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A Sociable Human-robot Interaction Scheme Based on Body Emotion

Analysis
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Abstract: Many kinds of interaction schemes for human-robot interaction (HRI) have been reported in recent years.
However, most of these schemes are realized by recognizing the human actions. Once the recognition algorithm
fails, the robot’s reactions will not be able to proceed further. This issue is thoughtless in traditional HRI, but is the
key point to further improve the fluency and friendliness of HRI. In this work, a sociable HRI (SoHRI) scheme based
on body emotion analysis was developed to achieve reasonable and natural interaction while human actions were
not recognized. First, the emotions from the dynamic movements and static poses of humans were quantified using
Laban movement analysis. Second, an interaction strategy including a finite state machine model was designed to
describe the transition regulations of the human emotion state. Finally, appropriate interactive behavior of the robot
was selected according to the inferred human emotion state. The quantification effect of SOHRI was verified using
the dataset UTD-MHAD, and the whole scheme was tested using questionnaires filled out by the participants and
spectators. The experimental results showed that the SOHRI scheme can analyze the body emotion precisely, and
help the robot make reasonable interactive behaviors.

Keywords: Body emotion analysis, finite state machin, fuzzy inference, human-robot interaction, Laban movement

analysis.

1. INTRODUCTION

Human-robot interaction (HRI) is one of the most pop-
ular research fields in robotics. Unlike human-computer
interaction, robots in HRI have similar profiles to humans
(partially or integrally). With the rapid development of ar-
tificial intelligence and robot technology, HRI robots are
expected to possess better social and interactive skills.

Much research has been devoted to various key tech-
nologies of HRI. In the field of human perception, study
areas include data capturing and processing of multimodal
information, e.g., image [1,2], sound [3], and depth [4-6].
In the field of action recognition, study areas include
movement [7, 8], expression [9], speech [10], and into-
nation [11] recognition. In the field of intention infer-
ence and interaction strategy, study areas include multi-
agent systems [12], neural network [13, 14], fuzzy infer-
ence [15, 16], and deep learning [17].

Vision-based HRI can achieve recognition of human ac-
tion. Several typical actions, e.g., greeting, hand shaking,
hugging, throwing, can be well recognized by many algo-
rithms. Once an action is recognized, the appropriate in-

teractive behavior can be selected or generated. However,
the action recognition algorithm might fail when the class
of the performed action is not included in the training sam-
ples. Nowadays, studies on the interaction strategy in such
case are inadequate. In fact, solving the HRI when the hu-
man action cannot be recognized will be a key step in the
development of comprehensive interaction logic, and will
make the interactive behavior of the robot friendlier and
more natural.

Previous studies have attempted to tackle this problem.
Many of them addressed the importance of emotion anal-
ysis for improving robot social skills. Bohus et al. [18]
used linguistic hesitation actions to signal the system’s
state of confusion, which can generate additional time for
collecting evidence and resolving uncertainties. Aly et al.
[19] developed an adapted customized verbal-nonverbal
robot’s behavior based on personality dimensions. They
proposed a behavior expression animation toolkit using
linguistic and contextual information to generate a corre-
sponding synchronized set of gestures. Glowinski et al.
[20] characterized the expressions of emotions by means
of movement and gesture. They adopted a layered ap-
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proach to model the position and dynamics of the head and
hands from low-level physical measures toward descrip-
tors of overall motion features. Liu et al. [21] modeled the
communication atmosphere based on the emotional states
of humans and robots. They estimated the human emotion
from speech and gestures using weighted fusion and fuzzy
inference.

In this work, we developed a sociable HRI (SoHRI)
scheme based on body emotion analysis to achieve rea-
sonable and natural interaction when dealing with unrec-
ognized human actions. The major contributions of our
work include the following aspects: 1) The emotions from
the dynamic movements and static poses of humans were
quantified using Laban movement analysis (LMA); 2) A
finite state machine (FSM) model was constructed to de-
scribe the transition regulations of the human emotion
state based on the quantified body emotions, and then ap-
propriate interactive behavior was selected according to
the inferred human emotion state. Differing from previ-
ous studies, the proposed SOHRI scheme can guarantee
the continuity of interaction procedures, so that more in-
formation will be obtained, which is valuable for the sub-
sequent recognition and interaction. That is the meaning
of “sociable”.

The remainder of this paper is organized as follows:
Section 2 introduces the overall process of SOHRI scheme.
Section 3 discusses the body emotion analysis algorithm,
including movement emotion quantification and torso
pose emotion labeling. Section 4 first constructs an FSM
model to describe the transition regulations of the human
emotion state, and then designs the interaction strategy.
Section 5 shows the experimental results, and Section 6
presents a summary.

2. SCHEME OF SOHRI

The proposed SoHRI scheme is shown in Fig. 1. A Mi-
crosoft Kinect [22] is equipped as the capture device to
perceive the human joint position data, and the humanoid
robot NAO [23] is adopted as the interactive robot. If the
captured human action can be recognized by traditional al-
gorithms, the corresponding robot reactions are chosen di-
rectly; otherwise, our SOHRI scheme can analyze the emo-
tion contained in the movements, and finally help the robot
to perform suitable interactive movements and speeches.

The joint positions captured by Kinect are preprocessed
for body emotion analysis. The time series of the joint po-
sition data are transformed into several angular velocities
of the arms, several linear velocities of the body move-
ment, and the tilt angles of the spine and shoulder. We
denote the set of angular velocities by W, the set of linear
velocities by V, the tilt angle of spine by 07,, and tilt angle
of shoulder by 6r,, respectively. Detailed descriptions of
W, V, 0r,, and 87, will be given in Section 3.

Describing and modeling the relationships between
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Fig. 1. Scheme of SoHRI.

human movements and emotions is a crucial phase of
SoHRI. We use the Laban movement analysis (LMA) [24]
as the basis of emotion analysis. As seen in Fig.1, there are
two operations in the emotion analysis phase: the move-
ment emotion quantification and the torso pose emotion
labeling. The former is performed to determine a global
movement emotion depending on W and V, and the lat-
ter is to give an emotion label depending on 67, and 67,.
The global movement emotion, denoted by Ejy,, changes
within [-1,1]. The torso pose emotion label includes six
kinds, which are represented by L; (i = 1, 2, ..., 6) here-
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after. Ejy, and L; are the quantification results of body
emotion analysis.

In the interaction strategy phase, the human emotion
state is categorized into five gradations: very negative,
negative, normal, positive, and very positive. An FSM
model is constructed to describe the transition regulations
of the human emotion state. Ej; and L; obtained from
body emotion analysis constitute the input events of the
FSM model, so the current human emotion state, rep-
resented by HE, can be inferred afterwards. The state-
transition functions of the FSM model are specified in
Section 4. Finally, appropriate interactive behavior in-
cluding interactive movement and speech is selected for
the robot to perform according to HE.

