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Robust Control for a Class of Time-delay Nonlinear Systems via Output
Feedback Strategy
Kang Wu, Zhen-Guo Liu, and Chang-Yin Sun*

Abstract: This paper studies the robust control problem for time-delay systems with complicated inherent nonlin-
earities and unknown disturbances. Based on the modified homogeneous domination method and by constructing
the proper Lyapunov-Krasovskii (L-K) functional, output feedback controllers are successfully constructed to guar-
antee the boundedness of all the states of the closed-loop system. The convergence of the states is also realizable
when the L2 norm of the disturbance exists. The presented method is also extended to solve the control problem of
nonholonomic time-delay system. Simulation examples are given to show the effectiveness of the proposed theory.

Keywords: Disturbance, Lyapunov-Krasovskii functional, nonlinear time-delay system, output feedback.

1. INTRODUCTION

Nonlinear systems have received wide attentions these
years, for instance, see [1–4]. One of the reasons for this
fact is that nearly all the practical systems involve nonlin-
earities such as nonholonomic mechanical system, elec-
tric system, chemical reaction system and so on. Also, it
should be mentioned that time delay often exists in such
kind of systems [5], and plays a negative role in the con-
trol behavior. Consequently, the research of time-delay
nonlinear system is becoming more and more important
[6, 18, 19]. Actually, nonlinear systems sometimes may
suffer from external disturbances [6–9] as well, which fur-
ther affect the instability of the systems. It is important to
study the control problems of this class of systems.

Over the past years, there have been reported many sig-
nificant research. Specially, in [10], a reliable filter de-
sign method was proposed for semi-Markov jump delayed
systems. Later in [11], the reliable mixed H∞/passive
control problem was investigated via semi-Markov jump
model approach for Takagi-Sugeno (T-S) fuzzy delayed
systems. Moreover, in [12], the authors presented a finite-
time H∞ fuzzy control strategy for a class of Markovian
jump delayed systems. Later in [13], by employing the
mismatched membership function approach and a new L-
K functional, the sampled-data stabilization problem was
discussed for T-S fuzzy systems with time-delay. For
chaotic systems, to obtain a larger sampling period, a
delay-dependent sampled-data control method was also
proposed in [14]. For more delay-dependent stability cri-
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teria, see [15]. Besides, by introducing the sojourn proba-
bility approach, [16] further considered the reliable con-
trol design problem for a class of discrete-time switch
time-delay system. Based on the adaptive control method,
[17] considered the nonholonomic system with nonlinear
drifts and unknown parameters. A homogeneous domina-
tion approach was also raised in [18] to solve the problem
of a class of time-delay nonlinear systems, and later in
[19] the authors extended the method to stochastic feed-
forward nonlinear systems with time-varying delay.

Recently, many excellent works focus on studying the
stabilization problems by utilizing the output feedback
control methods. For instance, [20] considered the MIMO
nonlinear systems and proposed an adaptive output feed-
back controller such that all the states were bounded
and the partial state tracking errors belonged to the pre-
scribed bounds. [21] studied the output feedback con-
trol problem for a class of nonlinear systems with poly-
nomial nonlinearity by using homogeneity and domina-
tion strategies. [22] constructed an output feedback con-
troller for a class of stochastic nonholonomic systems.
When the systems involves time-delay, there have been
some important results [23–26]. Particularly, [23] stud-
ied the strict-feedback Markovian jump nonlinear sys-
tems with time-varying delay via the neural networks and
backstepping design method. [24, 25] presented the out-
put feedback control design approaches for feedforward
time-delay nonlinear systems. [26] considered the non-
holonomic time-delay system and raised an output feed-
back controller to guarantee the closed-loop systems to be
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global stable. However, there are few results for nonlinear
systems with time-delay and disturbances [27]. When the
systems contain complicated time-delay nonlinear terms
and disturbances, the output control problem becomes
nontrivial and remains open. Then, a very natural prob-
lem is

Is there an output feedback control strategy for time-
delay system with complicated nonlinear terms and un-
known disturbances? Can the control method be applied
to nonholonomic time-delay system?

Practically speaking, many systems like those ones in
[17, 20, 22, 25] may contain complicated nonlinear terms,
time-delay and disturbances. Up to now, the existing stud-
ies have been focused on time-delay nonlinear systems
with the linear growing conditions [8, 19] or some high-
order nonlinear growing conditions [28, 29]. It remains
difficult to design the output feedback controller when the
nonlinear terms are polynomial. Due to the existence of
time-delay and disturbances, it also needs to find an appro-
priate L-K functional to analyze the stability. Moreover,
whether the control problem can be solved for time-delay
nonholonomic system is still open. This further motivates
us to proceed the study.

In this paper, we will focus on this problem and present
a detailed design strategy. The contributions of this work
lies in three aspects: (i) We consider the control design
under more general conditions. As can be seen, in [19,
24, 28], the nonlinear terms needed to satisfy some lin-
ear growing conditions. In [17, 29], only some high-
order nonlinear terms were considered. In [21], although
the nonlinear terms were enough complicated, it did not
consider time-delay and disturbances. In this paper, both
polynomial time-delay terms and the disturbances are in-
volved in the nonlinear systems. The control problem is
hence more challenging. (ii) A new output feedback con-
trol method is proposed here. Compared with the existing
studies [23-26], a new L-K functional is adopted to handle
the disturbances here. Also, different from [19, 20, 23-
26], we construct new virtual controllers to deal with the
nonlinear bounds. (iii) Up to now, the existing researches
for nonholonomic systems do not consider time-delay and
disturbances, see [17, 22, 30]. In this paper, the presented
method is applied to nonholonomic systems with time-
delay and disturbances. Also, as a practical example, the
mobile robot system is studied in the simulation.

2. OUTPUT FEEDBACK CONTROL DESIGN

In this paper, we study the following time-delay nonlin-
ear system

ẋ1(t) = x2(t)+ f1(t, x̄1(t), x̄1(t − τi))+d1(t),

ẋ2(t) = x3(t)+ f2(t, x̄i(t), x̄i(t − τi))+d2(t),
...

