efficiency of the proposed method.
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1. INTRODUCTION

As a special class of hybrid dynamical systems,
switched systems have received considerable attention
during the last two decades. Many engineer systems such
as power systems, aircraft control systems, chemical con-
trol processes and communication network systems [1],
etc, can be transformed into certain types of switched sys-
tems. In addition, due to the existence of the switching
signal, the dynamical performance of the switched sys-
tems is complex. Therefore, a lot of research have been
focused on stability and stabilization of switched systems
(see [2–5] and the reference therein).

On the other hand, owing to the widespread application
of the digital controllers, many classic control strategies
are implemented in discrete systems. Therefore, many re-
sults on stability and stabilization of the discrete switched
systems [6–8] have been proposed. Among them, [6]
investigated the qualitative properties of linear discrete
switched systems based on the average dwell time tech-
nology. Later, Zhai [7] further considered quadratic stabi-
lization via state and output feedback for discrete switched
systems when all the subsystems are unstable. Recently,
the results were further extended into [8], in which each
subsystem is not required to be stable and the asyn-
chronous switching may happen.

It is well known that sliding mode control (SMC) has
many desirable properties, such as fast response, and
strong robustness against uncertain parameters and exter-
nal disturbances. Therefore, SMC strategy has been used
widely in many complex systems, such as, stochastic sys-
tems [9,10] and Markovian jumping systems [11,12]. Re-
cently, the problem of SMC on switched systems has re-
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ceived increasing attention [13–15]. Among them, Wu
and Lam [13] considered SMC for a class of switched
systems with state delay, whose method was further ex-
tended to stochastic switched systems in [14]. Besides,
[15] discussed the robust H∞ SMC for a class of uncer-
tain switched systems. It is worth noting that, in the
previous work [13–15], the input channel for each sub-
system is required to be the same. To remove this con-
straint, [16] considered the switched systems with dif-
ferent input matrices and constructed a common sliding
surface via the weighted sum approach. More recently,
[17] further proposed an adaptive sliding mode controller
for switched systems, by which the controller parameters
can be updated automatically to compensate the actuator
faults. However, as far as the author knows there are rare
work on SMC of the discrete switched systems. This is
because, in discrete sliding mode control, the sample time
may results in the quasi-sliding mode. That is, the system
state may not always remain onto the sliding surface but
switchs around the sliding surface, which brings challenge
in SMC of the controlled systems. Moreover, the existing
works on sliding mode control of switched systems can-
not be simply extended to discrete switched systems, due
to the special characteristics of the switched systems.

Motivated by the above discussions, we consider the
problem of SMC for a class of uncertain discrete switched
systems. In the discrete switched systems under consider-
ation, the input channel for each subsystem is not required
to be the same, which is different from the existing work
[13–15]. To design a common sliding surface, a weighted
sum approach is presented. In addition, the average dwell
time approach is employed to analyze the stability of the
sliding mode dynamics. Furthermore, it is shown that the
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reachability of the quasi-sliding mode (QSM) can be guar-
anteed despite the presence of the sample time, parameter
uncertainties and external disturbances.

The following notations are used throughout this paper:
Rn denotes the real n-dimensional space; Rm×n denotes
the real m× n matrix space. For any vector x ∈ Rn, ∥x∥
denotes its Euclidean norm and xT is its transpose. For
a real symmetric matrix, M > 0 means that M is positive
definite; I is used to represent an identity matrix of ap-
propriate dimensions. The vector 1n ∈ Rn is consisted of
ones, and ei ∈ Rn is the i-th standard base vector; λmax(·)
and λmin(·) denotes the maximum and minimum eigen-
value of a symmetric matrix, respectively, rank (·) repre-
sents the rank of a matrix, and the symmetry parts in a
matrix are denoted by ∗. ⊗ stands for the Kronecker prod-
uct. Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

2. PROBLEM STATEMENT

Consider the following uncertain discrete switched sys-
tems

x(k+1) = (Aσ +∆Aσ )x(k)+Bσ (u(k)+ fσ (x(k))), (1)

where x(k) ∈Rn is the state, u(k) ∈Rn is the control input
of the system, Aσ and Bσ are known matrices and ∆Ai is
the parameter uncertain, fσ (x(k)) is the matched distur-
bance, {Aσ , Bσ : σ ∈ Γ} is a family of matrices depending
on an index set Γ = {1,2, · · · ,s}, and σ(k) : R → Γ is a
piecewise constant function of time k called as switching
signal.