3. BODY EMOTION ANALYSIS

LMA method was presented by a Hungarian dancer,
Rudolf Laban [24]. LMA describes and interprets various
human movements. In recent years, various studies have
used LMA to analyze the emotion representation in the
human body. Kim et al. [22] extracted the low-level fea-
tures of the trajectories of body joint positions, and devel-
oped an emotional motion representation through LMA.
Cheng [25] explained the connection between robot action
organization elements and the user’s understanding based
on LMA and perceptual learning. She designed three set
of robot movement rules to integrate with the scenarios.
Juan [26] studied the characteristics of a set of motions
with special style and presented a motion style synthetic
method based on LMA.

LMA contains four main components: body, effort,
shape, and space harmony [24,27,28]. Space harmony ex-
plores the relationship between people and their surround-
ings. It regulates the body movement in a kinesphere. In
each plane of kinesphere, a pair of opposite emotions is
evaluated based on the direction and extent of the move-
ment. Furthermore, the torso is the root of the human
skeleton. Several appearances of the torso are considered
to associate with specific emotions.

According to the above description, space harmony co-
incides with the requirement of our work. So it is cho-
sen as the measure for analyzing body emotion. With
the help of it, movement emotion quantification and torso
pose emotion labeling are developed to achieve the body
emotion analysis.

3.1. Movement emotion quantification

Movement projection and emotion matching: All
movements can be modeled using the spatial Cartesian co-
ordinates. Space harmony regulates the human movement
in a kinesphere, which contains three orthogonal planes:
the horizontal plane, the wheel plane, and the vertical
plane [27]. As the name suggests, the three planes cor-
respond to the XOZ, XOY, and YOZ planes in the Kinect

XOY

(b) Vertical plane

(a) Horizontal plane (c) Wheel plane

Fig. 2. Three projection planes for movement emotion
quantification.

coordinate system (shown in Fig. 2).

In each plane, the projected movements are matched
with a pair of opposite emotions. Based on the space har-
mony of LMA, the relationships are summarized in Ta-
ble 1 [27].

Emotion quantification: Table 1 gives the concepts of
the movement emotions only in a qualitative way. The de-
tailed methodology for quantifying the value of the move-
ment emotion in each plane should be further given. We
use the specific movement data of several joints to quan-
tify the movements given in Table 1. In each plane, an
emotion value is derived from the directions and values
of the joint movements to describe the positive or nega-
tive degree of the movement. The emotion values in the
horizontal pane, the vertical plane, and the wheel plane
are denoted by Epy, Ey, and Ey, respectively. By conven-
tion, hospitable, encouraged, and active are positive emo-
tions, while impassive, distressed, and scared are negative
emotions. So the movements of spreading, ascending, and
advancing show positive emotions, and the movements of
enclosing, descending, and retreating show negative emo-
tions.

Fig. 3 illustrates the associated angular and linear ve-
locities, which can be derived by the geometrical transfor-
mation and the difference between the adjacent values of
the time series of joint position data perceived by Kinect.
In Fig. 3(a), the angular velocities of the upper and lower
arms in the horizontal plane are represented by w* € W.
The positive direction corresponds to clockwise rotation
in the top view. In Fig. 3(b), the velocities of the elbows,
wrists, and center hip along the y-axis are represented by
vy € V. In Fig. 3(c), the center hip velocity along the
z-axis is represented by V¥ € V, which stands for the
general displacement of the whole body. Note that mov-
ing forward results in the reduction of VZCH because of the
definition of the Kinect coordinate system, which differs
slightly from the usual cases.

Based on Table 1 and the above velocity definitions, we
derive the following formulas for achieving Ey, Ey, and
EW:

Ep = Sy[(0® + ofF) — (0™ + oF)), )
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Table 1. Movements and emotions in each projection plane.

Horizontal plane Vertica plane Wheel plane
Movement Emotion Movement Emotion Movement Emotion
T &/ :5
] lj Hospitable Encouraged “@€ Active
Spreadin ! anci
preading Ascending Advancing
j .) Impassive l Distressed Scared
Enclosing Des:cending Ret;eating
]Tf"“ v;-“’ body movement comprehensively, the values of Ey, Ey,
? LE Y and Ey should be integrated to generate a global move-
¥ ﬂ Yy § o ment emotion, which is denoted by Ej;. In this work,
yCH Y- fuzzy inference is used to achieve Ej,.
' ’ 'y The inputs to the fuzzy inference are Ey, Ey, and
\ Ew. Their values are categorized into three groups:

v

(a) Horizontal plane (b) Vertical plane (c) Wheel plane

Fig. 3. Angular and linear velocities involved in move-
ment emotion quantification.

Ey = Sy[pv{" +(1-p)

X (V)LE + v)L,W + va + va — 4\}?’1')]7 )
Ey = Sy (—¢"), 3)
where
2
Su(x) = ———, 4
(x) g 4)
0, W < v,
p=<y=05 VI <pff<vy, (5)
2:17 |V€H|>V2T

S, (x) for u = H,V are the normalized functions to make
Ey, Ey, and Ey all lie within [-1,1]. p is a factor to de-
termine the influence of the torso velocity (represented by
v‘?H ). Formula (5) indicates that p can take 0, 0.5, or 1
according to the value of V5.

The following parameters for movement emotion quan-
tification can be used for reference: ay = 0.6 rad ', ay =
7.2 (m/s) Y aw = 3.8 (m/s)", V[ =0.5m/s, and V) =
Lm/s.

Global movement emotion: Ej, Ey, and Ey are quan-
tified based on the projected movements in three orthogo-
nal planes. In order to evaluate the emotion of the whole

Positive (+), Normal (0), and Negative (—). The fuzzy
membership functions of Ey, Ey, and Ey are based on
S-shaped and bell-shaped curves:

1-2(1+E,)* —1<E,<-0.5,
S™(E.) = 2E;, ~05<E, <0, (6)
0, 0<E, <1,
0, —1<|EJ<1,
. 202E2+1)), —05<E,<-0.25,
SU(E,) = 5 )
1—8E2, —0.25 < E, <0.25,

2(2E2—1)*, 025<E,<0.5,
0, —1<|E,| <0,
ST(E,) = { 2E2, 0<E,<0.5, 8)
1-2(1-E,)* 05<E, <1,
where E, € {Ey,Ey,Ew }.
The value of the output Ej; is also categorized into
Positive(+), Normal(0), and Negative(—). The mem-

bership functions of Ej, are based on sigma-shaped and
triangular-shaped curves:

17 71SEM<704,
ST(Ey)=1{ —25Ey, —04<Ey<0, 9)
0, 0<Ey<I,
0, 0.4 < |Ey|l <1,
SUEy) =< 25Ey+1, —04<Ey<0, (10)
—25Ey+1, 0<Ey<04,
0, —1 < |EM| < 0,
ST(Ey) =< 2.5Ey, 0<Ey<0.4, (11)

1, 04<Ey<1.
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Table 2. Torso poses and emotions.