ẋn(t) = u(t)+ fn(t, x̄n(t), x̄n(t − τi))+dn(t),

y(t) = x1(t), (1)

where x̄i(t − τi) = (x1(t − τ1),x2(t − τ2), . . . ,xi(t − τi))
T ∈

Ri, x̄i = (x1,x2, . . . ,xi)
T ∈ Ri, i = 1, , ..,n are the system

state vector, u(t) ∈ R and y = x1 ∈ R are the control in-
put and output, respectively. For i = 1, , ..,n, τi ∈ [0,τ0]
is the time-delay with τ0 being a known constant, fi(·) is
uncertain nonlinear term, di(t) is unknown disturbance,
x(θ) = ξ0(θ), ∀θ ∈ [−τ, 0] is system initial condition
with ξ0(·) being a specified continuous function.

Next, we will present an output feedback control
scheme for system (1). The following assumptions are
needed:

Assumption 1: For i = 1, . . . , n, there exist constants
C > 0,wk ≥ 0 (k = 1, . . . , m) such that

| fi(·)| ≤C
i

∑
j=1

(
|x j(t)|+ |x j(t − τ j)|

+
m

∑
k=1

(|x j(t)|
1+iwk

1+( j−1)wk + |x j(t − τ j)|
1+iwk

1+( j−1)wk )
)
.

Assumption 2: For i = 1, . . . , n, di(t) is the uncertain
external disturbance with di(t) ∈ L∞ and ḋi(t) ∈ L∞.

Remark 1: This conditions are much general than the
existing ones. Assumption 1 indicates that the nonlinear
terms of system (1) include linear term and high-order
terms, and encompasses many assumptions in literature
such as [8, 19, 21, 28]. Assumption 2 is widely used for
nonlinear systems, see [8,27]. Due to the inherent nonlin-
earity, time delay and multiple disturbances, the control
problem is much more challenging.

Introduce the coordinate transformations

ηi(t) =
xi(t)
ri−1 , v =

u
rn , i = 1,2, . . . ,n, (2)

where r ≥ 1 is a constant. By using (2), the x-system can
be transformed into

η̇i = rηi+1 + f̄i(t, η̄i, η̄i(t − τi))+ d̄i, i = 1, . . . ,n−1

η̇n = rv+ f̄n(t, η̄n, η̄n(t − τn))+ d̄n,
(3)

where f̄i =
fi(·)
ri−1 , d̄i =

di
ri−1 , η̄i = (η1,η2, . . . ,ηi)

T ∈ Ri, i =
1, . . . , n.

To construct the state observer, for j = 2,3, . . . ,n,w =
maxk≥1{wk}, we define η j = (ρ j + a j−1η j−1)

1+ w
1+( j−2)w +

(ρ j +a j−1η j−1) with a j−1 being a constant to be designed
later, then it can be seen that ρ j exists. Similarly, define
η̂ j = (ρ̂ j + a j−1η̂ j−1)

1+ w
1+( j−2)w + (ρ̂ j + a j−1η̂ j−1). Then,

similar to [21], we can construct the following reduced-
order observer

˙̂ρ j =−a j−1rη̂ j, j = 2, . . . ,n. (4)
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For the control design later, we use the transformation as
ξi(t) = ηi(t)−λi−1(t), λ0 = 0,

λi(t) =−hi

(
ξi(t)+ξ

1+iw
1+(i−1)w

i (t)
)
,

ε j = ρ j − ρ̂ j, i = 1, . . . , n, j = 2, . . . ,n,

(5)

where λ0, λi are the virtual controllers, hi > 1 is the con-
stant to be specified. Then, one gets

ξ̇i(t) = r(ξi+1 +λi)−
i−1

∑
l=1

∂λi−1

∂ηl
rηl+1 + f̃1i + d̃1i,

ε̇ j(t) = f̃2 j + d̃2 j, (6)

where

f̃1i = f̄i −
i−1

∑
l=1

∂λi−1

∂ηl
f̄l ,

d̃1i = d̄i −
i−1

∑
l=1

∂λi−1

∂ηl
d̄l , i = 1,2, . . . ,n,

f̃2 j =
rη j+1 + f̄ j

1+(1+ w
1+( j−2)w )(ρ j +a j−1η j)

w
1+( j−2)w

−a j−1 f̄ j−1 −a j−1r(η j − η̂ j),

d̃2 j =
d̄ j

1+(1+ w
1+( j−2)w )(ρ j +a j−1η j)

w
1+( j−2)w

−a j−1d̄ j−1, j = 2,3, . . . ,n.

Now, define g1i = r(ξi+1 +λi)−∑i−1
l=1

∂λi−1
∂ηl

ηl+1 and

Z = (ξ1, . . . ,ξn,ε2, . . . ,εn)
T ,

G(Z) = (g11, . . . ,g1n,0, . . . ,0)T ,

F(Z,Z(t − τ̄)) = ( f̃11, . . . , f̃1n, f̃22, . . . , f̃2n)
T ,

D(t,Z) = (d̃11, . . . , d̃1n, d̃22, . . . , d̃2n)
T . (7)

Then, (6) can be rewritten to

Ż = G(Z)+F(Z,Z(t − τ̄))+D(t,Z), (8)

where Z(t − τ̄)) = (Z1(t − τ1)), . . . ,Zn(t − τn))). Define
the constant σ ≥ 1+ nw, and choose the Lyapunov func-
tion U =Vn +Tn with

Vn =
n

∑
i=1

Wi(ηi),

Wi =
1
2

ξ 2
i +

1+(i−1)w
2σ

ξ
2σ

1+(i−1)w
i ,

Tn =
n

∑
j=2

L j(ε),

L j =
ε2

j

2
+

∫ ρ̂ j+a j−1η j−1

ρ j+a j−1η j−1

(
s

2σ−1−( j−2)w
1+( j−2)w

− (ρ j +a j−1η j−1)
2σ−1−( j−2)w

1+( j−2)w

)
ds. (9)

The following lemmas are important for the subsequent
control design and analysis. For details of the proof,
please see the appendix.

Lemma 1: Under the output feedback control

v =−hn

(
ξ̂n + ξ̂

1+ w
1+(n−1)w

n

)
, (10)

where ξ̂1, ..., ξ̂n are defined as

ξ̂1 = η1 = x1,

ξ̂i = η̂i − λ̂i−1(ξ̂i−1), i = 2, . . . ,n−1,

λ̂i−1 =−hi−1

(
ξ̂i−1 + ξ̂

1+ w
1+(i−2)w

i−1

)
,

ξ̂n = η̂n − λ̂n−1(ξ̂n−1),

λ̂n−1 =−hn−1

(
ξ̂n−1 + ξ̂

1+ w
1+(n−2)w

n−1

)
,

and the derivative of U(Z) along the solutions of the nom-
inal system Ż = G(Z) satisfies

∂U(Z)
∂Z

G(Z)≤− 3
4

r
n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+ rδ0

(
ε2

n + ε
2σ+w

1+(n−2)w
n

)
+ r

n−1

∑
i=2

An−1,i

(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
.

