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Abstract: This paper deals with the stability and stabilization problems for positive 2D systems described by a linear
discrete-time Roesser model with delays. A linear programming (LP) approach is used to establish the necessary
and sufficient conditions for asymptotic stability of the positive 2D state delayed Roesser model. Furthermore, a
design procedure for memory, non-negative memory and memoryless state feedback controllers is given by solving
a certain LP problem. Two examples are included to illustrate the effectiveness of the proposed results.
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1. INTRODUCTION

In the literature, different 2D state-space models have
been proposed, the most popular 2D linear discrete-time
systems were introduced by Attasi [1], Roesser [2], For-
nasini and Marchesini [3] and Kurek [4]. The extension
of 2D Roesser model to positive 2D Roesser model has
been introduced in [5]. Positive 2D Roesser systems are
characterized by two non-negative independent variables
propagating information in two independent directions,
and have found applications in iteration learning control
[6, 7], digital data filtering [8, 9], distributed and parallel
computing [10], analysis of iterative algorithms [11], river
pollution and self-purification process [12] and image pro-
cessing [2].

A great number of results on the stability analysis for
positive 2D systems have been obtained in the literature
[13–19]. The choise of the Lyapunov functions for posi-
tive 2D Roesser model has been investigated in [13]. The
internal stability of positive 2D systems have been inves-
tigated in [17]. LMI approach to checking stability of
positive 2D systems have been proposed in [15, 16]. The
stability of positive 2D systems described by the Roesser
model and the synthesis of state-feedback controllers have
been considered in [14, 20]. However, few results have
reported in literature on positive 2D time-delay systems
[18, 19].

In this paper, we are concerned with the control prob-
lem of positive 2D state delayed systems described by the
Roesser model. Firstly, by transforming the original posi-
tive 2D state-delayed Roesser model into a system without
delays, a necessary and sufficient condition on the aug-
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mented system matrix was derived for the asymptotic sta-
bility of positive 2D state-delayed Roesser model. On the
other hand, we propose a simple numerical method for a
complete treatment of the stabilization problem of posi-
tive 2D state-delayed Roesser systems. This method is
based on the Linear Programming (LP) framework, which
has been successfully applied for checking asymptotic sta-
bility, design of state feedback controllers and observers
construction for positive 1D systems [21–23]. In addi-
tion, based on this approach, we also provide LP neces-
sary and sufficient conditions for the stabilization prob-
lems with memory, non-negative memory and memory-
less controllers. However, the stabilization problem is not
fully investigated and still not completely solved.

Based on numerical experience, when dealing with ma-
trices of high dimensions or with large time delays, the
LP approach becomes computationally efficient and bet-
ter than the LMI approach. Another advantage of the LP
approach is the design of memoryless feedback controller,
since, it is more difficult to impose such a controller struc-
ture in the augmented state space models [24]. In addi-
tion, our approach can be also applied to 2D state delayed
Roesser models which are not positive in open-loop.

This paper is organized as follows: In Section 2 basic
definitions and theorems concerning positive 2D Roesser
systems without delays are given. Section 3, gives delay
dependent and delay independent necessary and sufficient
conditions in terms of LP problem for asymptotic stabil-
ity of positive 2D Roesser systems with delays. Section 4,
contains our main results, and provides synthesis of mem-
ory, non-negative memory and memoryless controllers for
forced 2D Roesser system with delays. Section 5 gives
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numerical examples. Concluding remarks are given in
Section 6.

The following notation will be used: Rn×m denotes the
set of n×m real matrices, the set of real n×m matrices
with non-negative entries will be denoted by Rn×m

+ and
the set of non-negative integers by Z+; the n× n identity
matrix will be denoted by In, the n×m zero matrix will be
denoted by 0n×m, 1n denotes a column vector of n-entries
equal to one and vec(M) denotes the vector column of a
matrix M. ρ(M) denotes the spectral radius of a matrix
M ∈ Rn×n and is defined as: ρ(M) = max{|λ1|, . . . , |λn|},
where λ1, . . . , λn are the eigenvalues of M.