Spine Upright Lean Forward Lean Backward
Shoulder f\
G0N [ BRI A b W f Lyl 50 Sy 1IN
Normal Tilt Normal Tilt Normal Tilt
Emotion Formal Relaxed Negligent Optimistic Provocative
The membership functions of the above inputs and outputs Q. =max{S"(Ey),S"(Ey),S"(Ew)}, (12)

are shown in Fig. 4 and Fig. 5, respectively.

As the output of the fuzzy inference, E), is formalized
in the form of the following fuzzy IF-THEN rules:

a) IF Ey is (+) OR Ey is (+) OR Ey is (+), THEN Ey
is (+).

OR

b) IF Ey is (0) OR Ey is (0) OR Ey is (0), THEN E); is
0).

OR

¢)IFEyis (-) OR Ey is (-) OR Ey is (-), THEN Ey, is
OF

The above three fuzzy rules define the basic relation-
ships between the emotions in the individual planes and
the global one. Each individual rule is inferred by the OR
operation, which is equal to the maximum operation:

Q- =max{S" (Ep),S (Ev),S (Ew)},
QO = max{SO<EH>7SO(EV)7SO(EW)}7

S () SO(E.) S*(E.)
———4
| |
| |
! E. E ! E,
1 0 05 0 05 0 P

Fig. 4. Membership functions of the input movement
emotions.

A

S_(EM) 1 SU(EM) S+(EM)

Fig. 5. Membership functions of the output global emo-
tion.

where Q_, Qp, and Q. denote the fuzzy outputs due to
rule a), b) and c), respectively. As the three fuzzy rules
are also associated by the OR operation, E; is given by:

Ey =max{Q_,00,0+} 13)

Defuzzification is performed using the centroid method
[29]. For calculating the final output of the global move-
ment emotion Ej, we use several discrete sampling
points as follows:

11

By Y1 exEner

Mo — 11 E
Zk:] MEk

where ¢, =0.1(k— 1), fork =1, 2, ..., 11, are the discrete
sampling points for centroid method.

) (14)

3.2. Torso pose emotion labeling

In the field of human motion perception, the human
body is often simplified into the stick figure model, in
which the torso is represented by an “I” type structure,
as shown in Fig. 6(a). The poses of spine and shoulder (I
and /;) dominate the performance of the upper body. And
according to space harmony of LMA, Several appearances
of the torso are considered to associate with specific emo-
tions, as shown in Table 2 [28]. Table 2 indicates that the
torso pose emotions are determined by the tilt angle of I
and /; . Here we propose the method of calculating these
two angles and the emotion labeling regulation.

LY
Iu-_\
1’4-1— \
@ (b)

Fig. 6. The stick figure model of the torso: (a) the “T” type
structure; (b) the tile angle of the shoulder 07, ; and
(c) the tilt angle of the spine 6y, .
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The tilt angle of I; is represented by 8y, which is the
angle between [; and the horizontal plane XOZ (Fig. 6(b)).
The tilt angle of I is related to the torso rotation, which
can be calculated based on the following procedures (also
illustrated in Fig. 6(c)):

1) Obtain the orientation of the body. Here, we use the
vertical vector of the projection of the hipline /; in the hor-
izontal plane to represent the orientation, which is denoted
by 1.

2) Project I into the plane formed by I}’ and the axis yy,
where the projection is I(/).

3) The angle 65, between I, and y; is considered as the
tilt angle of . By, is positive when the person leans forward
and is negative when he/she leans backward.

The deformation of the torso is not as flexible as that
of the whole body; thus, it is not necessary to estimate
the torso emotion intensively. The six labels of the torso
emotions are denoted by L; (i =1, 2, ..., 6). They are
matched with the combinations of 6y, and 07,

Ly =Formal", 0}, < 65 < 0 and |6 | < or,
13 1 2

L, = “Relaxed’, o7, < 6r, < ¢7 and |67, | > ¢r,,

L3:“Sad", 9T0 >¢%0 and|9T1| §¢T17

Ly = “Negligent”, 07, > (P%U and |67, > ¢r;,

Ls = “Optimistis”, 0 < (P]l"o and (67, | < ¢r,,

Ls = “Provocative”, 07, < ¢;, and |6r,| > ¢r,,
15)

where ¢T10 = —0.035rad, ¢%U =0.35rad, and ¢7; = 0.1 rad
are the given thresholds.

4. INTERACTION STRATEGY

Although human emotion changes continuously, it has
obvious gradations. To simplify the issue we categorize
human emotion state into five gradations, represented by
VeryNegative (Neg—), Negative (Neg), Normal (Nor),
Positive (Pos), and VeryPositive (Pos+). In this section,
we will devise an interaction strategy, where an FSM
model is constructed to describe the transition regulations
of the human emotion state based on the quantified global
movement emotion Ej, and the torso pose emotion label
L;, and then the appropriate interactive behavior is selected
according to the inferred human emotion state.

4.1. Transition regulations of the human emotion state

An FSM model is constructed to describe the transition
regulations of the human emotion state:

FSMyg= (HE,Y,Fu, HE;), (16)

where HE = {HE, | p = 1,...,5}is the set of the five gra-
dations of human emotion state, as shown in Fig. 7. HEg
= HEj; is the initial emotion state. )y, = {e, | p = 1,...,5}

Fig. 7. The FSM of the human emotion states.

Table 3. State-transition functions of the robot emotion

states.