Lemma 2: The following inequality holds:

∂U(Z)
∂Z

(
F(Z,Z(t − τ̄))+D(t,Z)

)
≤−rc

n−1

∑
i=2

(ai−1 −Bn−1, i)
(

ε2
i + ε

2σ+w
1+(i−2)w

i

)
− cr(an−1 −ρ)

(
ε2

n + ε
2σ+w

1+(i−2)w
n

)
+ r1−bδ1

×
n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+ r1−bδ2

n

∑
i=2

(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
+ r1−be−mτ δ3

n

∑
i=1

(
ξ 2

i (t − τi)+ξ
2σ+w

1+(i−1)w
i (t − τi)

)
+ r1−be−mτ δ4

n−1

∑
i=1

(
ξ 2

i (t − τi+1)+ξ
2σ+w

1+(i−1)w
i (t − τi+1)

)
+δ5

n

∑
i=1

(
d2

i +d
2σ+w
1+iw

i

)
+

r
4

n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
,

where c,m,ρ,δk,Bn−1, i are some positive constants.

Remark 2: In the design procedure of the state ob-
server, we introduce some parameters w, ρ j, , j = 2, . . . ,n.
Actually, for constants wa ≤wb, 1≤ k ≤ i, it can be proved
that 1+iwa

1+(k−1)wa
≤ 1+iwb

1+(k−1)wb
. If we choose the constant w

such that w ≥ maxk{wk}, then by the definition of w, the
above inequality and Lemma 4, Assumption 1 will be re-
duced to

| fi(·)| ≤C
i

∑
j=1

(
|x j(t)|+ |x j(t − τ j)|
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+(|x j(t)|
1+iw

1+( j−1)w + |x j(t − τ j)|
1+iw

1+( j−1)w )
)
.

This will simplify the control design. Besides, an
extra condition w ∈ Reven is required. In this case,
for j = 2, . . . ,n, by using the definition η j = (ρ j +

a j−1η j−1)
1+ w

1+( j−2)w + (ρ j + a j−1η j−1) and the implicit
function theorem, we can show that ρ j exists. Since the
estimation ρ̂ j is used for the construction of the control
input u and ρ j is not employed, it is not necessary to know
ρ j precisely.

3. MAIN RESULTS

Before giving the conclusion, we choose the following
design parameters

an−1 = ρ + c−1δ0 +h,

a j−1 = An−1, j +Bn−1, j +h, j = n−1, . . . ,2, (11)

where h > 0 is a constant. Now, the following theorem
summarizes one of the main results.

Theorem 1: Under Assumptions 1-2, the perturbed
time-delay nonlinear system (1) has an output feedback
controller

u =−rnhn

(
ξ̂n + ξ̂

1+ w
1+(n−1)w

n

)
, (12)

which guarantees that all the states of the closed-loop
system are bounded. Furthermore, if di(t) ∈ L2, then
limt→+∞ x(t) = 0.

Proof: Firstly, we define the state Ξ(t) = (ξ T , εT )T and
choose the L-K functional V =U +Û with Û defined as

Û =r1−b
(

δ3

n

∑
i=1

∫ t

t−τi

em(s−t)
(

ξ 2
i (s)+ξ

2σ+w
1+(i−1)w

i (s)
)

ds

+δ4

n−1

∑
i=1

∫ t

t−τi+1

em(s−t)
(

ξ 2
i (s)+ξ

2σ+w
1+(i−1)w

i (s)
)

ds
)
.

By Lemmas 1 and 2, one gets

V̇ ≤− 1
2

r
n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+δ4

n

∑
i=1

(
d2

i +d
2σ+w
1+iw

i

)
− rc

n−1

∑
i=2

(ai−1 −An−1,i −Bn−1,i)
(

ε2
i + ε

2σ+w
1+(i−2)w

i

)
− rc(an−1 −ρ − c−1δ0)

(
ε2

n + ε
2σ+w

1+(i−2)w
n

)
+ r1−b(δ1 +δ3)

n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+ r1−bδ2

n

∑
i=2

(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
−mÛ . (13)

Substituting (11) into (13), it yields that

V̇ ≤− r
2

(
1− δ1 +δ3

rb

) n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)

− rc
n

∑
i=2

(
h− δ2

rb

)(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
−mÛ +δ4

n

∑
i=1

(
d2

i +d
2σ+w
1+iw

i

)
. (14)

Also, it can be deduced that

U ≤ c̄
n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+ c̄

n

∑
i=2

(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
.

(15)

Choosing r such that rb > {δ1 + δ3,
δ2
h }, then there exist

positive constants β and cv such that

V̇ ≤− rβ
n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+δ4

n

∑
i=1

(
d2

i +d
2σ+w
1+iw

i

)
− rβ

n

∑
j=2

(
ε2

j + ε
2σ+w

1+( j−2)w
j

)
−mÛ

≤− cvV +δ4

n

∑
i=1

(
d2

i +d
2σ+w
1+iw

i

)
. (16)

By the definition of V (·), it follows that

α1
(
∥Ξ(t)∥

)
≤V ≤ α2

(
sup

−τ≤s≤0
∥Ξ(s+ t)∥

)
, (17)

where α1, α2 are class K∞ functions. By Assumption 2,
there exists a positive constant d such that δ4 ∑n

i=1

(
d2

i +

d
2σ+w
1+iw

i

)
≤ d. Then, using (16), one obtains

V (t)≤ e−cvtV (0)+
d
cv
. (18)

From (18), it follows that Ξ(t) is bounded, which further
shows that the states ξ and ε are bounded. By (5) and (6),
it follows that ξ̇ and ε̇ are also bounded. If di(t) ∈ L2,

since di(t) ∈ L∞, one gets
∫ ∞

0

(
d2

i +d
2σ+w
1+iw

i

)
< M, where M

is a constant. From (16), it follows that∫ ∞

0

(
ξ 2

i (s)+ ε2
j (s)

)
ds ≤V (0)+M, (19)

which shows that ξ ∈ L2 and ε ∈ L2. Then, by utilizing
Barbalat’s lemma, it follows that limt→+∞ ξ (t) = 0 and
limt→+∞ ε(t) = 0, which further implies limt→+∞ x(t) = 0.