In this work, it is assumed that the admissible uncer-
tainty ∆Aσ , σ ∈ Γ, satisfies

∆Aσ = Eσ Gσ (k)Nσ ,

where Eσ and Nσ are constant matrices, and Gσ (k) is
an unknown matrix function satisfying GT

σ (k)Gσ (k) ≤ I.
Besides, the disturbance fσ (x(k)) is assumed to be norm
bounded, that is,

∥ fσ (x(k))∥< dσ∥x(k)∥

with a known scalar dσ > 0.
For convenience, we will denote the system associated

with the i-th subsystem by

Aσ ≜ Ai, ∆Aσ = ∆Ai, Bσ ≜ Bi, fσ (x(k))≜ fi(k).

Thus, for σ(k) = i, system (1) can be expressed as

x(k+1) = (Ai +∆Ai)x(k)+Bi(u(k)+ fi(k)). (2)

It is noted that the input matrix Bi ∈Rn×m for each subsys-
tem is not required to be the same, which brings challenge
in designing a common sliding surface. To overcome the

difficulty, the following weighted sum approach of the in-
put matrices, as in [16], is introduced

B ≜
s

∑
i=1

αiBi ∈ Rn×m,

M ≜ 1
2
[
(B− sα1B1) (B− sα2B2) · · · (B− sαnBs)

]
,

L(i)≜ (Is −2eieT
i )⊗ Is ∈ Rms×ms,

N ≜ 1s ⊗ Im ∈ Rms×m,

M≜
[
M αIn

]
, L(i)≜

[
L(i) 0

0 1
α (1− sαi)Bi

]
,

N ≜
[

N
Im

]
,

α ≜ max{|sα −1|, |sα −1|} · max
1≤i≤s

{∥Bi∥},

where αi ∈ R is a bounded scalar satisfying

α ≤ αi ≤ α, i = 1,2, . . . ,s, (3)

with α and α being known scalars.

Remark 1: It is shown that the input matrix Bi for each
subsystem is not required to be the same. Therefore, the
proposed method is more applicable than the existing ones
[13–15].

Remark 2: It is worth noting that for

B = α1B1 +α2B2 + · · ·+αsBs, (4)

with Bi full column rank, B is generally full column rank.
That is, for general choice of scalars αi, i = 1, . . . ,s, it can
be obtained that B is full column rank.

By employing the weighted sum approach, it is can be
shown that Bi = B+ML(i)N , with ∥L(i)∥ ≤ 1. In the
following parts, it can be shown that the weighted sum
approach plays an important role in designing a common
sliding surface.

The control objective of this work is to design a SMC
law such that the switched system (1) is exponentially sta-
ble despite the presence of the sample time, parameter un-
certainties and external disturbances. To this end, some
necessary assumption and lemma are introduced as fol-
lows.

Assumption 1: The matrix Bi is full column rank, that
is, rank(Bi) = m.

Lemma 1: Let D, H, and G(t) be real matrices of ap-
propriate dimensions with G(t) satisfying G(t)T G(t) ≤ I.
Then, for any ε > 0, we have

DG(t)H +HT GT (t)DT ≤ ε−1DDT + εHT H.

For convenience of our later development, the following
concepts are proposed.



1718 Yonghui Liu

Definition 1: [18] The sliding motion in the δ vicinity
of the sliding surface S(k) = 0 satisfying

∥S(k)∥ ≤ δ

is called a quasi-sliding mode. In addition, the parameter
δ > 0 is called the quasi-sliding mode band width.

Definition 2: [19] For any kv > ks > k0, let Nσ(k)(ks,kv)
denote the number of switchings of σ over [ks,kv]. If

Nσ(k)(ks,kv)≤ N0 +
(ks − kv)

Tσ

holds for Tσ > 0 and N0 ≥ 0, then Tσ is called the average
dwell time.

In this work, let N0 = 0, as is usually used in the previ-
ous works.