2. PRELIMINARIES RESULTS

Consider the autonomous 2D Roesser model described
by the following state space equation[

xh
i+1, j

xv
i, j+1

]
=

[
A11 A12

A21 A22

][
xh

i, j
xv

i, j

]
, i, j ∈ Z+, (1)

where xh
i, j ∈ Rn1 and xv

i, j ∈ Rn2 are the horizontal and ver-
tical state vectors at the point (i, j), and Akl ∈ Rnk×nl , k,
l = 1, 2, are known matrices.

The Boundary conditions for (1) have the form{
xh

0, j ∈ Rn1 , ∀ j ∈ Z+

xv
i,0 ∈ Rn2 , ∀i ∈ Z+.

(2)

Definition 1: System (1) is called a positive 2D
Roesser model if all the trajectories generated by (1),
with non-negative boundary conditions (2) remain non-
negative.

Definition 2: A real matrix M is called a non-negative
matrix (M ∈ Rn×q

+ ) if all its elements are non-negative
mi j ≥ 0, i = 1, . . . ,n, j = 1, . . . ,q.

Proposition 1 [25]: The 2D Roesser model (1) is pos-

itive if and only if the matrix
[

A11 A12

A21 A22

]
is non-

negative, or equivalently, the matrices A11, A12, A21 and
A22 are non-negative.

Definition 3 [26]: A positive 2D Roesser system de-
scribed by (1) is called asymptotically stable if the state
evolution corresponding to any set of non-negative bound-
ary conditions (2) asymptotically tends to zero, i.e.,

lim
i, j→∞

xi, j = 0.

Theorem 1 [14, 27]: Assume that system (1) is posi-
tive. Then the following statements are equivalent
(i) System (1) is asymptotically stable.

(ii) ρ
([

A11 A12

A21 A22

])
< 1.

(iii) There exist vectors λ1 ∈ Rn1 and λ2 ∈ Rn2 such that
(A11 − In1)λ1 +A12λ2 < 0,
(A22 − In2)λ2 +A21λ1 < 0,
λ1 > 0,λ2 > 0.

(3)

3. POSITIVE 2D ROESSER MODEL WITH
DELAYS

In this section, we address the problem of positivity and
asymptotic stability for positive 2D Roesser systems with
time-delays.

Next, consider the following autonomous 2D Roesser
model with q delays[

xh
i+1, j

xv
i, j+1

]
=

q

∑
t=0

[
At

11 At
12

At
21 At

22

][
xh

i−t, j
xv

i, j−t

]
, i, j ∈ Z+,

(4)

where xh
i, j ∈ Rn1 and xv

i, j ∈ Rn2 are the horizontal and ver-
tical state vectors at the point (i, j). The matrices At

11, At
12,

At
21, At

22, t = 0, . . . ,q are known with appropriate dimen-
sion.

The most natural method to analyze a positive 2D sys-
tem with delays is the transformation of such 2D system
into an equivalent non-delayed 2D system, and then in-
spect the augmented matrix. Therefore, the 2D system
represented by (4) can be transformed in the following[

x̃h
i+1, j

x̃v
i, j+1

]
= Ã

[
x̃h

i, j
x̃v

i, j

]
, i, j ∈ Z+, (5)

by using the augmented vectors

x̃h
i, j =


xh

i, j
xh

i−1, j
...

xh
i−q, j

 and x̃v
i, j =


xv

i, j
xv

i, j−1
...

xv
i, j−q

 ,
where, the matrix Ã is given by

Ã =


A0

11 . . . Aq
11 A0

12 . . . Aq
12

Iq∗n1 0 0 0
A0

21 . . . Aq
21 A0

22 . . . Aq
22

0 0 Iq∗n2 0


∈ RN×N . (6)

Finally, the 2D Roesser model with q delays (4) has
been reduced to an equivalent 2D Roesser system without
delays, but with higher dimension N = (q+1)(n1 +n2).

Applying Proposition 1 to the 2D system (5), we obtain
the following result.

Proposition 2: The 2D Roesser model with q delays
(4) is positive if and only if the matrix Ã ∈ RN×N is non-
negative, or equivalently, the matrices At

11, At
12, At

21 and
At

22 are non-negative ∀t = 0, . . . ,q.