Remark 3: Consider the following time-delay system

ẋ1 = x2,

ẋ2 = u+ f1(t,x1(t − τ1),x2(t − τ2))+d1(t), (20)

where x1,x2 are the states, u is the control input, τ1,τ2

are time delays. f1,d1 are the nonlinear term and distur-
bance, respectively. When f1 = x1(t−τ1)sin t+x2(t−τ2),
d1 = 0, the nonlinear term satisfies the linear growing con-
dition in [8]. The control problem can be solved by us-
ing the method there. When f1 = x7/5

2 (t − τ2), d1 = 0, it
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can be verified that the nonlinear term satisfies the high-
order growing condition in [28, 29], Hence, the control
problem is also solvable with the methods there. How-
ever, if f1 is more complicated and d1 ̸= 0, the output
feedback control problem is challenging. For instance,
f1 = x1(t − τ − 1) + x7/5

2 (t − τ2), d1 = sin t, the existing
methods cannot work anymore.

Remark 4: In this work, we will encounter many dif-
ficulties. As can be seen, compared with [17, 19, 24, 29],
multiple time-delays and disturbances exist in the consid-
ered systems, we need to handle them effectively to con-
struct the controller. Moreover, different from [25,28,29],
the intricacy of polynomial nonlinear terms indeed make
the stability analysis difficult. This is because the upper
bounds for these terms should be found skillfully. Besides,
what kind of the transformations should be introduced and
how to construct the virtual controls are also not easy for
the considered systems here.

4. EXTENSIONS

The method in the last section can be extended to a class
of more general systems. Consider the following nonlin-
ear time-delay systems with unmodeled dynamics

ζ̇ (t) = f0(t,ζ ,x),
ẋ1(t) = x2(t)+ f1(t,ζ (t),x(t),ζ (t − τ),x(t − τ))

+d1(t),

ẋ2(t) = x3(t)+ f2(t,ζ (t),x(t),ζ (t − τ),x(t − τ))
+d2(t),

...

ẋn(t) = u(t)+ fn(t,ζ (t),x(t),ζ (t − τ),x(t − τ))
+dn(t),

y(t) = x1(t), (21)

where ζ ∈ Rm, x = (x1,x2, . . . ,xn)
T ∈ Rn and x(t − τ) =

(x1(t − τ1),x2(t − τ2), . . . ,xn(t − τn))
T ∈ Rn are the state

vector, u(t) = (u0(t),u1(t))T ∈R2 and y ∈R are the con-
trol input and the output, respectively, τ1, . . . ,τn are the
time delay of the system state, f1(·), . . . , fn(·) are uncer-
tain nonlinear terms, X(θ) = (ζ T (θ),xT (θ))T = ξ0(θ),
∀θ ∈ [−τ, 0] is the system initial condition with ξ0(·) be-
ing a specified continuous function.

The following assumptions are needed:
Assumption 3: There exist class K∞ functions α1(·),

α2(·) and a Lyapunov function V0(ζ ) ∈ C1 such that

α1(∥ζ∥)≤V0(ζ )≤ α2(∥ζ∥),
∂V0(ζ )

∂ζ
f0(·)≤−l1(∥ζ∥2 +∥ζ∥2a)+ l2x2

1,

where 2a ≥ 2σ +w, l1 > 0 and l2 > 0 are constants.

Assumption 4: For i = 1, . . . , n, there exist constants
C > 0,wk ≥ 0 (k = 1, . . . , m) such that

| fi(·)| ≤C
m

∑
j=1

( m

∑
k=1

(
|ζ j(t)|1+iwk + |ζ j(t − τ j)|1+iwk

)
+ |ζ j(t)|

)
+C

i

∑
j=1

(
|x j(t)|+

m

∑
k=1

(
|x j(t)|

1+iwk
1+( j−1)wk

+ |x j(t − τ j)|
1+iwk

1+( j−1)wk

))
.

The main result can be summarized as follows:
Theorem 2: Suppose that Assumptions 2-4 hold, then

there exists an output feedback control for system (21)
such that all the states of the closed-loop system are
bounded. Moreover, if di(t) ∈ L2, then limt→+∞ x(t) = 0.

Proof: For system (21), the unmodeled dynamics ζ ∈
Rm will not be used for control design. Therefore, we
need not to construct a state observer for these states. Con-
sidering this, we can use the steps (2)-(5) and get

ζ̇ (t) = f0(t,ζ ,x),

ξ̇i(t) = r(ξi+1 +λi)−
i−1

∑
l=1

∂λi−1

∂ηl
rηl+1 + f̃1i + d̃1i,

ε̇ j(t) = f̃2 j + d̃2 j, i = 1,2, . . . ,n, j = 2,3, . . . ,n.

Define

Z̄ = (ζ ,ξ1, . . . ,ξn,ε2, . . . ,εn)
T ,

Ḡ(Z̄) = ( f0,g11, . . . ,g1n,0, . . . ,0)T ,

F̄(Z̄, Z̄(t − τ)) = ( f̃11, . . . , f̃1n, f̃22, . . . , f̃2n)
T ,

D̄(t, Z̄) = (d̃11, . . . , d̃1n, d̃22, . . . , d̃2n)
T . (22)

Then, it follows that

˙̄Z = Ḡ(Z̄)+ F̄(Z̄, Z̄(t − τ̄))+ D̄(t, Z̄). (23)

Now, choose Ū = γV0 +U , V = Ū +Û . The left proof is
similar to that of Theorem 1, and hence it is omitted here.

5. APPLICATION TO NONHOLONOMIC
SYSTEM

Consider the nonholonomic time-delay system

ẋ0(t) = u0(t)+d0(t),

ẋi(t) = xi+1(t)u0(t)+ fi(t,x0(t),x(t),x(t − τ))
+ si(x0,di(t)), i = 1, . . . , n−1,

ẋn(t) = u1(t)+ fn(t,x0(t),x(t),x(t − τ))
+ sn(x0,dn(t)), (24)

where (x0,xT )T = (x0,x1, . . . ,xn)
T ∈ Rn+1, x(t − τ) =

(x1(t − τ1),x2(t − τ2), . . . ,xn(t − τn))
T ∈ Rn are the state

vector and delayed state vector, u(t) = (u0(t),u1(t))T ∈
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R2, and y = (x0,x1)
T ∈ R2 are the control input and out-

put, respectively. For i= 1, . . . ,n, τi is the time-delay, fi(·)
is the uncertain delayed function, si(x0,di(t)) is the distur-
bance term. x(θ) = ξ0(θ), ∀θ ∈ [−τ0, 0] is system initial
condition with ξ0(·) being a specified continuous function
and τ0 > 0 being a constant. 0 < d0(t) ≤ d̄0 is a bounded
disturbance with d̄0 being a constant.