Definition 3: The equilibrium x∗ = 0 of system (1)
is said to be exponentially stable under switching signal
σ(k) if there exist scalars ρ > 0, 0 < β < 1 such that the
solution x(k) satisfies

∥x(k)∥ ≤ ρβ (k−k0)∥x(k0)∥, ∀ k ≥ k0.

3. SLIDING SURFACE AND QUASI-SLIDING
MODE DYNAMICS

In this section, a common sliding surface will be de-
signed and the stability of the quasi-sliding mode dynam-
ics will be analyzed.

The common sliding surface is designed as

S(k) = Dx(k), (5)

where D = (BT B)−1BT . It can be seen from Assumption
1 that Bi is full column rank, which implies that B is gen-
erally full column rank. Therefore, the non-singularity of
BT B can be guaranteed.

Remark 3: It is worth noting that the sliding surface
(5) is different from the previous work [20], in which the
sliding surface is mode-depended. If a mode-depended
sliding surface is designed, it will be difficult to analyze
the stability of the state trajectory as it jumps from one
sliding surface to another. Therefore, a common sliding
surface is designed.

It is noted that the ideal sliding mode satisfies

S(k+1) = S(k) = 0, (6)

In view of (5) and (6), one has

D(Ai +∆Ai)x(k)+DBi(ui(k)+ fi(k)) = 0. (7)

Thus, the following equivalent controller ueq(k) is ob-
tained

ueq(k) =−(DBi)
−1D(Ai +∆Ai)x(k)− fi(k). (8)

Substituting (8) into system (2), the ideal sliding mode is
obtained as follows

x(k+1) = (I −Bi(DBi)
−1D)(Ai +∆Ai)x(k). (9)

Remark 4: The matrix DBi = I + DML(i)N is
required to be non-singular. Hence, the parameters
αi, i = 1,2, · · · ,s, should be designed such that the non-
singularity condition is satisfied.

In the above discussion, a common sliding surface has
been designed and the corresponding idea sliding mode
(9) is obtained. In the sequel, by employing the average
dwell time method, we will discuss the exponential stabil-
ity of the sliding mode dynamics (9).

Theorem 1: Consider the switched systems in (1) sat-
isfying the Assumption 1. For the given scalar 0 < γ < 1,
if there exist matrice Pi > 0, and parameters εi1 > 0, εi2 >
0, i ∈ Γ, satisfying the following linear matrix inequalities
(LMIs)[

Θi1 Θi2

∗ −εi1I

]
< 0, (10)[

−Pi Θi3

∗ −εi2I

]
< 0, i ∈ Γ, (11)

where

Θi1 = ((I −Bi(DBi)
−1D)Ai)

T Pi((I −Bi(DBi)
−1D)Ai)

− γPi + εi1NT
i Ni + εi2NT

i Ni,

Θi2 = ((I −Bi(DBi)
−1D)Ai)

T Pi(I −Bi(DBi)
−1D)Ei,

Θi3 = Pi(I −Bi(DBi)
−1D)Ei,

then with the parameter

µ = max
i, j∈Γ,i̸= j

λmax(Pi)

λmin(Pj)
, (12)

and the average dwell time Tσ satisfying

Tσ ≥ Tσ ∗ >− ln µ
lnγ

, (13)

the switched system (9) is exponentially stable. Further-
more, the state is estimated by

∥x(k)∥ ≤ ρβ k−k0∥x(k0)∥, (14)

with the parameters

β =
√

γµ1/Tσ , ρ =

√
b
a
≥ 1,

a = min
i∈Γ

λmin(Pi), b = max
i∈Γ

λmax(Pi). (15)

Proof: For the switched systems (9), consider the Lya-
punov function of the i-th subsystem as

Vi(k) = xT (k)Pix(k). (16)
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Thus, it follows (2) and Lemma 1 that

Vi(k+1)− γVi(k)

= xT (k)((I −Bi(DBi)
−1D)(Ai +∆Ai))

T Pi

× (I −Bi(DBi)
−1D)(Ai +∆Ai)x(k)− γxT (k)Pix(k)

≤ xT (k)((I −Bi(DBi)
−1D)Ai)

