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Robust H∞ Performance of Discrete-time Neural Networks with Uncer-
tainty and Time-varying Delay
M. Syed Ali, K. Meenakshi, R. Vadivel, and O. M. Kwon*

Abstract: In this paper, we are concerned with the robust H∞ problem for a class of discrete -time neural networks
with uncertainties. Under a weak assumption on the activation functional, some novel summation inequality tech-
niques and using a new Lyapunov-Krasovskii (L-K) functional, a delay-dependent condition guaranteeing the robust
asymptotically stability of the concerned neural networks is obtained in terms of a Linear Matrix Inequality(LMI).
It is shown that this stability condition is less conservative than some previous ones in the literature. The controller
gains can be derived by solving a set of LMIs. Finally, two numerical examples result are given to illustrate the
effectiveness of the developed theoretical results.
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1. INTRODUCTION

Neural networks have found a large number of success-
ful applications in various fields of science and engineer-
ing. However, it is worth noting that most systems con-
tain digital computers (usually microprocessors or micro
controllers) with the necessary input/output hardware to
implement the systems. Thus discrete-time system model
with time delay plays a significant role in fields of engi-
neering applications. The problems of stability analysis
for continue time neural networks and discrete-time neu-
ral networks have been extensively studied in recent years
and many stability conditions have been reported in the lit-
erature [1–5]. Since axonal signal transmission delays of-
ten occur in various neural networks, and many also cause
undesirable dynamic network behaviors such as oscilla-
tion and instability. Therefore, increasing attention has
been paid to the problem of stability analysis of neural
networks with delays, and a lot of research results have
been reported for the neural networks with delays and the
references therein see [4–6].

Recently, the stability analysis problems for discrete-
time neural networks have received considerable research
interests, and many sufficient conditions have been pro-
posed to guarantee the asymptotic and exponential stabil-
ity of neural networks with various types of time-delay
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such as constant, time-varying, random and distributed de-
lays, see for example [7–9]. Recently the authors in [10],
improved criteria of delay-dependent stability for discrete-
time neural networks with leakage delay was studied. Fur-
ther, it is well known that the connection weights of the
neurons are inherently dependent on certain resistance and
capacitance values that inevitably bring in uncertainties
during the parameter identification process. The devia-
tions and perturbations in parameters have the effect on
the performance of neural networks [11, 12]. So, it is
important to study the dynamical behaviors of dynamical
systems by taking the uncertainties into account. Many
scholars have discussed the dynamics of delayed systems
with uncertainties, see [13–16].

A great number of control strategies have been pro-
posed for achieving the stability analysis, including adap-
tive dynamic surface control, sliding mode control [17–
20]. In recent years, H∞ control plays an important role
in controller design problems was initially formulated by
Zames in 1980s and has found numerous applications in
practical engineering systems. More recently, H∞ control
theory has been applied to an actual building in Tokyo,
Japan, using a pair of mass dampers to reduce the bending-
torsion motion due to earthquakes [21]. In addition, when
compared to other control strategies H∞ control theory is
an effective tool to stabilize the uncertain systems with
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time invariant/varying norm-bounded parameter uncer-
tainty in the state and input matrices and applied to min-
imize the effects of the external disturbance. Naturally,
when investigating the discrete time neural networks, an
H∞ performance γ is usually considered [22–24]. In the
discrete-time context, there is rapidly growing interest in
H∞ control due to being frequently encountered in many
practical engineering systems such as chemical, electron-
ics, process control systems and networked control sys-
tems. Meanwhile, the H∞ control problem for discrete
time system has also received much attention and a num-
ber of contributions were given in the references, see
[25–27]. However, to the best of the authors’ knowledge,
the robust H∞ performance of discrete-time neural net-
works with uncertainty and time-varying delay has not yet
received adequate research attention which motivated the
recent work.

Motivated by the aforementioned discussion, this pa-
per aims at investigating the robust H∞ performance of
discrete-time neural networks with uncertainty and time-
varying delay. The main contributions of this paper are
listed as follows: i) The objective of this work is to obtain
an H∞ controller design such that the resulting closed-loop
form of neural network is robustly stable with given dis-
turbance attenuation level γ > 0. ii) The parameter uncer-
tainties are assumed to be norm bounded. By constructing
Lyapunov-Krasovskii including the lower and upper de-
lay bound of interval time-varying delay, novel summation
inequality approach and LMI technique, we designed ro-
bust H∞ controller such that the resulting closed-loop form
of neural network is robustly asymptotically stable with a
prescribed H∞ performance. Moreover the results are for-
mulated in terms of LMIs, which can be easily calculated
by MATLAB-LMI control toolbox. (iii) Finally, numeri-
cal examples are given to illustrate the effectiveness and
applicability of the proposed theories.