For system (24), the following assumption is imposed.

Assumption 5: For each i = 1, . . . , n, there exists a
nonnegative smooth function C(x0) and constants wk ≥ 0,
k = 1, . . . , m, such that

|si(·)| ≤C(x0)di(t),

| fi(·)| ≤C(x0)
i

∑
j=1

m

∑
k=1

(
|x j(t)|

1+iwk
1+( j−1)wk

+ |x j(t − τ j)|
1+iwk

1+( j−1)wk

)
.

We have the same conclusion as follows:
Theorem 3: Under Assumptions 2 and 5, there exists

an output feedback controller for system (24).
Proof: For the x0-subsystem, we choose the Lyapunov

candidate function U0(x0) =
1
2 x2

0. Then, along the x0-
subsystem, the derivative of V0 satisfies

U̇0 = x0u0 + x0d0(t). (25)

Then, one can design the control u0 as

u0 =−
(

c0 +
1
2

)
x0(t), (26)

where c0 is a positive constant. Then, by (25), it yields

V̇0 ≤−c0x2
0 +

d̄2
0

2
. (27)

From (27), we obtain that x0 is global bounded. Similar to
the proof of Theorem 1, it follows that limt→+∞ x0(t) = 0.
Furthermore, for all t ∈ [t0,+∞), x0(t0) ̸= 0, we have

x0(t) = e−c0(t−t0)x0(t0)+
∫ t

0
e−c0(t−l)d0(l)dl ̸= 0.

(28)

That is, x0(t) ̸= 0 for t ∈ [t0,+∞), x0(t0) ̸= 0. Therefore,
for i = 1, . . . ,n, we can introduce the input-state scaling
transformations:

ζi(t) =


xi(t)

ri−1un−i
0 (t)

, t ≥ t0,

xi(t)
ri−1 , t0 − τ0 ≤ t < t0,

v1(t) =
u1(t)

rn , (29)

where r ≥ 1 is a positive constant. By using (29), the x-
subsystem is transformed into

η̇i(t) = rηi+1(t)+ f̂i
(
t,x0,η(t),η(t − τ)

)
+ ŝi

(
x0,di(t)

)
,

η̇n(t) = rv1(t)+ f̂n
(
t,x0,η(t),η(t − τ)

)
+ ŝn

(
x0,dn(t)

)
, (30)

where f̂i = fi(·)
ri−1un−i

0 (t) − (n − i)ζi(t)
u̇0(t)
u0(t)

, ŝi(x0,di(t)) =

si(·)
ri−1un−i

0 (t) , i = 1, . . . , n−1. It can be deduced that

|ŝi(·)| ≤C|di(t)|,

| f̂i(·)| ≤C
i

∑
j=1

(
|x j(t)|+

m

∑
k=1

(
|x j(t)|

1+iwk
1+( j−1)wk

+ |x j(t − τ j)|
1+iwk

1+( j−1)wk

))
. (31)

As can be seen, system (30) has the similar nonlinear
bounds as system (21). Then using the same design
method in Section 3, we can construct the output feed-
back controller for it. The left proof is the same as that of
Theorem 1. Hence, we omit it here for simplicity.

Remark 5: In this paper, we propose an output feed-
back control method for a class of time-delay nonlinear
systems. It should be noted that the results here are some-
what conservative. For instance, under Assumption 2, the
states of the systems are only guaranteed bounded. In
Theorem 2, to ensure the convergent of the states, the dis-
turbances di(t), i = 1,2, . . . ,n need to satisfy di(t) ∈ L2.
Also, nonlinear systems may contain unknown control co-
efficients, unknown parameters and random perturbations.
To make the method much clear, we do not take into ac-
count these problems here. Future work will concentrate
on studying the adaptive control problems for more gen-
eral systems.

Remark 6: When the time delays are time-varying
functions τi(t), i = 1,2 . . . ,n, we can design the controller
similarly. Assume that 0 ≤ τi(t)≤ µ1, τ̇i(t)≤ µ2 < 1, then
from (2) and (5), we can see that the time delays in terms
of Lemma 2 will be time-varying functions. Choosing

Û =r1−b 1
1−µ2

( n

∑
i=1

δ3

∫ t

t−τi(t)
em(s−t)(ξ 2

i (s)

+ξ
2σ+w

1+(i−1)w
i (s)

)
ds

+
n−1

∑
i=1

δ4

∫ t

t−τi+1(t)
em(s−t)(ξ 2

i (s)+ξ
2σ+w

1+(i−1)w
i (s)

)
ds
)
.

(32)

and using V =U +Û to counteract the delay terms in pro-
cedure of stability analysis, we can obtain the same result
as Theorem 1.
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Remark 7: The novelty of this paper cover several as-
pects: (i) The homogeneous domination method is modi-
fied to deal with time-delay nonlinear systems with poly-
nomial growing conditions. The existing work such as
[17, 21, 29] are effective for systems with lower-order or
high-order growing conditions. However, under Assump-
tion 1, system (1) covers the two conditions and hence
cannot be stabilized by the methods there. The strategy of
this paper successfully constructs a robust output feedback
controller. (ii) For systems with more complicated struc-
ture, we provide some extended results. Specifically, in
Section 4, we show how to design robust control for non-
linear systems with unmodeled dynamics, which is more
general than [8, 9]. In Section 5, we apply the presented
method to nonholonomic systems. (iii) When the distur-
bances exist, the existing L-K functionals in many studies
like [8, 23, 25] is not suitable for the systems here. We
need to construct a new one to make its derivative satisfy
(16).

6. SIMULATION EXAMPLES

Example 1: We consider the following system

ẋ1(t) = x2(t)+ f1(t,x,x(t − τ))+d1(t),

ẋ2(t) = u(t)+ f2(t,x,x(t − τ))+d2(t),

y(t) = x1(t), (33)

where xi(t), i = 1,2 are system states, u(t) is the control
input, y is the system output. For i = 1,2, fi is the nonlin-
ear term, di(t) is the disturbance.