Also, by considering the new 2D system (5), we are in
place to announce the following necessary and sufficient
conditions for asymptotic stability of the positive 2D state
delayed Roesser model (4). From Theorem 1 applied to
the 2D system (5), we have the following result.
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Theorem 2: The positive 2D Roesser model (4) with
q delays is asymptotically stable if and only if one of the
following equivalent conditions holds.

(i) The positive 2D Roesser model (5) is asymptotically
stable.

(ii) ρ(Ã)< 1.

(iii) There exist a vector λ ∈ R(q+1)∗(n1+n2) such that{
(Ã− IN)λ < 0,

λ > 0.
(7)

In what follows, we present delay dependent necessary
and sufficient conditions with regard to the asymptotic sta-
bility of the positive 2D system described by the Roesser
model (4).

Theorem 3: The positive 2D Roesser system (4) with q
delays is asymptotically stable if and only if the following
LP problem in the variables λ 0

1 ∈ Rn1 , . . ., λ q
1 ∈ Rn1 , λ 0

2 ∈
Rn2 , . . ., λ q

2 ∈ Rn2 is feasible.

(A0
11 − In1)λ

0
1 +

q

∑
t=1

At
11λ t

1 +
q

∑
t=0

At
12λ t

2 < 0,

(A0
22 − In2)λ

0
2 +

q

∑
t=1

At
22λ t

2 +
q

∑
t=0

At
21λ t

1 < 0,

λ t
1 < λ t+1

1 , t = 0, . . . ,q−1,

λ t
2 < λ t+1

2 , t = 0, . . . ,q−1,

λ t
1 > 0, t = 0, . . . ,q,

λ t
2 > 0, t = 0, . . . ,q.

(8)

Proof: To show this, we take into account that the 2D
system (4) is positive and asymptotically stable. Note that,
the positive 2D state-delayed Roesser model (4) is asymp-
totically stable if and only if the 2D system (5) is asymp-
totically stable. Then, applying to the 2D system (5) The-
orem 2, we have that the 2D system (4) is asymptotically
stable if and only if there exists λ ∈ RN such that LP con-
ditions (7) holds. Now, by using the expression of Ã given
in (6) and defining λ = [λ 0

1 . . . λ q
1 λ 0

2 . . . λ q
2 ]

T , with this
change of variable, the inequalities (7) are effectively the
same inequalities in the LP constraints (8). Finally, the
reverse implication can be trivially obtained by the sim-
ple matrix manipulation shown above. Thus, the proof is
complete. □

Now, we give necessary and sufficient delay indepen-
dent conditions for the asymptotic stability of positive 2D
system described by the Roesser model (4).

Theorem 4: The positive Roesser system (4) with q de-
lays is asymptotically stable if and only if the following
LP problem in the variables λ1 ∈ Rn1 and λ2 ∈ Rn2 is fea-

sible.

(
q

∑
t=0

At
11 − In1

)
λ1 +

q

∑
t=0

At
12λ2 < 0,(

q

∑
t=0

At
22 − In2

)
λ2 +

q

∑
t=0

At
21λ1 < 0,

λ1 > 0, λ2 > 0.

(9)

Proof: Form Theorem 3 we have that, the positive 2D
system (4) is asymptotically stable if and only if there ex-
ists vectors λ t

1 > 0 and λ t
2 > 0, ∀t = 0, . . . ,q such that

LP conditions (8) holds. Now, by taking λ1 = λ 0
1 and

λ2 = λ 0
2 , and by using the fact that λ1 < λ t

1 and λ2 < λ t
2,

∀t = 1, . . . ,q combined with the non-negativity of the ma-
trices At

11, At
12, At

21, At
22, t = 0, . . . ,q, we can show that



(
q

∑
t=0

At
11 − In1

)
λ1 +

q

∑
t=0

At
12λ2

< (A0
11 − In1)λ

0
1 +

q

∑
t=1

At
11λ t

1 +
q

∑
t=0

At
12λ t

2

< 0,(
q

∑
t=0

At
22 − In2

)
λ2 +

q

∑
t=0

At
21λ1

< (A0
22 − In2)λ

0
2 +

q

∑
t=1

At
22λ t

2 +
q

∑
t=0

At
21λ t

1

< 0,

λ1 > 0, λ2 > 0.