T Pi

× (I −Bi(DBi)
−1D)Ai)x(k)+ εi1xT (k)NT

1 N1x(k)

+ ε−1
i1 xT (k)((I −Bi(DBi)

−1D)A)T Pi

× (I −Bi(DBi)
−1D)Ei(Pi(I −Bi(DBi)

−1D)Ei)
T

× (I −Bi(DBi)
−1D)Ax(k)+ xT (k)

× ((I −Bi(DBi)
−1D)∆Ai)

T Pi

× (I −Bi(DBi)
−1D)∆Aix(k)− γxT (k)Pix(k). (17)

It can be shown from (17) and Schur’s complement that

Vi(k+1)− γVi(k)< 0, (18)

can be implied byΘi4 Θi2 Θi5

∗ −εi1I 0
∗ ∗ −Pi

< 0, (19)

where

Θi4 =((I −Bi(DBi)
−1D)Ai)

T Pi((I −Bi(DBi)
−1D)Ai)

− γPi + εi1NT
i Ni,

Θi5 =((I −Bi(DBi)
−1D)∆Ai)

T Pi.

The expression (19) can be rewritten as followsΘi4 Θi2 0
∗ −εi1I 0
∗ ∗ −Pi

+ΞGΠ+ΠTGT ΞT < 0, (20)

where Ξ =
[
Ni 0 0

]T , G = GT (k) and Π = [0 0 ((I −
Bi(DBi)

−1D)Ei)
T Pi].

In view of Schur’s complement, it can be seen that (20) is
implied by (10) and (11).

It can be shown from (18) that

Vi(k+1)≤ γVi(k). (21)

Thus, for any k ∈ [kl ,kl+1), it can be derived from (21) that

Vσ(k)(k)≤ γ (k−kl)Vσ(kl)(kl). (22)

According to (12) and (22), there holds

Vσ(k)(k)≤γ (k−kl)µVσ(kl−1)(kl)

...

≤γ (k−k0)µ (k−k0)/Tσ Vσ(k0)(k0)

≤(γµ1/Tσ )(k−k0)Vσ(k0)(k0). (23)

Considering (15), one has

a∥x(k)∥2 ≤Vσ(k)(k), (24)

and

Vσ(k0)(k0)≤ b∥x(k0)∥2. (25)

It can be shown from (13) that

αµ1/Tσ ≤ γµ− lnγ/ ln µ ≤ 1. (26)

Combining (23)-(26), yields

∥x(k)∥2 ≤1
a

Vσ(k)(k)

≤b
a

β 2(k−k0)∥x(k0)∥2. (27)

Therefore, the ideal sliding mode (9) is exponentially sta-
ble, which completes the proof. □

4. SLIDING MODE CONTROLLER DESIGN

In the following part, a SMC law will be designed to en-
sure the reachability of the quasi-sliding mode. To realize
the control purpose, the SMC law is designed as follows:

S(k+1)−S(k) =−ϖT sgn(S(k))−qT S(k), (28)

where T is the sample time, ϖ and q are scalars that satis-
fying 0 < ϖ < 1 and 1−qT > 0.

In view of (7) and (28), the sliding mode controller is
obtained as follows:

u(k) =− (DBi)
−1(DAi − (1−qT )D)x(k)

− (DBi)
−1ϖT sgn(S(k))−Fi(k), (29)

where Fi(k) = (DBi)
−1D∆Aix(k)+ fi(k).

Since the controller (29) contains the uncertain Fi(k), it
is not applicable in practice. Thus, the following SMC law
is proposed

u(k) =− (DBi)
−1(DAi − (1−qT )D)x(k)

− (DBi)
−1ϖT sgn(S(k))− ũi(k), (30)

where

ũi(k) =


(αi(k)+(DBi)

−1∥DBi∥ηi)
S(k)

∥S(k)∥
,

if∥S(k)∥ ̸= 0,

0, if∥S(x(k)) = 0∥,

αi(k) = (DBi)
−1∥DEi∥∥Hix(k)

+(DBi)
−1∥DBi∥di∥x(k)∥, (31)

and η is a positive scalar.
In the following part, the result on reachability of the

QSM will be analyzed.
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Theorem 2: Consider the switched system (1) satisfy-
ing Assumption 1. If the SMC law is designed as (30), the
QSM domain

Ω =

{
∥S(k)∥< ζ |

ζ =min
i∈Γ

{
(ϖT )2 +ηi∥DBi∥(2ϖT +ηi∥DBi∥)
2ϖT (1−qT )+2ηi(1−qT )∥DBi∥

}}
(32)

can be reached in finite time. Moreover, the state trajec-
tory will not escape from the domain once it enters there.