State | out | e’ | “State | meut | S
HE| és HE] HE} €7, €4 HE4
HE, €s, €2, HE, HE, es HE,

€3, €4
HE, es HE, HE, e HE;
HE2 es HE2 HE4 e, e HE4
HE2 e, e, HE3 HE4 €y HE5
HE, ey HE, HE; €€ | HE,
es, €5
HE; es, €5 HE, HE;5 ey HE;
HE, e HE,
Table 4. Rules of selecting e,.
L Ewy<-Ey | |Em|<E} | |Ew|>Ey
L3&Ly es e3 —

Ly e3 ey e

L, ey ey e

Ls — e ey

Lg — ey ey

is the set of input events that determines the orientation
of state transition. Fy;:HE X Y, — HE are the state-
transition functions, which finally export the current hu-
man emotion state of this FSM. The overall F), are dis-
played in Table 3 and Fig. 7. We assign the input events
eq, for g = 1,..,5, to match the combinations of incoming
Ey, and L; , as shown in Table 4. E| ,\E is a threshold for cat-
egorizing the global movement emotion into three extents.
The value of EJ, is decided according to the experiment
(Section 5.1). Three combinations of Ej;, and L; appear
rarely in daily life, so they are considered to be inconsis-
tent, and do not correspond with any e,. If these combi-
nations are observed indeed, the current human emotion
state will remain the same as the last one.

4.2. Interactive strategy based on possible alternative
behaviors

After the current human emotion state is inferred, ap-

propriate interactive behavior including interactive move-

ment and speech can be designed. Based on several
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theoretical researches about HRI [30-32], the safe and
ethicalrestrictions must be well considered when design-
ing the thorough strategies. According to the safe and
ethicalrestrictions, the interactive behaviors should be
limited in a possible alternative range.

Interactive movement: During the HRI, a safe dis-
tance between the user and the robot must be ensured.
The interactive movements are composed of a series of
poses. According to the algorithm proposed in [33], the
poses corresponding to each human emotion state can be
obtained with the activation-valence value. Based on the
available poses, the movements are planned by a Markov
model. In order to satisfy the ethical restrictions, these
generated movements are checked manually to identify
any rude ones in relation to the current cultural back-
ground. Finally, several possible alternative movements
are arranged to cope with each human emotion state.
When the current human emotion state has been inferred,
one interactive movement is picked out randomly from the
possible alternative movements.

Interactive speech: The interactive speech is deter-
mined by the current human emotion state HE and torso
pose emotion label L; together. The possible alternative
speeches should be polite and encouraging in all cases,
and must not include vulgar language, hate speech, or
slang. The speech content guidance is listed in Table 5.
There are six inconsistent combinations of HE and L;. If
these combinations are observed indeed, the robot will say
nothing in order to reduce misunderstandings.

5. EXPERIMENTAL RESULTS

5.1. Evaluation of the movement emotion quantifica-
tion

Dataset introduction: We use the public dataset UTD-
MHAD [34] to evaluate the movement emotion quantifi-
cation. The primary reason for using this dataset is that
many types of the included actions can match certain emo-
tion types; e.g., “forward lunge” shows a positive emotion,
whereas “sit” shows a negative one.

UTD-MHAD contains 27 actions performed by eight

Tehao Zhu, Zeyang Xia, Jiagi Dong, and Qunfei Zhao

Based on our assessment, we manually assigned 12 ac-
tions a positive (+) or negative (-) emotion label as the
ground truth. We assume that these actions are not recog-
nized, and the proposed SoHRI scheme is implemented to
analyze Ey, and L; of the skeleton joint position sequence.

Results of SOHRI: The results are shown in Table 6.
E) is the average global movement emotion of one type
of action in the dataset, and L, is the ratio of the torso pose
emotion labels of the result. The signs of all Ej; values
correspond to the ground truths, and the values are rea-
sonable. As the actions in UTD-MHAD do not contain ex-
aggerated leaning backward, there are no actions labeled
“optimistic” or “provocative”. Most actions are ‘“formal”
or “relaxed”, while L; of the “stand”, “sit”, and “squat”
actions have a large ratio of “sad”. Understandably, the
subjects bow forward during these actions. In conclusion,
the body emotion analysis of SOHRI quantifies E), and L;
of each action type precisely.

According to the experimental result, |Ey,| of the
movements that express fairly positive or negative emo-
tions are larger than 0.25 when using the parameter set-
tings in Section 3. So EJ, =0.25 is an available value in
our interaction strategy.

Method comparison: To the best of our knowledge,
the proposed SoHRI quantifies the human movement emo-
tion for the first time. Although several previous re-
searches have explored how to represent the emotion of
the human movement, the main measures are focused on
classification. Here we use two methods, the Dynamic
Time Wrapping with k-Nearest Neighbors (DTW+kNN)
[35] and the Support Vector Machine (SVM) [36], to
recognize the movement emotion types of the actions in
UTD-MHAD for comparison.

The movement emotion types include “positive” and
“negative” that correspond to the ground truth. Three ex-
perimental groups are arranged, in which the data to be
analyzed are the joint locations, velocities, and acceler-
ations, respectively. As each subject repeated an action
four times, four-fold cross-validation is used to estimate
the accuracies.

subjects. Each subject repeated an action four times. As for DTW+KNN, the number of the nearest neigh-
] ) p g
Table 5. Speech content guidance for SOHRI.
L; Neg— Neg Nor Pos Pos+-
encouraging, encouraging, ask
Ly & Ly Coiﬁiolil;gf’e?lls( if if the user wants caring — —
uﬁwell ’ to rest
L, caring, comforting caring polite polite, hospitable happy, laughing
ask if the user feel ask if the user . reminding the user
L s unwell wants to rest polite happy to keep safety
Ls — — happy laughing, witty joking, witty
joking, witty, joking, witty,
Le — - happy, witty remind the user reminding the user
to keep safety to keep safety
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Table 6. Speech content guidance for SOHRI.
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Action Ground Ey Li(%)

Truth Formal Relaxed Sad Negligent

AO01: right arm swipe to the left —0.2354 87.50% 12.50% 0% 0%
A02: right arm swipe to the right + 0.2238 90.63% 9.37% 0% 0%
A03: right hand wave + 0.1934 75.00% 25.00% 0% 0%
A04: clap hands + 0.1711 100.00% 0% 0% 0%
A0S5: two arms curl + 0.3107 100.00% 0% 0% 0%
A06: two hands push + 0.3657 93.75% 6.25% 0% 0%
A07: hand catch — —0.3526 78.13% 21.87% 0% 0%
A08: jogging + 0.2745 100.00% 0% 0% 0%
A09: stand + 0.2706 50.00% 0% 50% 0%
A10: sit — —0.2788 12.50% 0% 87.50% 0%
A11: forward lunge + 0.3344 81.25% 0% 18.75% 0%
A12: squat — —0.3237 0% 0% 90.63% 9.37%