(10)

Finally, the reverse implication can be trivially ob-
tained. Thus, the proof is complete. □

Remark 1: When Ai
11 = 0, Ai

12 = 0, Ai
21 = 0 and

Ai
22 = 0, ∀i = 1, . . . ,q, the derived conditions in Theorem

4 ensures the asymptotic stability of positive 2D Roesser
model without delays.

Remark 2: Theorem 4 shows that, the magnitude of
delays has no any effect on the asymptotic stability of the
positive 2D Roesser model (4).

Remark 3: Theorem 4 reveals the important difference
between positive 2D Roesser model with delays and gen-
eral 2D Roesser model with delays in terms of asymptotic
stability. Since, the asymptotic stability for general 2D
Roesser model with delays is closely related to the magni-
tude of delays.

Remark 4: It is now well-established that an LP pro-
gram can be solved in polynomial time. Then, the compu-
tational complexity of inequalities (9) and (8) is polyno-
mial time due to the fact that the corresponding equations
are all presented by LP problem.
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Remark 5: The number of decision variables in LP
conditions (9) of Theorem 4 is n1+n2, and, it is fewer than
those in LP conditions (8) (or (7)) of Theorem 3 (or The-
orem 2) respectively, which is equal to (q+1)∗ (n1 +n2)
in LP conditions (8) (or (7)).

4. STABILIZATION OF 2D ROESSER SYSTEMS
WITH DELAYS

In this section, we suppose that all the states are avail-
able, and we develop the main results of stabilization for
2D state delayed Roesser model. We restrict our attention
to memory state feedback controllers, and we develop nec-
essary and sufficient conditions for positivity and asymp-
totic stability of closed-loop system.

Next, let consider the following forced 2D state delayed
Roesser model[

xh
i+1, j

xv
i, j+1

]
=

q

∑
t=0

[
At

11 At
12

At
21 At

22

][
xh

i−t, j
xv

i, j−t

]
+

[
B1

B2

]
ui, j, (11)

where i, j ∈Z+, xh
i, j ∈Rn1 and xv

i, j ∈Rn2 are the horizontal
and the vertical state vectors at the point (i, j) and u(i, j)∈
Rm is the control input at the point (i, j). The matrices
At

11, At
12, At

21, At
22, t = 0, . . . ,q, B1 and B2 are known with

appropriate dimension.

4.1. Memory controller
The problem addressed in the following, is that of de-

signing a memory state feedback controller of the form

ui, j =
q

∑
t=0

[
Kt

1 Kt
2

][ xh
i−t, j

xv
i, j−t

]
(12)

for which the closed-loop system is positive and asymp-
totically stable.

Applying the control (12) to the 2D system (11) yields
the closed-loop system[

xh
i+1, j

xv
i, j+1

]
=

q

∑
t=0

[
At

11 +B1Kt
1 At

12 +B1Kt
2

At
21 +B2Kt

1 At
22 +B2Kt

2

][
xh

i−t, j
xv

i, j−t

]
.

(13)

Our objective for designing the controller (12) is to
simultaneously stabilize and guarantee the positivity of
(13). Hence, with regards to the results in Proposition
2 and Theorem 4, we need to find necessary and suffi-
cient conditions on matrices At

11, At
12,At

21, At
22, t = 0, . . . ,q,

B1 and B2, such that there exists matrices Kt
1 and Kt

2,
t = 0, . . . ,q satisfying positivity and asymptotic stability
of the closed-loop system (13).

In the following, necessary and sufficient conditions are
developed for positivity and asymptotic stability of the
closed-loop system (13).

Theorem 5: The closed-loop system (13) is positive
and asymptotically stable if and only if the following LP
problem in the variables λ1 ∈ Rn1 , λ2 ∈ Rn2 , Z0

1 ∈ Rm×n1 ,
. . ., Zq

1 ∈ Rm×n1 , Z0
2 ∈ Rm×n2 , . . ., Zq

2 ∈ Rm×n2 is feasible.