Notation: Throughout this paper, N is the set of natural
numbers and N+ stands for the set of nonnegative inte-
gers; Rn and Rn×m denote, respectively, the n dimensional
Euclidean space and the set of all n×m real matrices. The
superscript "T" denotes the transpose and P1 > 0 means
that P1 is positive definite. I is the identity matrix with
compatible dimension. diag{·} stands for a block diago-
nal matrix. The asterisk * in a matrix is used to denote
term that is induced by symmetry.

2. SYSTEM DESCRIPTION AND
PRELIMINARIES

Consider the following discrete time-delay neural net-
works with time varying delays,

x(k+1) =−A(k)x(k)+E(k)g(x(k))

+Ed(k)g(x(k−d(k))+u(k)+D(k)w(k),

z(k) = Lx(k),

x(k) = ϕ(k) for every k ∈ [−dM,0], (1)

where x(k) ∈ Rn is the neural state vector, u(k) is
the control input, z(k) is the controlled output, and
w(k) ∈ Rq is the anexogenous disturbance signal
which is assumed to belong to l2 [0,∞). g(x(k)) =
[g1(x1(k)),g2(x2(k)), ...,gn(xn(k))]n denotes the neuron
activation function, and the positive integer d(k) denotes
the time-varying delay satisfying

dm ≤ d(k)≤ dM for all k ∈ N, (2)

where dm and dM are known constant positive scalars.
A(k) = A + ∆A(k), E(k) = A + ∆E(k), Ed(k) = Ed +
∆Ed(k) in which A = diag{a1,a2, ...,an}represents the
state feedback coefficient matrix with |ai| < 1,E =
(ei j)n×n, Ed = (edi j)n×n, D = (di j)n×n, respectively de-
notes the connection weights, the delayed connection
weights and disturbance weights and L is the known ma-
trix with appropriate dimensions, the initial function ϕ(k)
is continuous and defined on [−dM,0].

[∆A(k) ∆E(k) ∆Ed(k) ∆D(k)]

= MF(k)[N1 N2 N3 N4].

Where M and Ni, (i = 1,2,3,4) are known real constant
matrices, and F(k) is the time varying matrix valued func-
tion subject to FT (k)F(k) ≤ I, ∀k ∈ N+. where I is the
identity matrix with appropriate dimensions.
In this paper, without loss of generality, we make follow-
ing assumptions for the activation functions:

Assumption 1: Each activation function gi(·) in (1) is
continuous and bounded, and there exist constants F−

i and
F+

i such that

F−
i ≤ gi(ℓ1)−gi(ℓ2)

ℓ1 − ℓ2
≤ F+

i , i = 1,2, ...,n (3)

where ℓ1, ℓ2 ∈ R, and ℓ1 ̸= ℓ2.

The following definition and lemmas will be used in the
proof of main results.

Definition 1 [1]: The discrete time neural networks (1)
is said to be robustly stable with given disturbance atten-
uation level γ̂ > 0, if it is robustly stable under zero initial
conditions and satisfies

∥ z ∥2≤ γ̂ ∥ v ∥2 (4)

for all every non-zero v ∈ l2(0,∞).

Lemma 1 [2]: Given constant matrices δ1 δ2, δ3,
where δ1 = δ T

1 > 0 and δ2 = δ T
2 > 0 then δ1 +δ T

3 δ−1
2 δ3 <

0 if and only if
[

δ1 δ T
3

δ3 −δ2

]
< 0.

Lemma 2 [6]: For any vector x,y ∈ Rn, matrices
A,P,D,E and F are real matrices of appropriate dimen-
sions with P> 0,FT F ≤ I, and scalar λ > 0, the following
inequalities hold:
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(i) 2xT DFEy ≤ λ−1xT DDT x+λyT ET Ey.
(ii) If P − λDDT > 0, then (A + DFE)T P−1(A +

DFE)≤ AT (P−λDDT )−1A+λ−1ET E.

Lemma 3 [4]: Consider a given n×n positive definite
matrix R2 ≥ 0. Then for all y0,y1,y2, ...,yn ∈ Rn, the fol-
lowing inequality holds

n

∑
k=0

ϒyT
k R2ϒyk ≥

1
n+1

(yn+1 − y0)
T R2(yn+1 − y0)

+
3

n+1
πT

1
n+2

n
R2π1,

where ϒyk = yk+1 − yk and π1 = yn+1 + y0 − 2
n+2 ∑n+1

k=0 yk.