Table 7. Accuracies of the emotion analysis by DTW+kNN and SVM on UTD-MHAD.
Action (ill"ound Location Velocity Acceleration oy
ruth DTW+kNN SVM DTW+kNN SVM DTW+kNN SVM
AO01 — 60% 97% 85% 94% 50% 88% —0.2354
A02 + 100% 100% 100% 100% 45% 100% 0.2238
A03 + 60% 97% 85% 94% 55% 91% 0.1934
A04 + 100% 100% 100% 100% 55% 97% 0.1711
A05 + 100% 100% 100% 100% 35% 97% 0.3107
A06 + 100% 100% 100% 100% 50% 91% 0.3657
A07 — 60% 94% 100% 91% 80% 66% —0.3526
A0S + 95% 100% 100% 100% 35% 100% 0.2745
A09 + 100% 100% 100% 100% 75% 94% 0.2706
Al10 — 100% 97% 100% 97% 95% 84% —0.2788
All + 100% 100% 100% 100% 80% 81% 0.3344
Al2 — 100% 100% 100% 97% 100% 50% —0.3237
Average 89.58% 98.75% 97.50% 97.75% 62.92% 86.58%

bors is set to five, and the accuracy is the proportion of
the neighbors whose predicted emotion types match the
ground truth. The input data need to be preprocessed
as for SVM, including standardization and dimensional-
ity reduction. The parameters of SVM are tuned by grid
research. Finally the accuracy is the proportion of actions
whose movement emotion types are predicted correctly.
The accuracies of the two methods in the three experi-
ments are shown in Table 7. AQ1-A12 are the action marks
given in Table 6. The accuracies in the acceleration group
are much lower than those in the other two groups. The
DTW-+kNN method achieves the best accuracies in the ve-
locity group, while the SVM method achieves the best ac-
curacies in the location group. In general, the two methods
have relatively good performances in the velocity group.
This result indicates that velocity can overcome the indi-
vidual differences among different people. Similarly, all
the movement variables used in the body movement anal-

ysis of SoHRI are the velocities.

The global movement emotions analyzed by SoHRI
are also listed in the last column of Table 7. All the
signs of £y, values correspond to the recognition results of
DTW+kNN and SVM in the velocity group. The ability of
obtaining quantitative emotion value of human movement
is the advantage of SoHRI.

5.2. Evaluation of the whole SOHRI scheme

Experiment settings: We wrote a program to imple-
ment an HRI system embedded by the proposed SoHRI
scheme. The humanoid robot NAO [23] is adopted as the
interactive robot. The visual interface of the program is
shown in Fig. 8. The human’s skeleton, analysis result of
the movement emotion, torso pose label, and the robot’s
speech and appearance can be obtained from the interface.

We used a questionnaire to obtain the subjective evalu-
ation. The questionnaire is given in Fig. 9, which is de-
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Fig. 8. Visual interface of the SoHRI-embedded system.

SoHRI Questionnaire

Your role:  oParticipani  oSpectlalor

Q1. The participant can perform movementis with different emotions:
StifMy 1 2 3 4 5 6 7 Naturally
Q2. The emotion analysis results match your expectation:
Notatall 1 2 3 4 5 6 7 Verymuch
(3. The interactive movements of the robot match your expectation:

MNotatall 1 2 3 4 5 6 7 Verymuch
4. The inleraciive speech ol the robol maiches your expectlation:
Notatall 1 2 3 4 5 6 7 Verymuch

5. More comments:

Q6. Your age:

Q7. Your gender: oMale  oFcmale

Fig. 9. Questionnaire for evaluating the whole SoHRI
scheme.

signed based on that in [19]. The main questions are the
first four, which are presented on a 7-point Likert scale.
They cover the evaluation from the user experiences to
the multimodal performances of the robot. Besides the
participants completed the questionnaire after their exper-
iments, we invited some of them to watch others’ experi-
ment replays and then complete the questionnaires again.
They evaluated the system as spectators.

The participants included 18 members (eleven males,
seven females; nine 18-25 years old, four 26-30 years
old, four 30-40 years old, one over 40 years old; twelve
students, six in work), and the spectators included seven
members (six males, one females; five 18-25 years old,
two 26-30 years old; six students, one in work). All the 18
participants used SoHRI for the first time. Before the ex-
periment, we introduced the typical movements specified
in LMA to the participants, and showed them the question-
naire to clarify what they needed to observe and evaluate.
Then the participants made several movements in front of

6.4

Evaluation Score
= ik Y w o
h

=

Interactive

Interactive
Movement Speech

Human Emotion
Performace Analysis

H Participant ™ Spectator

Fig. 10. Questionnaire result from participants and spec-
tators. Red line: standard deviation.

Kinect and NAO. The experiments were recorded by cap-
turing the videos of the robot and the program interface
synchronously. The spectators watched these videos af-
terwards.

Evaluation results: The evaluations from the partic-
ipants are illustrated by the dark blue bars in Fig. 10.
Most participants were satisfied with their performances.
They gave themselves 5.63/7 on average. The evalua-
tions of emotion analysis and interactive movement were
fairly positive, which are 5.28/7 and 5.19/7, respectively.
In addition, the standard deviation line for the interactive
movement shows that different participants had inconsis-
tent opinions. The interactive speech received 5.75/7, a
relatively favorable score.

The evaluations from the spectators are illustrated by
the orange bars in Fig. 10. The performance of the partic-
ipants is evaluated as 6.14/7 by the spectators on average.
The emotion analysis and interactive movement received
5.73/7 and 5.54/7, respectively. The speech still achieved
a high score (5.88/7).

Discussion: Based on the evaluations described above,
the SOHRI scheme analyzes the body emotion effectively,
and the robot reactions are reasonable. The subjects
showed great interests in this novel HRI system and had
very high expectations.

The evaluations of the interactive movement from the
participants are a bit low. This is because the inter-
active movements are generated automatically, some of
which are not natural enough. Furthermore, the interac-
tive speech is outstanding, thus, the interactive movement
appears s worse in comparison.

During the experiments, we observed that quite a few
participants performed stiffly, although we knew that
he/she is a lively and expressive person. As our scheme
does not serve for traditional movement tracking or ac-
tion recognition, the participants need to sufficiently un-
derstand what they are going to do. This phenomenon in-
dicates that the experiment tutorial should be more clear
and encouraging.

The evaluations from the spectators are higher than
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those from the participants in general. This fact suggests
the users can gradually become familiar with the robot’s
behaviors based on SOHRI scheme after they interact with
the robot many times.

6. CONCLUSION

In this work, a SoHRI scheme based on body emotion
analysis was developed to achieve reasonable and natural
interaction while human actions were not recognized. The
SoHRI scheme thoroughly makes use of the visual move-
ment information, and compensates for the inadequacy of
the traditional HRI that neglects the case when actions are
not recognized.