M0λ1 +
q

∑
t=0

At
12λ2 +B1

(
q

∑
t=0

Zt
11n1 +

q

∑
t=0

Zt
21n2

)
< 0,

M1λ2 +
q

∑
t=0

At
21λ1 +B2

(
q

∑
t=0

Zt
11n1 +

q

∑
t=0

Zt
21n2

)
< 0,

At
11diag(λ1)+B1Zt

1 ≥ 0, t = 0, . . . ,q,

At
12diag(λ2)+B1Zt

2 ≥ 0, t = 0, . . . ,q,

At
21diag(λ1)+B2Zt

1 ≥ 0, t = 0, . . . ,q,

At
22diag(λ2)+B2Zt

2 ≥ 0, t = 0, . . . ,q,

λ1 > 0, λ2 > 0,
(14)

where M0 =
q

∑
t=0

At
11 − In1 and M1 =

q

∑
t=0

At
22 − In2 .

Moreover, the gain matrices Kt
1 and Kt

2, t = 0, . . . ,q are
computed as

Kt
1 = Zt

1diag(λ1)
−1, Kt

2 = Zt
2diag(λ2)

−1,

t = 0, . . . ,q.

Proof: We take into account that the closed-loop sys-
tem (13) is positive and stable. By using Theorem 4, we
have that the closed-loop system (13) is stable if and only
if there exists λ1 ∈ Rn1 , λ2 ∈ Rn2 such that

(
q

∑
t=0

(At
11 +B1Kt

1)− In1

)
λ1 +

q

∑
t=0

(At
12 +B1Kt

2)λ2

< 0,(
q

∑
t=0

(At
22 +B2Kt

2)− In2

)
λ2 +

q

∑
t=0

(At
21 +B2Kt

1)λ1

< 0,

λ1 > 0, λ2 > 0.

Now, define Kt
1 = Zt

1diag(λ1)
−1 and Kt

2 = Zt
2diag(λ2)

−1,
∀t = 0, . . . ,q, with these change of variables, the above
inequalities are effectively the first two inequalities in the
LP constraints (14). The other inequalities in the LP con-
straints (14) are obtained as follows. Note that the ma-
trices At

11 + B1Kt
1, At

12 + B1Kt
2, At

21 + B2Kt
1, At

22 + B2Kt
2,

t = 0, . . . ,q are non-negative if (At
11 + B1Kt

1)diag(λ1),
(At

12 +B1Kt
2)diag(λ2), (At

21 +B2Kt
1)diag(λ1) and (At

22 +
B2Kt

2)diag(λ2), t = 0, . . . ,q are non-negative matrices (be-
cause diag(λi) ≥ 0, i = 1,2). Thus, by recalling that
Kt

1 = Zt
1diag(λ1)

−1 and Kt
2 = Zt

2diag(λ2)
−1, t = 0, . . . ,q,

the above inequalities are equivalent to the rest of inequal-
ities in the LP constraints (14).
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Finally, the reverse implication follows the same line of
arguments and then is omitted. Thus, the proof is com-
plete. □

4.2. Non-negative memory controller
In the following, a non-negative memory state feedback

controller can be handled by using a similar LP approach.

Theorem 6: The closed-loop system (13) is positive
and asymptotically stable with a non-negative memory
state feedback controller if and only if the following LP
problem in the variables λ1 ∈ Rn1 , λ2 ∈ Rn2 , Z0

1 ∈ Rm×n1 ,
. . ., Zq

1 ∈ Rm×n1 , Z0
2 ∈ Rm×n2 , . . ., Zq

2 ∈ Rm×n2 is feasible.