Lemma 4 [5]: For a positive definite symmetric ma-
trix Z2, any matrix J̃, d(k) ∈ [d1, d2] and r(k) =
x(k + 1)− x(k), the sum term ℜ(k) given as ℜ(k) =
∑k−d1−1

θ=k−d(k) rT (θ)Z2r(θ) + ∑k−d(k)−1
θ=k−d2

rT (θ)Z2r(θ) can be
estimated as

d12ℜ(k)

≥ ζ̂ T (t)
[

Γ̂1

Γ̂2

]T
([

Ř J̃
∗ Ř

]
+

[
d2−d(k)

d12
M̂1 0

∗ d(k)−d1
d12

M̂2

])

× ζ̂ (t)
[

Γ̂1

Γ̂2

]
,

where Ř = diag{Z2, 3Z2},M̂1 = Ř− JŘ−1JT ,d12 = d2 −
d1,M̂2 = Ř − JT Ř−1J,ζ (t) = [xT (k),xT (k − d1),xT (k −
d(k)),xT (k−d2), b̂T

1 (t), b̂
T
2 (t), b̂

T
3 (t)]

T ,

b̂T
1 (t) =

k

∑
θ=k−d1

x(θ)
d1 +1

, b̂T
2 (t) =

k−d1

∑
θ=k−d(k)

x(θ)
d(k)−d1 +1

,

b̂T
3 (t) =

k−d(k)

∑
θ=k−d2

x(θ)
d2 −d(k)+1

, Γ̂1 =

[
ě2 − ě3

ě2 + ě3 −2ě6

]
,

Γ̂2 =

[
ě3 − ě4

ě3 + ě4 −2ě7

]
,

ěs = [0n×(s−1)×n, In×n, 0n×(7−s)n], s = 1,2,3, ...,7.

3. MAIN RESULTS

In this section, we study the robust stability results for
the DNNs (1) when the disturbance input w(k) = 0. Based
on Lyapunov technique and the LMI inequality approach,
we derive a state feedback controller of the form

u(k) = kx(k). (5)

For presentation convenience, we denote

F1 = diag{F−
1 F+

1 , F−
2 F+

2 , ..., F−
n F+

n },

F2 = diag

{
F−

1 +F+
1

2
,

F−
2 +F+

2

2
, ...,

F−
n +F+

n

2

}

∆1 =
(dm +1)
(dm −1)

, ∆2 =
(dm +1)

dm(dm −1)
, ∆3 =

dM −d(k)
dM −dm

,

∆4 =
d(k)−dm +1

(d(k)−d1)(d(k)−dm −1)
, ∆5 =

d(k)−dm

dM −dm
.

Theorem 1: Under assumption 1, the DNNs (1) with
w(k) = 0 is robustly asymptotically stable, if there exist
symmetric matrices P1 > 0, Q > 0, R > 0, S > 0, Z1 >
0, T2 > 0, T4 > 0,W > 0,Z2 > 0,R1 > 0 diagonal matrices
Gi > 0, i = 1,2, matrix X , Y and a scalar λ , ε > 0, such
that the following LMIs hold:

Ψa =



Ψ11 0 Ψ13 0 Ψ15 Ψ16 Ψ17

∗ Ψ22 0 Ψ24 0 Ψ26 0
∗ ∗ Ψ33 0 0 0 0
∗ ∗ ∗ Ψ44 0 0 0
∗ ∗ ∗ ∗ Ψ55 Ψ56 Ψ57

∗ ∗ ∗ ∗ ∗ Ψ66 Ψ67

∗ ∗ ∗ ∗ ∗ ∗ Ψ77

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
Ψ18 0 0 Ψ1,11 Ψ1,12

0 Ψ29 Ψ2,10 0 0
Ψ38 Ψ39 0 0 0

0 0 Ψ4,10 0 0
0 0 0 Ψ5,11 Ψ5,12

0 0 0 Ψ6,11 Ψ6,12

0 0 0 0 0
0 0 0 0 0

Ψ88 0 0 0 0
∗ Ψ99 0 0 0
∗ ∗ Ψ10,10 0 0
∗ ∗ ∗ Ψ11,11 0
∗ ∗ ∗ ∗ Ψ12,12



< 0,

(6)

where

Ψ11 =−P̂1 + Q̂(1+dM −dm)+ R̂+ Ŝ

+(1+dM −dm)T̂2 −F1G1 +λNT
1 N1 − Ẑ1

− R1

d1
−3Ẑ1∆1 −3R̂1∆2,

Ψ13 = Ẑ1 −
R1

d1
−3Ẑ1∆1 −3R̂1∆2, Ψ1,11 = XAT +Y T ,

Ψ15 = (1+dM −dm)Ŵ +F2G1 +λNT
1 N2,

Ψ16 = λNT
1 N3, Ψ17 = Y T β −Xβ +XAT β ,

Ψ18 = 3Z1∆1 +3R̂1∆2,

Ψ22 =−Q̂− T̂2 −F1G2 −
R̂1

(d(k)−d1)
−8Ẑ2 −4∆3Ẑ2

−4∆5Ẑ2,

Ψ24 =−2Ẑ2 −2∆5Ẑ2,

Ψ29 = 3∆4R̂1 +3Ẑ2 +3∆3Ẑ2,
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Ψ1,12 = XN1 +Y, Ψ26 =−W +F2G2,