Movement emotion quantification and torso pose emo-
tion labeling were proposed to quantify the body emo-
tions included in the dynamic movement and static pose.
The interaction strategy was designed, in which an FSM
model was constructed to describe the transition regula-
tions of the human emotion state, and then appropriate be-
havior was selected according to the current human emo-
tion state. The quantification effect of SoHRI was veri-
fied using the dataset UTD-MHAD, and the whole SoHRI
scheme was tested using questionnaires filled out by the
participants and spectators. The experimental results have
shown that the SOHRI scheme can analyze the body emo-
tion precisely, and help the robot to make reasonable in-
teractive behaviors.

According to the experimental result, we plan to fur-
ther develop the SOHRI scheme in the following aspects:
improving the fusion method of the global movement
emotion; recording certain human movements and make
the robot play for a better performance; designing bet-
ter tutorial to guide the user “warms up” with the robot
quickly; and customizing the interaction scheme for in-
dividual users. More participants will be invited to try
out the SOHRI scheme, and provide valuable feedback for
making greater improvement.

REFERENCES

[1] K. K. Reddy and M. Shah, “Recognizing 50 human action
categories of web videos,” Machine Vision and Applica-
tions, vol. 24, no. 5, pp. 971-981, June 2013.

[2] M. M. Ullah and 1. Laptev, “Actlets: A novel local repre-
sentation for human action recognition in video,” Proc. of
19th IEEE International Conference on Image Processing,
pp. 777-780, 2012.

[3] F. Alonso Martin, A. Ramey, and M. A. Salichs, “Speaker
identification using three signal voice domains during
human-robot interaction,” Proc. of the ACM/IEEE Inter-
national Conference on Human-robot Interaction, pp. 114-
115,2014.

[4] A. A. Chaaraoui, J. R. Padilla-Lépez, P. Climent-Pérez,
and F. Flérez-Revuelta, “Evolutionary joint selection to im-

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

483

prove human action recognition with RGB-D devices,” Ex-
pert Systems with Applications, vol. 41, no. 3, pp. 786-794,
February 2014.

J. Wang, Z. Liu, and Y. Wu, “Learning actionlet ensemble
for 3D human action recognition,” Human Action Recog-
nition with Depth Cameras, Springer, pp. 11-40, January
2014.

C. Chen, K. Liu, and N. Kehtarnavaz, “Real-time human
action recognition based on depth motion maps,” Journal
of Real-time Image Processing, vol. 12, no. 1, pp. 155-163,
June 2016.

V. Venkataraman, P. Turaga, N. Lehrer, M. Baran, T.
Rikakis, and S. L. Wolf, “Attractor-shape for dynamical
analysis of human movement: applications in stroke reha-
bilitation and action recognition,” Proc. of IEEE Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, pp. 514-520, 2013.

F. G. Da Silva, and E. Galeazzo, “Accelerometer based in-
telligent system for human movement recognition,” Proc.
of 5th IEEE International Workshop on Advances in Sen-
sors and Interfaces (IWASI), pp. 20-24, 2013.

M. H. Siddiqi, R. Ali, A. M. Khan, Y. T. Park, and S. Lee,
“Human facial expression recognition using stepwise lin-
ear discriminant analysis and hidden conditional random
fields,” IEEE Transactions on Image Processing, vol. 24,
no. 4, pp. 1386-1398, February 2015.

I. B. Yildiz, K. Von Kriegstein, and S. J. Kiebel, “From
birdsong to human speech recognition: Bayesian infer-
ence on a hierarchy of nonlinear dynamical systems,” PLoS
Comput Biol, vol. 9, no. 9, pp. 1003219, September 2013.

M. Chatterjee and S.-C. Peng, “Processing FO with
cochlear implants: Modulation frequency discrimination
and speech intonation recognition,” Hearing Research, vol.
235, no. 1, pp. 143-156, January 2008.

M. Lichtenstern, M. Frassl, B. Perun, and M. Anger-
mann, “A prototyping environment for interaction between
a human and a robotic multi-agent system,” Proc. of 7th
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), pp. 185-186, 2012.

T. Yamada, S. Murata, H. Arie, and T. Ogata, “Dynami-
cal Integration of Language and Behavior in a Recurrent
Neural Network for Human-Robot Interaction,” Frontiers
in Neurorobotics, vol. 10, no. 11, pp. 6014-17, July 2016.

M. Farhad, S. N. Hossain, A. S. Khan, and A. Islam, “An
efficient optical character recognition algorithm using arti-
ficial neural network by curvature properties of characters,”
Proc. of International Conference on Informatics, Elec-
tronics & Vision (ICIEV), pp. 1-5, 2014.

R. Palm, R. Chadalavada, and A. Lilienthal, “Fuzzy mod-
eling and control for intention recognition in human-robot
systems,” Proc. of Sth International Conference on Com-
putational Intelligence IJCCI 2016, FCTA, Porto, Portugal,
pp. 67-74, 2016.

C.R. Guerrero, J. C. E. Marinero, J. P. Turiel, and V. Muoz,
“Using ‘human state aware’ robots to enhance physical
human-robot interaction in a cooperative scenario,” Com-
puter Methods and Programs in Biomedicine, vol. 112, no.
2, pp. 250-259, November 2013.