M0λ1 +
q

∑
t=0

At
12λ2 +B1

(
q

∑
t=0

Zt
11n1 +

q

∑
t=0

Zt
21n2

)
< 0,

M1λ2 +
q

∑
t=0

At
21λ1 +B2

(
q

∑
t=0

Zt
11n1 +

q

∑
t=0

Zt
21n2

)
< 0,

At
11diag(λ1)+B1Zt

1 ≥ 0, t = 0, . . . ,q,

At
12diag(λ2)+B1Zt

2 ≥ 0, t = 0, . . . ,q,

At
21diag(λ1)+B2Zt

1 ≥ 0, t = 0, . . . ,q,

At
22diag(λ2)+B2Zt

2 ≥ 0, t = 0, . . . ,q,

Zt
1 ≥ 0, t = 0, . . . ,q,

Zt
2 ≥ 0, t = 0, . . . ,q,

λ1 > 0, λ2 > 0,
(15)

where M0 =
q

∑
t=0

At
11 − In1 and M1 =

q

∑
t=0

At
22 − In2 .

Moreover, the gain matrices Kt
1 and Kt

2, t = 0, . . . ,q are
computed as

Kt
1 = Zt

1diag(λ1)
−1, Kt

2 = Zt
2diag(λ2)

−1,

t = 0, . . . ,q.

Proof: Note that the control law (12) is nonnegative
if and only if the matrices Kt

1 and Kt
2, are nonnegative

∀t = 1, . . . ,q. Then, by using the change of variables
Kt

1 = Zt
1diag(λ1)

−1, Kt
2 = Zt

2diag(λ2)
−1, t = 0, . . . ,q, we

have necessarily that matrices Zt
1 and Zt

2 are nonnegative
∀t = 0, . . . ,q. To complete this proof, we can follow the
same line of arguments as in the Proof of Theorem 5. □

Remark 6: A negative state feedback control can be
considered, by just imposing Zt

1 ≤ 0 and Zt
2 ≤ 0, ∀t =

0, . . . ,q instead Zt
1 ≥ 0 and Zt

2 ≥ 0, ∀t = 0, . . . ,q in the
LP problem (15).

4.3. Memoryless controller
In the case when we do not have access to the delayed

states, or, when the delays are unknown, a memoryless

state feedback controller of the form

ui, j =
[

K1 K2
][ xh

i−t, j
xv

i, j−t

]
(16)

can be designed for the 2D Roesser system (11). In this
case, the matrices At

11, At
12, At

21 and At
22 must be non-

negative ∀t = 1, . . . ,q.
The following result can be derived from Theorem 5 by

taking Kt
1 = 0 and Kt

2 = 0 for all t = 1, . . . ,q.

Theorem 7: Assume that the matrices At
11, At

12, At
21

and At
22 are non-negative ∀t = 1, . . . ,q. Then, there ex-

ist a memoryless state feedback controller of the form
(16) such that the closed-loop system (13) is positive and
asymptotically stable if and only if the following LP prob-
lem in the variables λ1, λ2, Z1, Z2, is feasible.

(
q

∑
t=0

At
11 − In1

)
λ1 +

q

∑
t=0

At
12λ2 +B1 (Z11n1 +Z21n2)

< 0,(
q

∑
t=0

At
22 − In2

)
λ2 +

q

∑
t=0

At
21λ1 +B2 (Z11n1 +Z21n2)

< 0,

A0
11diag(λ1)+B1Z1 ≥ 0,

A0
12diag(λ2)+B1Z2 ≥ 0,

A0
21diag(λ1)+B2Z1 ≥ 0,

A0
22diag(λ2)+B2Z2 ≥ 0,

λ1 > 0, λ2 > 0.
(17)

Moreover, the gain matrices K1 and K2 are computed as

K1 = Z1diag(λ1)
−1, K2 = Z2diag(λ2)

−1.

Remark 7: In comparison to other methods, for exam-
ple the one based on linear matrix inequalities (LMIs), the
LP approach is easier, it leads to less conservative con-
ditions than the LMI approach, and usually it possesses
a numerical advantage on the computational complexity
since the number of decision variables in LP conditions
are usually much fewer than those in LMI conditions [28].

Remark 8: Many interior points methods have been
devoted to solve LP problems (see for instance Sedumi
solver). Also, there exist other solvers that can be used to
solve large size LP problems such as Cplex.