Ψ2,10 = 3Ẑ2 +3∆5Ẑ2,

Ψ33 =−R̂−3Ẑ1∆1 −4Ẑ2 −4∆3Ẑ2 −Z1

− R̂1

(d(k)−d1)
− R̂1

d1
−3R̂1∆4 −3R̂1∆2,

Ψ38 = 3Ẑ1∆1 +3R̂1∆2, Ψ39 = 3Ẑ2 +3∆3Ẑ2 +3R̂1∆4,

Ψ44 =−Ŝ−4Ẑ2 −4∆5Ẑ2, Ψ4,10 = 3Ẑ2 +3∆5Ẑ2,

Ψ55 =−(1+dM −dm)T̂4 + Q̂1 +λNT
2 N2 −G1,

Ψ56 = λNT
2 N3, Ψ57 = ET P̂T

1 β , Ψ5,11 = ET
d ,

Ψ5,12 = N2, Ψ66 = λNT
3 N3 − Q̂1 − T̂4 −G2,

Ψ67 = ET
d P̂T

1 β , Ψ6,11 = ET
d , Ψ6,12 = N3,

Ψ77 =−βX +λMMT β 2 +d2
mẐ1 +(dM −dm)

2Ẑ2

+dmR̂1,

Ψ88 =−3Ẑ1∆1 −3R̂1∆2, Ψ99 =−3∆4R̂1,

Ψ10,10 =−3Ẑ2 −3∆5Ẑ2, Ψ11,11 =−X +λMMT ,

Ψ12,12 =−ε, W4 = diag{Z2 3Z2}.

In this case, the appropriate state feedback controller can
be chosen as K = X−1Y .

Proof: Lyapunov-Krasovskii Functional is defined as
follows

V (k) =V1(k)+V2(k)+V3(k)+V4(k)+V5(k)+V6(k),
(7)

where

V1(k) =xT (k)P1x(k),

V2(k) =
k−1

∑
i=k−d(k)

xT (i)Qx(i)+
−dm

∑
j=−dM+1

k−1

∑
i=k+ j

xT (i)Qx(i),

V3(k) =
k−1

∑
i=k−dm

xT (i)Rx(i)+
k−1

∑
i=k−dM

xT (i)Sx(i),

V4(k) =
−dm+1

∑
j=−dM+1

k−1

∑
i=k−1+ j

[
x(i)

g(x(i))

]T

U
[

x(i)
g(x(i))

]
,

V5(k) =dm

−1

∑
β=−dm

k−1

∑
θ=k+β

rT (θ)Z1r(θ)

+(dM −dm)
−dm

∑
i=−dM+1

k−1

∑
θ=k+i−1

rT (θ)Z2r(θ),

V6(k) =
−1

∑
i=−d(k)

k−1

∑
θ=k+i

rT (θ)R1r(θ),

where r(k) = x(k+ 1)− x(k). Calculating the difference
of V (k) by defining ∆V (k) = V (k + 1)−V (k) along the
system with w(k) = 0 and taking the mathematical expec-
tation we obtain,

E[∆V (k)] =E[V1(k)+V2(k)+V3(k)+V4(k)

+V5(k)+V6(k)], (8)

where

E[∆V1(k)]

= E{V1(k+1)−V1(k)},
= E[xT (k+1)P1x(k+1)− xT (k)P1x(k)],

= E[[(A+∆A(k))x(k)+(E +∆E(k))g(x(k))

+(Ed +∆Ed(k))g(x(k−d(k)))+u(k)]T

×P[(A+∆A(k))x(k)+(E +∆E(k))g(x(k))

+(Ed +∆Ed(k))g(x(k−d(k)))+u(k)]],

= E[[Ax(k)+Eg(x(k))+Edg(x(k−d(k)))

+u(k)]T (P−1
1 −λ−1MMT )−1

× [Ax(k)+Eg(x(k))+Edg(x(k−d(k)))+u(k)]]

+λ [N1x(k)+N2g(x(k))+N3g(x(t −d(k)))]T

× [N1x(k)+N2g(x(k))+N3g(x(t −d(k)))], (9)

E[∆V2(k)]

= E[{V2(k+1)−V2(k)}],

=
k

∑
i=k+1−d(k+1)

xT (i)Qx(i)+
−dm

∑
j=−dM+1

k

∑
i=k+1+ j

xT (i)Qx(i)

−
k−1

∑
i=k−d(k)

xT (i)Qx(i)−
−dm

∑
j=−dM+1

k−1

∑
i=k+ j

xT (i)Qx(i),

= {(dM −dm +1)xT (k)Qx(k)

− xT (k−d(k))Qx(k−d(k))},
E[∆V3(k)]

= E{V3(k+1)−V3(k)},
= {xT (k)Rx(k)+ xT (k)Sx(k)− xT (t −dm)Rx(t −dm)

− xT (t −dM)Sx(t −dM)},
E[∆V4(k)]