http://dx.doi.org/10.1007/s00138-012-0450-4
http://dx.doi.org/10.1007/s00138-012-0450-4
http://dx.doi.org/10.1007/s00138-012-0450-4
http://dx.doi.org/10.1109/ICIP.2012.6466975
http://dx.doi.org/10.1109/ICIP.2012.6466975
http://dx.doi.org/10.1109/ICIP.2012.6466975
http://dx.doi.org/10.1109/ICIP.2012.6466975
http://dx.doi.org/10.1145/2559636.2563706
http://dx.doi.org/10.1145/2559636.2563706
http://dx.doi.org/10.1145/2559636.2563706
http://dx.doi.org/10.1145/2559636.2563706
http://dx.doi.org/10.1145/2559636.2563706
http://dx.doi.org/10.1016/j.eswa.2013.08.009
http://dx.doi.org/10.1016/j.eswa.2013.08.009
http://dx.doi.org/10.1016/j.eswa.2013.08.009
http://dx.doi.org/10.1016/j.eswa.2013.08.009
http://dx.doi.org/10.1016/j.eswa.2013.08.009
http://dx.doi.org/10.1007/978-3-319-04561-0_2
http://dx.doi.org/10.1007/978-3-319-04561-0_2
http://dx.doi.org/10.1007/978-3-319-04561-0_2
http://dx.doi.org/10.1007/978-3-319-04561-0_2
http://dx.doi.org/10.1007/s11554-013-0370-1
http://dx.doi.org/10.1007/s11554-013-0370-1
http://dx.doi.org/10.1007/s11554-013-0370-1
http://dx.doi.org/10.1007/s11554-013-0370-1
http://dx.doi.org/10.1109/CVPRW.2013.82
http://dx.doi.org/10.1109/CVPRW.2013.82
http://dx.doi.org/10.1109/CVPRW.2013.82
http://dx.doi.org/10.1109/CVPRW.2013.82
http://dx.doi.org/10.1109/CVPRW.2013.82
http://dx.doi.org/10.1109/CVPRW.2013.82
http://dx.doi.org/10.1109/IWASI.2013.6576063
http://dx.doi.org/10.1109/IWASI.2013.6576063
http://dx.doi.org/10.1109/IWASI.2013.6576063
http://dx.doi.org/10.1109/IWASI.2013.6576063
http://dx.doi.org/10.1109/TIP.2015.2405346
http://dx.doi.org/10.1109/TIP.2015.2405346
http://dx.doi.org/10.1109/TIP.2015.2405346
http://dx.doi.org/10.1109/TIP.2015.2405346
http://dx.doi.org/10.1109/TIP.2015.2405346
http://dx.doi.org/10.1371/journal.pcbi.1003219
http://dx.doi.org/10.1371/journal.pcbi.1003219
http://dx.doi.org/10.1371/journal.pcbi.1003219
http://dx.doi.org/10.1371/journal.pcbi.1003219
http://dx.doi.org/10.1016/j.heares.2007.11.004
http://dx.doi.org/10.1016/j.heares.2007.11.004
http://dx.doi.org/10.1016/j.heares.2007.11.004
http://dx.doi.org/10.1016/j.heares.2007.11.004
http://dx.doi.org/10.1145/2157689.2157747
http://dx.doi.org/10.1145/2157689.2157747
http://dx.doi.org/10.1145/2157689.2157747
http://dx.doi.org/10.1145/2157689.2157747
http://dx.doi.org/10.1145/2157689.2157747
http://dx.doi.org/10.3389/fnbot.2016.00005
http://dx.doi.org/10.3389/fnbot.2016.00005
http://dx.doi.org/10.3389/fnbot.2016.00005
http://dx.doi.org/10.3389/fnbot.2016.00005
http://dx.doi.org/10.1109/ICIEV.2014.6850844
http://dx.doi.org/10.1109/ICIEV.2014.6850844
http://dx.doi.org/10.1109/ICIEV.2014.6850844
http://dx.doi.org/10.1109/ICIEV.2014.6850844
http://dx.doi.org/10.1109/ICIEV.2014.6850844
http://dx.doi.org/10.5220/0006015400670074
http://dx.doi.org/10.5220/0006015400670074
http://dx.doi.org/10.5220/0006015400670074
http://dx.doi.org/10.5220/0006015400670074
http://dx.doi.org/10.5220/0006015400670074
http://dx.doi.org/10.1016/j.cmpb.2013.02.003
http://dx.doi.org/10.1016/j.cmpb.2013.02.003
http://dx.doi.org/10.1016/j.cmpb.2013.02.003
http://dx.doi.org/10.1016/j.cmpb.2013.02.003
http://dx.doi.org/10.1016/j.cmpb.2013.02.003

484

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

Tehao Zhu, Zeyang Xia, Jiagi Dong, and Qunfei Zhao

P. Liu, D. F. Glas, T. Kanda, and H. Ishiguro, “Data-driven
HRI: learning social behaviors by example from human-
human interaction,” IEEE Transactions on Robotics, vol.
32, no. 4, pp. 988-1008, August 2016.

D. Bohus and E. Horvitz, “Managing human-robot engage-
ment with forecasts and... um... hesitations,” Proceedings
of the 16th International Conference on Multimodal Inter-
action, pp. 2-9, 2014.

A. Aly and A. Tapus, “A model for synthesizing a com-
bined verbal and nonverbal behavior based on personality
traits in human-robot interaction,” Proceedings of the Sth
ACM/IEEE International Conference on Human-robot In-
teraction, pp. 325-332, 2013.

D. Glowinski, A. Camurri, G. Volpe, N. Dael, and K.
Scherer, “Technique for automatic emotion recognition by
body gesture analysis,” IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, CVPRW’08, pp. 1-6, 2008.

Z. Liu, M. Wu, D. Li, L. Chen, F. Dong, Y. Yamazaki,
and K. Hirota, “Communication atmosphere in humans and
robots interaction based on the concept of fuzzy atmosfield
generated by emotional states of humans and robots,” Jour-
nal of Automation Mobile Robotics and Intelligent Systems,
vol. 7, no. 2, pp. 52-63, June 2013.

W. H. Kim, J. W. Park, W. H. Lee, H. S. Lee, and M. J.
Chung, “LMA based emotional motion representation us-
ing RGB-D camera,” Proceedings of the 8th ACM/IEEE
International Conference on Human-robot Interaction, pp.
163-164, 2013.

A. Robotics, “Nao robot: characteristics - Alde-
baran,”  https://www.ald.softbankrobotics.com/en/cool-
robots/nao/find-out-more-about-nao.

R. Laban, The Language of Movement: A Guidebook to
Choreutics, Plays Inc, Boston, 1974.

Y. Cheng, A Study on Semantic and Emotional Messages in
Robot Movements, Department of Multimedia Design, Na-
tional Taichung Institute of Technology, Taichung, 2010.

Y. Juan, Motion Style Synthesis Based on Laban Movement
Analysis, Institude of Information Systems and Applica-
tions, National Tsing Hua University, Hsinchu, 2004.

C. Hsieh and Y. Wang, “Digitalize emotions to improve the
quality life-analyzing movement for emotion application,”
Journal of Aesthetic Education, vol. 168, pp. 64-69, 2009.

M. S. Ku and Y. Chen, “From movement to emotion - a
basic research of upper body (analysis foundation of body
movement in the digital world 3 of 3),” Journal of Aesthetic
Education, vol. 164, pp. 38-43, 2008.

R. C. Gonzalez and R. E. Wood, “Using fuzzy techniques
for intensity,” Digital Image Processing, 3 ed., Prentice
Hall, pp. 128, 2008.

I. Asimov, “Runaround,” Astounding Science Fiction, vol.
29, no. 1, pp. 94-103, March 1942.

E. Fosch Villaronga, A. Barco, B. Zcan, and J. Shukla, “An
interdisciplinary approach to improving cognitive human-
robot interaction-a novel emotion-based model,” What So-
cial Robots Can and Should Do: Proceedings of Robophi-
losophy 2016, pp. 195-205, October 2016.