Proof: Choose the following Lyapunov function

V (k) = ST (k)S(k). (33)

According to (5) and the SMC law (30), one has

∆V (k) =V (k+1)−V (k)

=
[
(1−qT )S(k)−ϖT sgn(S(k))

]T
×
[
(1−qT )S(k)−ϖT sgn(S(k))

]
−2ϖT sgn(S(k))DBi(Fi(k)− ũi(k))

+2(1−qT )
[
DBi(Fi(k)− ũi(k))

]T S(k)

+
[
DBi(Fi(k)− ũi(k))

]T [DBi(Fi(k)− ũi(k))
]

−ST (k)S(k). (34)

In view of (31), we get

2(1−qT )
[
DBi(Fi(k)− ũi(k))

]T S(k)

≤−2ηi(1−qT )∥DBi∥∥S(k)∥, (35)

−2
[
DBi(Fi(k)− ũi(k))

]T εT sgn(S(k))

+
[
DBi(Fi(k)− ũi(k))

]T [DBi(Fi(k)− ũi(k))
]

≤ ηi∥DBi∥(2ϖT +ηi∥DBi∥). (36)

Combining (34)-(36), we have

∆V (k) =(1−qT )2ST (k)S(k)

−2ϖT (1−qT )∥(S(k)∥

+(ϖT )2 −ST (k)S(k)

−2ηi(1−qT )∥DBi∥∥S(k)∥
+ηi∥DBi∥(2ϖT +ηi∥DBi∥)

=((1−qT )2 −1)ST (k)S(k)−
[
2ϖT (1−qT )

+2ηi(1−qT )∥DBi∥
]
∥S(k)∥

+(ϖT )2 +ηi∥DBi∥(2ϖT +ηi∥DBi∥).
(37)

It can be shown from (32) and (37) that, when ∥S(k)∥> ζ ,
there holds

∆V (k)≤ 0.

This means that the QSM domain can be reached in fi-
nite time and the state trajectories of system (9) will re-
main in the QSM domain all the time, which completes
the proof. □

Remark 5: It is shown that outside the domain of
QSM there holds ∥S(k+1)∥ < ∥S(k)∥, which means that
∥S(k)∥ will finally enter into the QSM domain in finite
time. Moreover, the quasi-sliding mode band width satis-

fies ζ = min
i∈Γ

{
(ϖT )2+ηi∥DBi∥(2ϖT+ηi∥DBi∥)
2ϖT (1−qT )+2ηi(1−qT )∥DBi∥

}
.

5. SIMULATION

Consider a switched system as in (1) with two modes
and parameters as follows:

Subsystem 1:

A1 =

 0.3 −0.3 0.4
−0.1 −0.1 −0.2
−0.4 0.2 −0.4

 , B1 =

1 0.5
1 −1
0 1.5

 ,
E1 =

−0.5
−0.5
0.5

 ,
G1(k) = 0.5sin(t), N1 =

[
−0.2 −0.2 0.2

]
,

f1(x) =
[ 1

1+t2

0

]
.

Subsystem 2:

A2 =

0.1 −0.5 0.4
0.5 −0.2 0.2
0.4 0.5 0.2

 , B2 =

−0.5 1.5
1 −2
1 0.5

 ,
E2 =

 0.5
−0.5
0.5

 ,
G2(k) = 0.5cos(t), N2 =

[
0.2 −0.2 −0.2

]
,

f2(x) =
[

0
1

1+t2

]
.