= E{V4(k+1)−V4(k)},

= h
[

x(k)
g(x(k))

]T [ T2 W
∗ T4

][
x(k)

g(x(k))

]
−
[

x(k−d(k))
g(x(k−d(k)))

]T [T2 W
∗ T4

][
x(k−d(k))

g(x(k−d(k)))

]
,

E[∆V5(k)]

= dm

−1

∑
β=−dm

{
k

∑
θ=k+β+1

rT (θ)Z1r(θ)−
k−1

∑
θ=k+β

rT (θ)Z1r(θ)

}

+(dM −dm)
−dm

∑
i=dM+1

{
k

∑
θ=k+i

rT (θ)Z2r(θ)

−
k−1

∑
θ=k+i−1

rT (θ)Z2r(θ)

}
,

= d2
mrT (k)Z1r(k)−dm

k−1

∑
θ=k−dm

rT (θ)Z1r(θ)

+(dM −dm)
2rT (k)Z2r(k)
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− (dM −dm)
k−dm−1

∑
θ=k−dM

rT (θ)Z2r(θ), (10)

E[∆V6(k)]

= d(k)rT (k)R1r(k)−
k−1

∑
θ=k−d(k)

rT (θ)R1r(θ). (11)

Utilizing Lemma 3, we get

−dm

k−1

∑
i=k−dm

xT (i)Z1x(i)

≤−[x(k)− x(k−dm)]
T Z1[x(k)− x(k−dm)]

−3[x(k)− x(k−dm)

− 2
dm +1

k

∑
i=k−dm

x(i)]T Z1
dm +1
dm −1

[x(k)− x(k−dm)

− 2
dm +1

k

∑
i=k−dm

x(i)].

Also,

−
k−1

∑
j=k−d(k)

xT ( j)R1x( j)

=−
k−1

∑
j=k−dm

xT ( j)R1x( j)−
k−dm−1

∑
j=k−d(k)

xT ( j)R1x( j)

since

−
k−1

∑
j=k−dm

xT ( j)R1x( j)

≤

[
x(k)− x(k−dm)

x(k)+ x(k−dm)− 2
dm+1 ∑k

i=k−d1
u(i)

]T

×

[
− R1

dm
0

0 −3 (dm+1)
dm(dm−1)R1

]

×

[
x(k)− x(k−dm)

x(k)+ x(k−dm)− 2
dm+1 ∑k

i=k−d1
u(i)

]
,

−
k−dm−1

∑
j=k−d(k)

xT ( j)R1x( j)≤ −1
d(k)−dm

[x(k−dm)

− x(k−d(k))]T R1[x(k−dm)− x(k−d(k))]

−3
(d(k)−dm +1)

(d(k)−dm)(d(k)−dm −1)
[x(k−dm)

+ x(k−d(k))− 2
d(k)−dm +1

k−dm

∑
j=k−d(k)

x( j)]T R1

× [x(k−dm)+ x(k−d(k))

− 2
d(k)−dm +1

k−dm

∑
j=k−d(k)

x( j)].

Then, for any matrix V2, the improved summation in-
equality in Lemma 4 is employed to estimate other sum

terms possessed time-varying delay d(k) in ∆V3(k,u(k)),
we have

(dM −dm)
k−dm−1

∑
i=k−dM

rT (i)Z2r(i)

=

{
k−d(k)−1

∑
i=k−dM

rT (i)Z2r(i)+
k−dm−1

∑
i=k−d(k)

rT (i)Z2r(i)

}
≤ Λ2(k),

where

Λ2(k) =
[

Γ̂1

Γ̂2

]T
([

W4 V2

∗ W4

]

+

[
dM−d(k)
dM−dm

(W4 −V2W−1
4 V T

2 )

∗

0
d(k)−dm
dM−dm

(W4 −V T
2 W−1

4 V2)

])[
Γ̂1

Γ̂2

]
,

Moreover, for any matrices P2 > 0, we have

2r(k)P2[((A+∆A(t))− I)x(k)+(E +∆E(t))g(x(k))

+(Ed +∆Ed(t))g(x(k−d(k)))

+(D+∆D(k))w(k)+u(k)− r(k)]

= 0.