[32] M. Giuliani, C. Lenz, T. Miiller, M. Rickert, and A. Knoll,
“Design principles for safety in human-robot interaction,”
International Journal of Social Robotics, vol. 2, no. 3, pp.
253-274, March 2010.

[33] G. Xia, J. Tay, R. Dannenberg, and M. Veloso, “Au-
tonomous robot dancing driven by beats and emotions of
music,” Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1,
pp- 205-212, 2012.

[34] C. Chen, R. Jafari and N. Kehtarnavaz, “UTD-MHAD: a
multimodal dataset for human action recognition utilizing a
depth camera and a wearable inertial sensor,” Proc. of IEEE

International Conference on Image Processing (ICIP), pp.
168-172, 2015.

[35] G. Castellano, S. D. Villalba, and A. Camurri, “Recog-
nising human emotions from body movement and gesture
dynamics,” Proc. of International Conference on Affective
Computing and Intelligent Interaction, pp. 71-82, 2007.

[36] B. Kikhia, M. Gomez, L. L. Jiménez, J. Hallberg, N. Kar-
vonen, and K. Synnes, “Analyzing body movements within
the laban effort framework using a single accelerometer,”
Sensors, vol. 14, no. 3, pp. 5725-5741, March 2014.

Tehao Zhu received the B.S. degree in
automation from the Northwest Polytech-
nical University, Xi’an, China, in 2009,
and the M.S. degree in pattern recognition
and intelligent system from University of
Science and Technology of China, Hefei,
China, in 2012. He is currently pursuing
a Ph.D. degree at Shanghai Jiao Tong Uni-
versity, Shanghai, China. His current re-
search interests include human-robot interaction, machine learn-
ing, and image processing.

Zeyang Xia received the B.S. degree in
mechanical engineering from Shanghai
Jiao Tong University, Shanghai, China, in
2002, and the Ph.D. degree in mechan-
ical engineering from Tsinghua Univer-
sity,Beijing, China, in 2008. He is cur-
rently a Professor at Shenzhen Institutes of
Advanced Technology, Chinese Academy
of Sciences, Shenzhen, China, and is the
director of Medical Robotics and Biomechanics Laboratory
(http://www.bigsmilelab.ac.cn). His research interests include
biped humanoid robotics, medical robotics, and dental biome-
chanics. He has published over 80 peer reviewed papers, and
applied over 40 patents. He is the vice chairman of Guangzhou
Branch of the Youth Innovation Promotion Association, Chinese
Academy of Sciences, and the co-chair of Guangdong Chapter
of IEEE Robotics and Automation Society. He served as the
Program Co-Chair of IEEE RCAR 2016 and ICVS 2017, and
will be the General Chair of IEEE RCAR 2019.


http://dx.doi.org/10.1109/TRO.2016.2588880
http://dx.doi.org/10.1109/TRO.2016.2588880
http://dx.doi.org/10.1109/TRO.2016.2588880
http://dx.doi.org/10.1109/TRO.2016.2588880
http://dx.doi.org/10.1145/2663204.2663241
http://dx.doi.org/10.1145/2663204.2663241
http://dx.doi.org/10.1145/2663204.2663241
http://dx.doi.org/10.1145/2663204.2663241
http://dx.doi.org/10.1109/HRI.2013.6483606
http://dx.doi.org/10.1109/HRI.2013.6483606
http://dx.doi.org/10.1109/HRI.2013.6483606
http://dx.doi.org/10.1109/HRI.2013.6483606
http://dx.doi.org/10.1109/HRI.2013.6483606
http://dx.doi.org/10.1109/CVPRW.2008.4563173
http://dx.doi.org/10.1109/CVPRW.2008.4563173
http://dx.doi.org/10.1109/CVPRW.2008.4563173
http://dx.doi.org/10.1109/CVPRW.2008.4563173
http://dx.doi.org/10.1109/CVPRW.2008.4563173
http://dx.doi.org/10.1109/HRI.2013.6483552
http://dx.doi.org/10.1109/HRI.2013.6483552
http://dx.doi.org/10.1109/HRI.2013.6483552
http://dx.doi.org/10.1109/HRI.2013.6483552
http://dx.doi.org/10.1109/HRI.2013.6483552
https://www.ald.softbankrobotics.com/en/cool-robots/nao/find-out-more-about-nao
https://www.ald.softbankrobotics.com/en/cool-robots/nao/find-out-more-about-nao
http://dx.doi.org/10.3233/978-1-61499-708-5-195
http://dx.doi.org/10.3233/978-1-61499-708-5-195
http://dx.doi.org/10.3233/978-1-61499-708-5-195
http://dx.doi.org/10.3233/978-1-61499-708-5-195
http://dx.doi.org/10.3233/978-1-61499-708-5-195
http://dx.doi.org/10.1007/s12369-010-0052-0
http://dx.doi.org/10.1007/s12369-010-0052-0
http://dx.doi.org/10.1007/s12369-010-0052-0
http://dx.doi.org/10.1007/s12369-010-0052-0
http://dx.doi.org/10.1109/ICIP.2015.7350781
http://dx.doi.org/10.1109/ICIP.2015.7350781
http://dx.doi.org/10.1109/ICIP.2015.7350781
http://dx.doi.org/10.1109/ICIP.2015.7350781
http://dx.doi.org/10.1109/ICIP.2015.7350781
http://dx.doi.org/10.1007/978-3-540-74889-2_7
http://dx.doi.org/10.1007/978-3-540-74889-2_7
http://dx.doi.org/10.1007/978-3-540-74889-2_7
http://dx.doi.org/10.1007/978-3-540-74889-2_7
http://dx.doi.org/10.3390/s140305725
http://dx.doi.org/10.3390/s140305725
http://dx.doi.org/10.3390/s140305725
http://dx.doi.org/10.3390/s140305725

A Sociable Human-robot Interaction Scheme Based on Body Emotion Analysis 485

Jiaqi Dong received the B.S. degree in au-
tomation from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2014. She
is currently pursuing a Ph.D. degree at
Shanghai Jiao Tong University, Shanghai,
China. Her current research interests in-
clude human-robot interaction and pattern
recognition.

Qunfei Zhao received the B.S.E.E. degree
from Xi’an Jiao Tong University, Xi’an,
China, in 1982, and the Sc.D. degree in
system science from Tokyo Institute of
Technology, Tokyo, Japan, in 1988. He
is currently a Professor at the School of
Electronic Information and Electric En-
gineering, Shanghai Jiao Tong Univer-
sity, China. His research interests include
robotics, machine vision, and optimal control of complex mecha-
tronic systems.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.