By choosing α1 = α2 = 1
2 , it can be shown that Bi =

ML(i)N. Moreover, the non-singular of the matrix DBi

can be guaranteed. For scalar γ = 0.9, solving LMIs (10)
and (11) yields

ε11 = 32.8497, ε12 = 32.2462,

ε21 = 37.7794, ε22 = 37.2609,

P1 =

24.5019 −0.7601 7.7072
−0.7601 35.1248 0.4201
7.7072 0.4201 28.6393

 ,
P2 =

30.4217 −2.3981 6.9465
−2.3981 40.2809 2.0903
6.9465 2.0903 34.2725

 .
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Thus, the desired sliding surface (5) is designed as

S(t) =
[

0.3614 0.6231 0.5732
0.2991 −0.2430 0.3364

]
x(t).

According to Theorem 1, the parameters µ and Tσ are de-
signed, respectively, as follows:

µ = max
i, j∈Γ

λmax(Pi)

λmin(Pj)
, and σ >

ln µ
lnλ

.

Therefore, it can be obtained that the parameters

µ = 1.1635,

and the average dwell time can be designed as

Tσ = 1.5.

Assume the sampling time T = 0.1 s, choose the pa-
rameter ϖ = 0.5 and q = 2. In view of (30)-(31), the SMC
law is designed as

u(k) =



[
0.3203 0.5203 0.4957
0.2029 −0.1971 0.1565

]
x(k)

+

[
−0.1043 0.0486
0.0065 −0.1145

]
sgn(S(k)),

if i = 1 and ∥S(k)∥= 0,[
−0.3102 0.3136 −0.0159
0.1080 −0.1773 0.0568

]
x(k)

+

[
−0.1006 −0.0381
−0.0051 −0.0926

]
sgn(S(k)),

if i = 2 and ∥S(k)∥= 0,

u(k) =



[
0.3203 0.5203 0.4957
0.2029 −0.1971 0.1565

]
x(k)

+

[
−0.1043 0.0486
0.0065 −0.1145

]
sgn(S(k))

−

([
0.2597 −0.1208
−0.0162 0.2849

]
×
∥∥[−0.2 −0.2 0.2

]
x(k)

∥∥
+

[
1.2509 −0.5820
−0.078 1.3725

]
(d1∥x(k)∥

+η1)

)
S(k)

∥S(k)∥ ,

if i = 1 and ∥S(k)∥ ̸= 0,[
−0.3102 0.3136 −0.0159
0.1080 −0.1773 0.0568

]
x(k)

+

[
−0.1006 −0.0381
−0.0051 −0.0926

]
sgn(S(k))

−

([
0.4687 0.1774
0.0238 0.4316

]
∥∥[−0.2 −0.2 0.2

]
x(k)

∥∥
+

[
1.3227 0.5007
0.0673 1.2181

]
(d2∥x(k)∥

+η2)

)
S(k)

∥S(k)∥ ,

if i = 2 and ∥S(k)∥ ̸= 0.
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Fig. 1. Switching signal σ(k).
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Fig. 2. State trajectories x(k).

To eliminate the chattering phenomenon, the sign func-
tion sgn(S(k)) is replaced by S(k)

∥S(k)∥+0.1 . Then, For the ini-

tial states x(0) =
[
0.5 −0.5 −0.4

]T , choose the parame-
ter d1 = d2 = 2 and η1 = η2 = 0.8, the simulation results
with the proposed sliding mode controller can be seen in
Figs. 1-4. The switching signal is given in Fig. 1. The
control signal is depicted in Fig. 4. It can be seen from
Figs. 2 and 3 that the states x1(k), x2(k) and x3(k) will be
driven onto the domain of the sliding mode and exponen-
tially tend to zero.

6. CONCLUSION

In this paper, we have discussed SMC for a class of
uncertain discrete switched systems. By employing the
weighted sum approach, a common sliding surface is de-
signed. Moreover, the exponential stability of the sliding
mode dynamics is analyzed by adopting the average dwell
time strategy. Besides, it is shown that the state trajec-
tories can be driven onto the domain of the quasi-sliding
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Fig. 3. Sliding surface S(k).
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Fig. 4. Control input u(k).

mode despite the presence of the sample time, parame-
ter uncertainties and external disturbances. However, for
physical models, there are many more complex phenom-
ena such as stochastic disturbance effect [21]. These may
be further considered in the future research.
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