From Assumption 1, we have

(gi(xi(k))−F−
i xi(k))(gi(xi(k))−F+

i xi(k))≤ 0,

which is equivalent to

n

∑
i=1

di

[
x(k)

g(x(k))

]T
 F−

i F+
i ēiēT

i
−F−

i +F+
i

2 ēiēT
i

−F−
i +F+

i
2 ēiēT

i ēiēT
i

T

×

[
x(k)

g(x(k))

]
≤ 0,[

x(k)
g(x(k))

]T [ F1G1 −F2G1

−F2G1 G1

][
x(k)

g(x(k))

]
≤ 0,[

x(k−d(k))
g(x(k−d(k)))

]T [ F1G2 −F2G2

−F2G2 G2

]
×
[

x(k−d(k))
g(x(k−d(k)))

]
≤ 0. (12)

Combining (9)-(12) and using Schur complement Lemma

E{∆V (k)} ≤ E{ξ T (k)Πaξ (k)}, (13)
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Πa =



Ψ11 0 Ψ13 0 Ψ15 Ψ16 Ψ17

∗ Ψ22 0 Ψ24 0 Ψ26 0
∗ ∗ Ψ33 0 0 0 0
∗ ∗ ∗ Ψ44 0 0 0
∗ ∗ ∗ ∗ Ψ55 Ψ56 Ψ57

∗ ∗ ∗ ∗ ∗ Ψ66 Ψ67

∗ ∗ ∗ ∗ ∗ ∗ Ψ77

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
Ψ18 0 0 Ψ1,11 Ψ1,12

0 Ψ29 Ψ2,10 0 0
Ψ38 Ψ39 0 0 0

0 0 Ψ410 0 0
0 0 0 Ψ511 Ψ512

0 0 0 Ψ611 Ψ612

0 0 0 0 0
0 0 0 0 0

Ψ88 0 0 0 0
∗ Ψ99 0 0 0
∗ ∗ Ψ10,10 0 0
∗ ∗ ∗ Ψ11,11 0
∗ ∗ ∗ ∗ Ψ12,12



< 0,

(14)

where

Ψ17 = PT
2 +PT

2 KT −PT
2 , Ψ1,11 = AT +KT ,

Ψ1,12 = N1 +K, Ψ57 = ET P2, Ψ5,11 = ET ,

Ψ5,12 = N2, Ψ67 = ET
d PT β , Ψ6,11 = ET

d , Ψ6,12 = N3,

Ψ77 =−P2 +λP2MMT P2 +d2
mZ1 +(dM −dm)

2Z2

+dmR1,

Ψ11,11 =−(P−1 −λMMT ), Ψ12,12 =−ε,

ξ T (k) =

[
xT (k) xT (k−d(k)) xT (k−dm) xT (k−dM)

gT (x(k)) gT (x(k−d(k)))

rT (k)
2

d1 +1

k

∑
j=k−d1

xT ( j)

2
d(k)−d1 +1

k−d1

∑
j=k−d(k)

xT ( j)

2
d2 −d(k)+1

k−d(k)

∑
j=k−d2

xT ( j)

]
.

In order to obtain the feedback controller gain matrices, let
us define P2 = βP1, here β is the design parameter. Pre and
post multiply by (14) by diag{X , I, I, I, I, I,X , I, I, I, I, I},
we can obtain (6). where X = P−1

1 and letting P̂1 = XP1X ,
Q̂ = XQX , R̂ = XRX , Ŝ = XSX , T̂1 = XT1X , Ẑ1 = XZ1X ,

Ẑ2 = XZ2X , R̂1 = XR1X . Thus we conclude that

E{∆V (k)} ≤ −ν̂E|ξ (k)|2.

where ν̂ is the positive scalar and by using controller gain
matrix K = X−1Y in (14). This indicates that the closed-
loop system (1) with w(k) = 0 is robustly asymptotically
stable in the mean square. The proof is complete. Next,
we will analyze the H∞ performance of the closed-loop
system. □

4. ROBUST H∞ PERFORMANCE ANALYSIS

This section is devoted to focus a state feedback con-
troller u(k) = X−1Y x(k) that stabilizes system (1) and
guarantees that the closed-loop system reaches the distur-
bance attenuation level γ̂ > 0.
In order to deal the H∞ performance of the DNNs (1), we
introduce

J̃(n) = E{
n

∑
k=0

zT (k)z(k)− γ̂2wT (k)w(k)}, (15)

where n is a non-negative integer.

Theorem 2: Under assumption (1), the DNNs (1) hold,
if there exist symmetric matrices P > 0,Q > 0,R > 0,S >
0,Z1 > 0,T2 > 0,T4 > 0,W > 0,Z2 > 0,R1 > 0 diagonal
matrices Gi > 0, i = 1,2, matrix X , Y and a scalar λ >
0,ε > 0, such that the following LMIs hold:

Ψa =



Ψ11 0 Ψ13 0 Ψ15 Ψ16 Ψ17

∗ Ψ22 0 Ψ24 0 Ψ26 0
∗ ∗ Ψ33 0 0 0 0
∗ ∗ ∗ Ψ44 0 0 0
∗ ∗ ∗ ∗ Ψ55 Ψ56 Ψ57

∗ ∗ ∗ ∗ ∗ Ψ66 Ψ67

∗ ∗ ∗ ∗ ∗ ∗ Ψ77

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

Ψ18 Ψ19 0 0 Ψ1,12 Ψ1,13

0 0 Ψ2,10 Ψ2,11 0 0
0 Ψ39 Ψ310 0 0 0
0 0 0 Ψ411 0 0

Ψ58 0 0 0 Ψ5,12 Ψ5,13

Ψ68 0 0 0 Ψ6,12 Ψ6,13

Ψ78 0 0 0 0 0
Ψ88 0 0 0 0 0
∗ Ψ99 0 0 0 0
∗ ∗ Ψ10,10 0 0 0
∗ ∗ ∗ Ψ11,11 0 0
∗ ∗ ∗ ∗ Ψ12,12 0
∗ ∗ ∗ ∗ ∗ Ψ13,13



< 0,

(16)
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where

Ψ11 =−P̂1 + Q̂(1+dM −dm)+ R̂+ Ŝ

+(1+dM −dm)T̂2 −F1G1 +λNT
1 N1 +LT L

− Ẑ1 −
R̂1

d1
−3Ẑ1∆1 −3R̂1∆2,

Ψ17 = λNT
1 N4, Ψ57 = λNT

2 N4, Ψ67 = λNT
3 N4,

Ψ77 = λNT
4 N4 − γ̂2I, Ψ1,11 = XAT +Y T ,

Ψ18 = Y T β −Xβ +XAT β , Ψ1,12 = XN1 +Y,

Ψ58 = ET P̂T
1 β , Ψ5,11 = ET

d , Ψ5,12 = N2,

Ψ68 = ET
d P̂T

1 β , Ψ6,11 = ET
d , Ψ6,12 = N3,

Ψ78 = DT PT β , Ψ7,11 = DT , Ψ7,12 = N4,

Ψ88 =−βX +λMMT β 2 +d2
mẐ1 +(dM −dm)

2Ẑ2

+dmR̂1,

Ψ11,11 =−X +λMMT , Ψ12,12 =−ε,

other terms are same as defined in Theorem 1. Then, a sta-
bilizing feedback controller to provide γ̂ > 0-disturbance
attenuation can be constructed as u(k) = X−1Y x(k).

Proof: Under the zero initial condition, (15) becomes

J̃(n) =E

[
n

∑
k=0

[xT (k)LT Lx(k)

− γ̂2wT (k)w(k)+∆V (k)]−V (n+1)

]
,

≤E

[
n

∑
k=0

[xT (k)LT Lx(k)− γ̂2wT (k)w(k)+∆V (k)

]
,

≤E

[
n

∑
k=0

ξ T (k)Ψbξ (k)

]
.

By using ∆V (k) given in (8), thus we have Ψb by using
the same procedure as in Theorem 1. If LMI (16) holds,
then we obtain J̃(n) < 0 and by letting n → ∞, we have
∥ z ∥2≤ γ̂ ∥ w ∥2. Therefore by Definition 1 the DNNs (1)
is robustly asymptotically stable with a disturbance atten-
uation level γ̂ > 0. □

Remark 1: In Theorems 1 and 2, the criteria that en-
sure the asymptotic stability of discrete time neural net-
works with time-varying delay are established in terms
of LMIs. If there is no parameter uncertainties then the
DNNs (1) is reduced to the following neural network
model (17).

x(k+1) =−Ax(k)+Eg(x(k))+Edg(x(k−d(k)),

z(k) = Lx(k). (17)

According to Theorem 1, we have the following Corol-
lary 1 for the asymptotic stability of discrete time neural
networks (17).

Corollary 1: Under assumption (1), the neural net-
works (17) with w(k) = 0 are robustly asymptotically sta-
ble, if there exist symmetric matrices P > 0,Q > 0,R >
0,S > 0,Z1 > 0,T2 > 0,T4 > 0,W > 0,Z2 > 0,R1 > 0, and
diagonal matrices Gi > 0, i = 1,2, such that the following
LMIs hold:

Ψa =



Ψ11 0 Ψ13 0 Ψ15

∗ Ψ22 0 0 0
∗ ∗ Ψ33 0 0
∗ ∗ ∗ Ψ44 0
∗ ∗ ∗ ∗ Ψ55

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 Ψ17 Ψ18 0 0 AT P

Ψ26 0 0 Ψ29 Ψ2,10 0
0 0 Ψ38 Ψ39 0 0
0 0 0 0 Ψ4,10 0
0 Ψ57 0 0 0 ET P

Ψ66 Ψ67 0 0 0 ET
d P

∗ Ψ77 0 0 0 0
∗ ∗ Ψ88 0 0 0
∗ ∗ ∗ Ψ99 0 0
∗ ∗ ∗ ∗ Ψ10,10 0
∗ ∗ ∗ ∗ ∗ −P


<0, (18)

where

Ψ11 =−P1 +Q(1+dM −dm)+R+S

+(1+dM −dm)T2 −F1G1 −Z1 −
R1

d1

−3Z1∆1 −3R1∆2,

Ψ17 =−PT
1 β +PT

1 AT β , Ψ57 = PT
1 ET β ,

Ψ67 =PT
1 ET

d β ,
Ψ77 =−P1β +d2

mZ1 +(dM −dm)
2Z2 +dmR1,

and the other terms are same as defined in Theorem 1.