Remark 9: Recently, the problems of 2D dissipative
control and filtering have been investigated in [29] for a
linear discrete-time Roesser model without delays, and
the robust stochastic stability analysis has been analyzed
in [30] for 2D discrete state-multiplicative noisy systems
(SMNSs) in the Roesser form. The references mentioned
above do not tackle the positive characteristics of the 2D
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Roesser model. Also, these existing methods might lead
to negative horizontal and vertical states, so they are not
adequate for stabilizing positive 2D state delayed Roesser
model that are inherently non-negative.

4.4. Standard LP form
Previously, we have seen that the provided stability tests

(10) and stabilization results (14), (15) and (17) are formu-
lated as linear matrix constraints. We would like to show
that these LP’s can be re-expressed in the well-known
standard form, which involves vector constraints with a
single unknown vector variable. This can be done by us-
ing the Kronecker product ⊗ and vec operation.

In what follows, we propose a standard LP form for the
problem (17)

q

∑
t=0

At
11 − In1

q

∑
t=0

At
12 1T

n1
⊗B11T

n2
⊗B1

q

∑
t=0

At
21

q

∑
t=0

At
22 − In2 1T

n1
⊗B21T

n2
⊗B2

−In1 0n1×n2 0n1×r3 0n1×r4

0n2×n1 −In2 0n2×r3 0n2×r4


w < 0,


F0 0r1×n2 −In1 ⊗B1 0r1×r4

0r5×n1 F1 0r5×r3 −In2 ⊗B1

F2 0r5×n2 −In1 ⊗B2 0r5×r4

0r2×n1 F3 0r2×r3 −In2 ⊗B2

w ≤ 0, (18)

where F0 =−
n1

∑
i=1

eieT
i ⊗A0

11ei, F1 =−
n2

∑
i=1

eieT
i ⊗A0

12ei, F2 =

−
n1

∑
i=1

eieT
i ⊗A0

21ei, F3 =−
n2

∑
i=1

eieT
i ⊗A0

22ei, r1 = n1 ∗n1, r2 =

n2∗n2, r3 = n1∗m, r4 = n2∗m, r5 = n1∗n2, ei is the canon-
ical vector of Rn and the new vector variable w is defined
as

w = [λ1 λ2 vec(Z1) vec(Z2)]
T .

5. NUMERICAL EXAMPLES

All numerical examples provided in this section have
been solved by using linprog function in Matlab envi-
ronment.

Next, we give two examples to illustrate the effective-
ness of the proposed methods.

5.1. Example 1
We are looking to check the asymptotic stability of the

positive 2D state delayed Roesser model (1) with q = 1
and the following system matrices[

A0
11 A0

21
A0

21 A0
22

]
=

 0.1 0.1
0 0.2

0.1
0.2

0 0.2 0.1

 ,
[

A1
11 A1

21
A1

21 A1
22

]
=

 0.2 0.1
0 0.1

0
0.1

0 0.5 0.11

 .

Firstly, by applying Theorem 3, the following condi-
tions must be satisfied:

−0.9 0.1 0.2 0.1 0.1 0
0 −0.8 0 0.1 0.2 0.1
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0.2 0 0.5 −0.9 0.11
0 0 0 0 1 −1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




d1

d2

d3

d4

d5

d6

< 0.

One feasible solution is given by solving the above LP
problem or equivalently the LP problem (8) and the vec-

tors λ 0
1 , λ 1

1 , λ 0
2 and λ 1

2 are λ 0
1 =

[
d1

d2

]
=

[
103.6654
45.8934

]
,

λ 1
1 =

[
d3

d4

]
=

[
159.1628
65.7955

]
, λ 0

2 = d5 = 82.7639 and

λ 1
2 = d6 = 130.0384.
Secondly, we can also check the asymptotic stability of

the above positive 2D system by using Theorem 4. For
this purpose, it suffices to use the result of Theorem 4,
thus looking for a solution that fulfills the following LP
conditions:

−0.7 0.2 0.1
0 −0.7 0.3
0 0.7 −0.79
−1 0 0
0 −1 0
0 0 −1


 y1

y2

y3

< 0.

In this case, the above LP problem or equivalently the LP
problem (9) is feasible and the vectors λ1 and λ2 are λ1 =[

y1

y2

]
=

[
111.0473
7.1884

]
and λ2 = y3 = 106.0928.