When d1 = d2 = 0, f1 = 0, f2 =
3x1x

4
5
2 (t−τ)

1+x2
1

, by the
method in [31], we can design the controller

u =−r2
1

(
β2(ρ̂1 + l1x1)

σ +β2β1xσ
1

) 1+2w
σ
,

˙̂ρ1 =−l1r(ρ̂1 + l1x1)
1+w, (34)

where r1, l1, β1, β2 are constants. By Theorem 1, one can
construct the output feedback controller

u =−r2h2

(
ξ̂2 + ξ̂

1+ w
1+(n−1)w

2

)
,

˙̂ρ2 =−a1r1

(
(ρ̂2 +a1x1)

1+w +(ρ̂2 +a1x1)
)
, (35)

where ξ̂2 = (ρ̂2+m1x1)
1+w+(ρ̂2+m1x1)+h1(x1+x1+w

1 ).
For simplicity, the system parameters are chosen as w=

2
3 , r1 = 4, σ = 7/3, β1 = 2, β1 = 3, l1 = 3, τ = 0.5. The
initial conditions are x1(0) = 0.5, x2(0) = −0.3. Fig. 1
shows that the method here can achieve a faster convergent
speed.

When d1(t) = d2(t) = 1
1+t , f1 = x1(t)sin(x2(t)), f2 =

3x1x
4
5
2 (t−τ)

1+x2
1

, choose a1 = 4, σ = 7/3, r = 1.5, h1 = 4, h2 = 4,
n= 2, ρ̂2(0) =−0.6. The left parameters are the same. As
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Fig. 1. The system Responses under control u1 and u2.

shown in Fig. 2, all the states are bounded and the system
states xk, k = 1,2 converge to zero. Hence, the proposed
control approach is effective.

Example 2: We consider the bilinear model of a mobile
robot [17] described as

ẋl(t) =
(

1− ξ 2

2

)
v(t)+d0(t),

ẏl(t) =
(
θl(t)+ξ

)
v(t)+ f1

(
X(t),X(t − τ)

)
+ s1

(
xl ,d1(t)

)
,

θ̇l(t) = w(t)+ f2
(
X(t),X(t − τ)

)
+ s2

(
xl ,d2(t)

)
,
(36)

where xl(t) and yl(t) denote the center position of mass
of the robot; θl(t) represents heading angle of the robot;
X(t) = [xl(t),yl(t),θl(t)]T ; ξ is a positive constant, v(t)
is the forward velocity and w(t) is the angular velocity of
the robot, f1(·), f2(·) and s1(·),s2(·) are nonlinear terms,
d0(·), d1(·) and d2(·) are the disturbances.
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Fig. 2. Responses of the closed-loop system (33) and (35).

By introducing the transformations

x0(t) = xl(t), x1(t) = yl(t), x2(t) =
θl(t)+ξ

1− ξ 2

2

,

u0(t) =
(
1− ξ 2

2
)
v(t), u1(t) = w(t),

and defining X̄(t) = [x0(t),x1(t),x2(t)]T , the system can
be transformed into

ẋ0(t) = u0(t)+d0(t),

ẋ1(t) = x2(t)u0(t)+ f̄1(X̄(t), X̄(t − τ))+ s̄1(x0,d1(t)),

ẋ2(t) = u1(t)+ f̄1(X̄(t), X̄(t − τ))+ s̄2(x0,d2(t)),
(37)

where f̄1(·) = f1(·), s̄1(·) = s1(·), f̄2(·) = 2 f2(·)
2−ξ 2 , s̄2(·) =

2s2(·)
2−ξ 2 . When f̄i(·) and s̄i(·), i = 1,2 satisfy Assumptions 2
and 5, the control problem of this system can be solved.
Next, to verify the method of this paper, we assume f1 =
x0x1(t−τ)sinx2, d1 =

1
1+t x0, f2 = x2(t−τ) and d2 =

sin t
1+2t .

By using Theorem 3, we can construct the output feed-
back control

u0 =−2x0(t),

u1 =−2r2g2

(
ρ̂2 +a1(x1/u0)+g1(x1/u0)

)
,

˙̂ρ2 =−2a1r(ρ2 +a1x1). (38)

In this simulation, the parameters are selected as r = 2,
g1 = 2, g2 = 4, a1 = 3, τ = 0.6. The initial conditions are
x0(0)= 0.7, x1(0)= 0.2, x2(0)=−2, ρ̂2(0)=−1.5. Fig. 3
shows that all the states are bounded and xk, k = 0,1,2
converge to zero. Therefore, the control strategy here is
valid.
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Fig. 3. Responses of the closed-loop system (37) and (38).

7. CONCLUSIONS

In this paper, by using the output control strategy, we
discuss the robust control problem for a class of nonlin-
ear time-delay system with unknown disturbances. Firstly,
by using some transformations, the system is transformed
into a new system. Then, a reduced-order observer is in-
troduced. By utilizing the modified adding a power inte-
grator method, we successfully construct an output feed-
back controller. The proposed method is then promoted to
time-delay system with uncertain dynamics and nonholo-
nomic time-delay system. An interesting problem is how
to extend the method to nonlinear time-delay system with
random disturbances.

APPENDIX A

Useful lemmas: The following lemmas are to be used
throughout the paper.

Lemma 3 [21]: If p ∈R≥1
odd, then the following inequal-

ities hold for ∀x ∈R, ∀y ∈R:

(|x|+ |y|)
1
p ≤ |x|

1
p + |y|

1
p ≤ 2

p−1
p (|x|+ |y|)

1
p ,

|x− y|p ≤ 2p−1|xp − yp|.
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Lemma 4 [21]: For given real numbers δi, i = 1, . . . , n
satisfying 0 ≤ δ1 ≤ ·· · ≤ δn and given nonnegative func-
tions ci(x, y), i = 1, . . . , n, there hold

c1(x, y)|x|δ1 + cn(x, y)|x|δn

≤
n

∑
j=1

c j(x, y)|x|δ j

≤
(
|x|δ1 + |x|δn

) n

∑
j=1

c j(x, y), ∀x ∈R.