Proof: Consider the same Lyapunov function as de-
fined in Theorem 1. The proof immediately follows from
the similar way of proof of Theorem 1, hence it is omit-
ted. □

Remark 2: One can use different L-K functional and
free weighting matrix techniques to obtain much better
performance. However it is noted that the more complex
L-K functional together with free weighting matrix tech-
nique brings more number of decision variables, conse-
quently it leads to the computational burdens. So that in
this paper, we have chosen an appropriate L-K functional
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of the form (7), without using any free weighting matrix
technique (to reduce the computational complexity), we
got comparatively less conservative results than some ex-
isting results. This has been proved through the numerical
examples.

5. NUMERICAL EXAMPLES

In this section, two numerical examples are provided to
illustrate the effectiveness of proposed method.

Example 1: We consider the discrete neural networks
system (1) when w(k) ̸= 0 and with the following param-
eters:

A =

[
0.8 0
0 0.9

]
, E =

[
0.17 0.3
0.14 0.34

]
,

Ed =

[
0.18 −0.5
0.2 0.15

]
, D =

[
0.3 0
0 0.5

]
,

L =

[
0.7 0

0 0.2

]
,

N1 = N2 = N3 = N4 =

[
1 0

0 1

]
, M =

[
0.1 0

0 0.1

]
.

The nonlinear function are given as g(x(k)) =[
tanh(0.2x1(k))

tanh(−0.2x2(k))

]
. The activation functions satisfy

Assumption 1 with the following parameters:

F1 =

[
0 0

0 0

]
, F2 =

[
0.1 0

0 0.1

]
.

The time-varying delay are taken as d(k) = 1
2 (9+5sin kπ

2 )
the corresponding lower and upper bounds are dm = 2 and
dM = 7. Solving the LMIs stated in Theorem 1, a set of
feasible solution is obtained as

P1 =

[
337.5552 −25.6620

−25.6620 313.5850

]
,

Q =

[
5.5461 −0.3195

−0.3195 1.8030

]
,

R =

[
30.3321 −2.8137

−2.8137 10.7932

]
,

S =

[
29.0316 −0.1711

−0.1711 17.5520

]
,

G1 =

[
485.7276 0

0 385.6017

]
,

G2 =

[
373.5129 0

0 166.1809

]
,

Y =

[
9.5152 −0.8959

−0.8959 2.7325

]
.

with a stabilising state feedback controller having the gain
matrix as

K = X−1Y =

[
0.0281 −0.0020

−0.0006 0.0085

]
.

Example 2: Consider the following discrete neural net-
works :

x(k+1) =−Ax(k)+Eg(x(k))+Edg(x(k−d(k)),

with the following parameters:

A =

[
0.8 0

0 0.9

]
, E =

[
0.001 0

0 0.005

]
,

Ed =

[
−0.1 0.01

−0.2 −0.1

]
.

and the activation function are taken as g1(s) = tanh(s),
g2(s) = tanh(s). For different values of dm, the upper
bounds dM are obtained by various approaches which
guarantee the asymptotic stability of the considered neu-
ral networks (17) are listed in Table 1. From Table 1, it
is clear that the proposed condition in Corollary 1 is less
conservative than those results in [28–33].

Remark 3: In [28–30], the authors discussed with the
problem of stability criterion with time-varying delays us-
ing some free weight matrix technique. But in this paper,
without using free weighting matrix technique, less num-
ber of decision variables are obtained than some existing
ones in the literature.

Table 1. Calculated maximum dM for given dm for Exam-
ple 2.

dm 2 4 6 8
[28] 11 11 12 13
[29] 11 12 13 14
[30] 13 15 17 19
[31] 20 21 23 23
[32] - 20 20 21
[33] - 20 25 28

Corollary 1 16 21 27 29

Table 2. Number of decision variables involved in various
papers.

No of decision variables
[29] 15n2 +5n
[28] 17.5n2 +4.5n
[30] 28.5n2 +7.5n

This paper 5n2 +7n
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Fig. 1. State trajectory of the system (1) in Example 1.
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Fig. 2. State trajectory of the system (17) in Example 2.

6. CONCLUSION

In this paper, we have investigated the problem of Ro-
bust H∞ performance of discrete-time neural networks
with uncertainty and time-varying delay. By employing
Lyapunov technique and LMI approach, we designed ro-
bust H∞ controller such that the resulting closed-loop neu-
ral network is robustly asymptotically stable with a pre-
scribed H∞ performance. The obtained results are all in the
form of an effective linear matrix inequality (LMI), which
can be easily optimized by MATLAB-LMI control tool-
box. Finally, two numerical examples are given to show
the superiority of our proposed stability conditions.
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