Finally, if we want to check the asymptotic stability of
the above positive 2D system by using Theorem 2, we
have to calculate the spectral radius of the matrix Ã given
in (6). Thus

ρ(Ã) = ρ




0 0.1 0.2 0.1 0.1 0
0 0.2 0 0.1 0.2 0.1
1 0 0 0 0 0
0 1 0 0 0 0
0 0.2 0 0.5 0.1 0.11
0 0 0 0 1 0




= 0.8006,

which is less than 1. This means that the above positive
2D state delayed Roesser system is asymptotically stable
according to Theorems 2, 3 and 4.
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5.2. Example 2: the thermal process
This section applies our main result on memory state-

feedback of 2D positive systems to the model of thermal
process as described in [26], which can be expressed in the
following partial differential equation with time delays.

∂T (x, t)
∂x

=− ∂T (x, t)
∂ t

−a0T (x, t)−a1T (x, t − τ)

+bu(x, t), (19)

where T (x, t) is the temperature at x(space) ∈ [0,x f ] and
t(time) ∈ [0,∞), u(x, t) is the input function, τ is the time
delay and a0, a1 and b are real coefficients.
Taking

T (i, j) = T (i∆x, j∆t), u(i, j) = u(i∆x, j∆t),

∂T (x, t)
∂ t

≈ T (i, j+1)−T (i, j)
∆t

,

∂T (x, t)
∂x

≈ T (i, j)−T (i−1, j)
∆x

.

Then, if we define xh(i, j) = T (i − 1, j) and xv(i, j) =
T (i, j). It is easy to verify that (19) can be transformed
into the 2D Roesser model (11) with q = 1 and

[
A0

11 A0
21

A0
21 A0

22

]
=

[
0 1
∆t
∆x

1− ∆t
∆x

−a0∆t

]
,[

A1
11 A1

21
A1

21 A1
22

]
=

[
0 0
0 −a1∆t

]
,

[
B1

B2

]
=

[
0

b∆t

]
.

To illustrate our result, let set, for example ∆t = 0.3, ∆x =
0.5, a0 = 0.5, a1 =−2 and b = 1. The obtained system is
given as A0

11 = 0, A0
12 = 1, A0

21 = 0.6, A0
22 = 0.25, A1

11 = 0,
A1

12 = 0, A1
21 = 0, A1

22 = 0.6, B1 = 0, B2 = 1.
It is easy to see that the autonomous system (when

u≡ 0) is positive but not asymptotically stable. Our objec-
tive is to design a memory state-feedback controller given
by (12) such that the closed-loop system (13) is positive
and asymptotically stable. Solving the LP problem (14) in
Theorem 5 gives rise to

λ1 = 126.3752, λ2 = 98.3676, Z0
1 =−114.9760,

Z1
1 = 1.2377, Z0

2 =−37.4269, Z1
2 =−88.2134.

Then, the gain of stabilizing controller (12) are

K0
1 =−0.9098, K1

1 = 0.0098

K0
2 =−0.3805, K1

2 =−0.8968.

Fig. 1 shows the state responses of the resulting closed-
loop system from random non-negative boundary condi-
tions. It can be observed that the closed-loop system is
positive and asymptotically stable, which demonstrates
the effectiveness of the proposed method.
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0 0

1
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x
v
(i,j)

0 0

1

Fig. 1. Horizontal xh(i, j) and Vertical xv(i, j) state trajec-
tory.

6. CONCLUSIONS

In this paper, we have studied the stability and stabi-
lization problems for positive 2D discrete Roesser model
with delays. An LP approach has been provided to check-
ing the asymptotic stability as well as to construct mem-
ory, non-negative memory and memoryless state feedback
controllers for 2D state-delayed Roesser systems. The sta-
bilizing controllers have been developed to guarantees not
only the asymptotic stability of the closed-loop system
but also its positivity. Finally, two examples have been
included, to demonstrate the application of the obtained
results. The results presented in this paper can be ex-
tended to positive observer design and controller design
by dynamic state-feedback for 2D time-delayed positive
2D Roesser system.
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