Lemma 5 [25]: For given positive real numbers m, n
and a given positive function a(x, y), there exists a positive
function c(x, y) such that

|a(x, y)xmyn|

≤ c(x, y)|x|m+n +
n

m+n

( m
(m+n)c(x, y)

) m
n

×|a(x, y)|
m+n

n |y|m+n, ∀x ∈R, ∀y ∈R.

Proof of Lemma 1: By the definition of Wi, one can
deduce that∣∣∣∂Wi

∂ηi

∣∣∣≤ |ξi|+ |ξi|
2σ−1−(i−1)w

1+(i−1)w ,∣∣∣∂Wi

∂η j

∣∣∣≤ (
|ξi|+ |ξi|

2σ−1−(i−1)w
1+(i−1)w

)∣∣∣∂λi−1(η̄i−1)

∂η j

∣∣∣,
j = 1, . . . , i−1. (A.1)

Step 1: Define the function U1(ξ1) = W1. Then, along
the system Ż = G(Z), the derivative of U1 satisfies

U̇1 = r
(
ξ1 +ξ 2σ−1

1

)
(η2 −λ1)+ r

(
ξ1 +ξ 2σ−1

1

)
λ1.

(A.2)

The virtual controller λ1 in this step can be selected as

λ1(ζ1) =−n
(
ξ1 +ξ 1+w

1

)
=: −h1

(
ξ1 +ξ 1+w

1

)
, (A.3)

where h1 = n is a constant. Using ξ 2σ
1 ≥ 0 and ξ 2+w

1 ≥ 0,
one can deduce that

U̇1 ≤−nr
(
ξ 2

1 +ξ 2σ+w
1

)
+ r

(
ξ1 +ξ 2σ−1

1

)
(η2 −λ1).

(A.4)

Step k (k = 2,3, . . . ,n): Suppose that for step k − 1,
along the solutions of system Ż = G(Z), there holds

U̇k−1 ≤− (n− k+2)r
k−1

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+ r

(
ξk−1 +ξ

2σ−1−(k−2)w
1+(k−2)w

k−1

)
(ηk −λk−1). (A.5)

Then we choose the function Uk = Uk−1 +Wk. Using
(A.1), Lemmas 3-4, and following similar design method
in [21], it yields that Uk(η̄k) satisfies (A.6) at step k.

Hence, when k = n, if we choose the Lyapunov function
Un(η̄) and use λn : Rn →R, we obtain

U̇n ≤r
(

ξn +ξ
2σ−1−(n−1)w

1+(n−1)w
n

)
(v−λn)

− r
n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
. (A.6)

By Lemma 3, it follows that

|v−λn| ≤ s0|ξn − ξ̂n|
(

1+ |ξn|
w

1+(n−1)w + |ξ̂n|
w

1+(n−1)w

)
.

(A.7)

By Lemma 3, it follows that

|v−λn| ≤ s0|ξn − ξ̂n|
(

1+ |ξn|
w

1+(n−1)w + |ξ̂n|
w

1+(n−1)w

)
.

(A.8)

From the definition of ξ̂n and Lemmas 3-4, one can de-
duce that

r
(

ξn +ξ
2σ−1−(n−1)w

1+(n−1)w
n

)
(v−λn)

≤ s0r
(
|ξn − ξ̂n|2 + |ξn − ξ̂n|

2σ+w
1+(n−1)w

)
+

r
8

n

∑
j=1

(
ξ 2

j +ξ
2σ+w

1+( j−1)w
j

)
+ rs1

(
ε

2σ+w
1+(n−2)w

n + ε2
n

)
+ r

n−1

∑
j=2

Ān−1, j

(
ε2

j + ε
2σ+w

1+( j−2)w
j

)
. (A.9)

From Lemmas 3-5, one gets

s0r
(
|ξn − ξ̂n|2 + |ξn − ξ̂n|

2σ+w
1+(n−1)w

)
≤ r

8

n

∑
j=1

(
ξ 2

j +ξ
2σ+w

1+( j−1)w
j

)
+ rs2

(
ε2

n + ε
2σ+w

1+(n−2)w
n

)
+ r

n−1

∑
j=2

Ãn−1, j

(
ε2

j + ε
2σ+w

1+( j−2)w
j

)
. (A.10)

Defining δ0 = s1+s2, An−1, j = Ān−1, j + Ãn−1, j, and comb-
ing (A.9) and (A.10), it follows that

r
(

ξn +ξ
2σ−1−(n−1)w

1+(n−1)w
n

)
(v−λn)

≤ rδ0

(
ε2

n + ε
2σ+w

1+(n−2)w
n

)
+

r
4

n

∑
i=1

(
z2

i + z
2σ+w

1+(i−1)w
i

)
+ r

n−1

∑
j=2

An−1, j

(
ε2

j + ε
2σ+w

1+( j−2)w
j

)
. (A.11)

Then, we have

U̇n ≤− 3
4

r
n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
+ rδ0

(
ε2

n + ε
2σ+w

1+(n−2)w
n

)
+ r

n−1

∑
j=2

An−1, j

(
ε2

j + ε
2σ+w

1+( j−2)w
j

)
. (A.12)
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Proof of Lemma 2: By the definition of U , it follows
that

∂U(Z)

∂Z

(
F(Z,Z(t − τ̄))+D(t,Z)

)
=−r

n

∑
i=2

ai−1

(
εi +

(
ρi +ai−1ηi−1

) 2σ−1−(i−1)w
1+(i−2)w

−
(
ρ̂i +ai−1ηi−1

) 2σ−1−(i−1)w
1+(i−2)w

)
(ηi − η̂i)

+
n

∑
i=1

∂Wi

∂ξi

(
f̃1i + d̃1i

)
+

n

∑
i=2

(
rηi+1 + f̄i + d̄i

)
εi

× 1+αi1(ρi +mi−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w −1

1+αi2(ρi +mi−1ηi−1)
w

1+(i−2)w

−
n

∑
i=2

ai−1
(

f̄i−1 + d̄i−1
)((

ρi +ai−1ηi−1
) 2σ−1−(i−1)w

1+(i−2)w

+ εi −
(
ρ̂i +ai−1ηi−1

) 2σ−1−(i−1)w
1+(i−2)w

)
. (B.1)

It can be deduced that

∂Wi

∂ξi
= ξi +ξ

2σ−1−(i−1)w
1+(i−1)w

i , f̃1i = f̄i −
i−1

∑
l=1

∂λi−1

∂ηl
f̄l . (B.2)

Using (5) and Assumption 1, one gets

(
ξi +ξ

2σ−1−(i−1)w
1+(i−1)w

i

)
f̄i

≤ r1−be−mτ0 γi1

i

∑
l=1

(
ξ 2

l (t − τl)+ξ
2σ+w

1+(l−1)w

l (t − τl)
)

+ r1−be−mτ0 γ̄i1

i−1

∑
l=1

(
ξ 2

l (t − τl+1)+ξ
2σ+w

1+(l−1)w

l (t − τl+1)
)

+ r1−bmi1

i

∑
l=1

(
ξ 2

l +ξ
2σ+w

1+(l−1)w

l

)
, (B.3)

and

−
(

zi + z
2σ−1−(i−1)w

1+(i−1)w
i

) i−1

∑
l=1

∂λi−1

∂ηl
f̄l

≤ r1−be−mτ0 γi2

i−1

∑
l=1

(
ξ 2

l (t − τ)+ξ
2σ+w

1+(l−1)w

l (t − τ)
)

+ r1−be−mτ0 γ̄i2

i−2

∑
l=1

(
ξ 2

l (t − τ)+ξ
2σ+w

1+(l−1)w

l (t − τ)
)

+ r1−bmi2

i

∑
l=1

(
ξ 2

l +ξ
2σ+w

1+(l−1)w

l

)
, (B.4)

where mil ,γil , and γ̄il , l = 1,2 are positive constants. De-
fine m0 = ∑i

l=1(mi1 + mi2), γ0 = ∑i
l=1(γi1 + γi2), γ̄0 =

∑i
l=1(γ̄i1 + γ̄i2), we have

n

∑
i=1

∂Wi

∂ξi
f̃1i

≤ r1−bm0

n

∑
l=1

(
ξ 2

l (t)+ξ
2σ+w

1+(l−1)w

l (t)
)

+ r1−be−mτ0 γ̄0

n−1

∑
l=1

(
ξ 2

l (t − τl+1)+ξ
2σ+w

1+(l−1)w

l (t − τl+1)
)

+ r1−be−mτ0 γ0

n

∑
l=1

(
ξ 2

l (t − τl)+ξ
2σ+w

1+(l−1)w

l (t − τl)
)
.

(B.5)

Similarly, one gets
n

∑
i=1

∂Wi

∂ξi
d̃1i ≤ r1−bm̄0

n

∑
l=1

(
ξ 2

l (t)+ξ
2σ+w

1+(l−1)w

l (t)
)

+ γ̄0

n

∑
l=1

(
d2

l (t)+d
2σ+w

1+(l−1)w

l (t)
)
. (B.6)

Let η̄i = ρ̂ j +m j−1η j−1 +(ρ̂ j +m j−1η j−1)
1+ w

1+(i−2)w , it fol-
lows that

−ai−1r
(

εi +(ρi +ai−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w

− (ρ̂i +ai−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w

)
(ηi − η̄i)

≤−cai−1r
(

ε2
i + ε

2σ+w
1+(i−2)w

i

)
. (B.7)

Using Lemmas 4-5, one obtains

−ai−1r
(

εi +(ρi +ai−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w

− (ρ̂i +mi−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w

)
(η̄i − η̂i)

≤ rρi

(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
+ r

i−1

∑
l=2

B̄ j−1, l

(
ε2

l + ε
2σ+w

1+(i−2)w

l

)
+

r
4n

i

∑
l=1

(
ξ 2

l +ξ
2σ+w

1+(l−1)w

l

)
. (B.8)

Combining (B.7) and (B.8), we have

− r
n

∑
i=2

ai−1

(
εi +(χi +ai−1ηi−1)

2σ−1−(i−1)w
1+(i−2)w

− (ρ̂i +ai−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w

)
(ηi − η̂i)

≤−rc
n−1

∑
i=2

(
ai−1 − B̄n−1, i −ρi

)(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
− cr(an−1 −ρn)

(
ε2

n + ε
2σ+w

1+(i−2)w
n

)
+

r
4

n

∑
i=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

)
. (B.9)

By utilizing Lemmas 3, 4, and 5, one has

−ai−1
(

f̄i−1 + d̄i−1
)(

εi +(ρi +ai−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w

− (ρ̂i +ai−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w

)
≤ r1−b

n
e−mτ0

i−1

∑
j=1

(
ξ 2

j (t − τ j)+ξ
2σ+w

1+( j−1)w
j (t − τ j)

)
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+
r1−b

n
e−mτ0

i−2

∑
j=1

(
ξ 2

j (t − τ j+1)+ξ
2σ+w

1+( j−1)w
j (t − τ j+1)

)
+π0r1−bai−1

(
ε2

i + ε
2σ+w

1+(i−2)w
i +

i

∑
j=1

(
ξ 2

i +ξ
2σ+w

1+(i−1)w
i

))
+πi1

(
d2

i−1 +d
2σ+w

1+(i−1)w

i−1

)
, (B.10)

where π0 and π1 are positive constants. By Lemmas 4 and
5, it yields that

1+αi1(ρi +ai−1ηi−1)
2σ−1−(i−1)w

1+(i−2)w −1

1+αi2(ρi +ai−1ηi−1)
w

1+(i−2)w

(
rηi+1 + f̄i + d̄i

)
εi

≤ r1−b

n−1
e−mτ0

i

∑
j=1

(
ξ 2

j (t − τ j)+ξ
2σ+w

1+( j−1)w
j (t − τ j)

)
+

r1−b

n−1
e−mτ0

i

∑
j=1

(
ξ 2

j (t − τ j+1)+ξ
2σ+w

1+( j−1)w
j (t − τ j+1)

)
+πi2

(
d2

i +d
2σ+w
1+iw

i

)
+

r
6(n−1)

i+1

∑
j=1

(
ξ 2

j +ξ
2σ+w

1+( j−1)w
j

)
+ rρ̃i

(
ε2

i + ε
2σ+w

1+(i−2)w
i

)
, (B.11)

where πi2, ρ̃i are constants. Define Bn−1, i = B̄n−1, i +ρi +
ρ̃i, ρ = ρn, δ1 = m1 + m̄0 +∑n

i=2 ai−1π0, δ2 = ∑n
i=2 ai−1π0,

δ3 = γ0 +2 and δ4 = γ̄0 +2,δ5 = γ̄0 +∑n
i=1(πi1 +πi2). The

above deduction indicates that Lemma 2 holds.
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