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A New Parameter Identification Algorithm for a Class of Second Order
Nonlinear Systems: An On-line Closed-loop Approach
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Abstract: This paper presents a novel on-line closed-loop parameter identification algorithm for second order non-
linear systems. Parameter convergence of the proposed methodology is ensured by means of a rigorous Lyapunov-
based analysis. The estimated parameters are obtained using the actual and an estimation system. Algebraic tech-
niques are applied for estimating velocity and acceleration signals, which are required in the proposed algorithm. A
comparative analysis allows assessing the performance of the new parameter identification algorithm with respect
to on-line and off-line least squares algorithms. Numerical simulations indicate that the proposed methodology
allows estimating different types of non-linearities, converges faster than other methodologies, is robust against
disturbances, outperforms on-line techniques, and provides similar estimates as an off-line technique, but without
requiring any type of data pre-processing.

Keywords: Algebraic velocity and acceleration estimation, least squares, parameter identification, persistent exci-
tation, second order nonlinear system.

1. INTRODUCTION

1.1. Overview

Parameter identification is a procedure that allows
building a mathematical model of a dynamical system by
using input-output measurements. The importance of this
procedure relies on its applications, which may include fil-
tering, state estimation, and design of more efficient con-
trollers [1–3].

For safety reasons, especially for unstable open-loop
systems, parameter identification techniques have to be
applied with systems operating in closed-loop, which
yields the field of closed-loop parameter identification.

Parameter identification techniques can be split into off-
line and on-line techniques. The former collects input-
output data, pre-process it, and computes the parameter
estimates by using an iterative procedure; the latter pro-
cess the data at each time instant, and then calculates the
parameter estimates in a recursive manner.

Among the diverse parameter identification techniques
existing in the literature, the least squares (LS) algorithm
remains to be the most widely used approach for param-
eter identification in a variety of fields [4–7]. However,
many of the existing parameter identification techniques
identify only a subset of the whole system parameters or
identify very specific types of non-linearities. Besides,
on-line parameter identification techniques are usually af-
fected by disturbances.
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Second order systems are important because they are
the mathematical model used to describe a large variety of
practical systems such as chemical and biochemical sys-
tems, robotic systems, aircraft systems, mechanical sys-
tems, and networked systems. Besides, second order sys-
tems may appear when dealing with applications involv-
ing structural analysis, aerospace control, control of flex-
ible mechanisms, model based fault diagnosis, communi-
cations, remote sensing, earthquake engineering, and vi-
bration control [8–12]. Furthermore, the dominant dy-
namics of many systems (such as mechanical and elec-
trical systems) can be described by using a second order
system [13].

An efficient parameter identification stage applied to a
class of second order nonlinear systems is important for
improving the real-time performance of the system [9],
and because of the large variety of applications involv-
ing second order systems. Furthermore, a robust parame-
ter identification technique allows reducing model uncer-
tainties, which let us improving the overall system perfor-
mance. Besides, even if the system is controlled using a
robust controller, if the magnitude of system model uncer-
tainties is reduced, the amount of control action demanded
by the robust controller will be lesser, reducing both the
energy required for controlling the system and the possi-
bility of saturating the actuator. Hence, a parameter iden-
tification technique applied to second order systems is an
important issue that deserves to be studied.
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Based on the importance of second order nonlinear sys-
tems and parameter identification techniques, this work
presents a new closed-loop parameter identification algo-
rithm applied to a class of second order nonlinear systems,
which allows identifying different types of non-linearities,
and is robust against disturbances.

1.2. Literature review
The convenience of using an off-line or an on-line tech-

nique depends on the type of process where the system
to be identified belongs to. However, in general, off-
line techniques provide better parameter estimates be-
cause they may include a data pre-processing stage, which
allows reducing the negative effect caused by disturbances
such as position quantization, noisy measurements, and
errors in estimating the time derivatives of a given signal.

Closed-loop parameter identification techniques can be
categorized as direct and indirect methods [14]. Direct
methods apply a parameter identification technique with-
out taking into account the structure of the controller ap-
plied to the system to be identified [15–17]. On the other
hand, the structure of the controller may be used for de-
signing the parameter identification algorithm in indirect
methods. The parameter identification algorithm proposed
in this work falls into the category of indirect methods.

A parameter identification algorithm is reliable if it has
conditions guaranteeing parameter convergence. Gener-
ally, these conditions are related to the spectral richness of
the reference signal used in the identification process [18],
and also to the so called persistency of excitation (PE)
condition [19, 20]. For linear systems, parameter conver-
gence is equivalent to the fulfillment of the PE condition.
This is not the case, however, for nonlinear systems, al-
though some works have presented advances in this direc-
tion [21–23].

The usual way to apply an LS algorithm is in its batch
form, which generates the parameter estimates using the
whole data at the same time. A drawback, however, of
this approach is its computational burden, which is of or-
der O(N3), with N the number of estimated parameters.
This shortcoming can be circumvented by using a recur-
sive least squares (RLS) algorithm, which computes each
parameter estimate using the previous estimate together
with a correction term which depends on the prediction
error, instead of using the whole data. As a result, RLS
algorithms reduce the computational burden to the order
O(N2). Furthermore, the performance of RLS algorithms
can be enhanced if a forgetting factor term is included
[4, 24, 25]. Further details about computational complex-
ity can be found in [26,27], where an interesting approach
for reducing the computational complexity in control syn-
thesis is addressed.

Position controlled direct current (DC) servomecha-
nisms are an important class of second order nonlin-
ear systems. Their applications are diverse and include

hard disc drives, pendulums, and robotics, among others.
Hence, in order to design high-performance controllers for
these mechanisms, a parameter identification stage must
be considered.

References [28–30] identify the parameters of a DC ser-
vomechanism using a relay-based technique. However,
the main drawback of this approach happens when the
reference signal exiting the system becomes constant be-
cause no control is being applied at that instant, which
implies sensitivity to disturbances. Other works dealing
with parameter identification of DC servomechanisms in-
clude the use of a batch LS algorithm to identify the load
inertia, viscous and Coulomb friction coefficients [15]; an
off-line LS algorithm for closed-loop identification [16]; a
LS-based algorithm for active noise control [31]; a closed-
loop parameter identification technique for velocity con-
trolled servomechanisms [32]; a RLS algorithm applied to
a servo drive system [17]; a two step method using a RLS
algorithm to identify one type of nonlinearity [33]; a re-
cursive least squares with forgetting factor (RLSFF) algo-
rithm for identifying Coulomb friction and dead zone pa-
rameters of a velocity controlled DC servo [34]; a RLS al-
gorithm using a model decomposition approach applied to
nonlinear systems [35,36]. Some works present parameter
identification methodologies using the gradient approach
[37–39], Kalman filter [40], optimization algorithms [41],
and modern nonlinear control techniques such as sliding
modes [42], support vector machines [43], adaptive tech-
niques [44], and algebraic techniques [45, 46].

The previous literature review shows that the LS ap-
proaches are among the most widely used parameter iden-
tification techniques. However, many of the existing pa-
rameter identification techniques identify only a subset
of the whole system parameters or identify very specific
types of non-linearities.

1.3. Contribution of the paper
This work presents a new closed-loop parameter iden-

tification algorithm applied to second order nonlinear sys-
tems. Parameter convergence of the new algorithm is
proved using a rigorous Lyapunov-based analysis.

The proposed algorithm considers the actual system and
an estimation system. A linear combination of the signals
coming from both, the actual and the estimation systems
allow designing an estimation output error signal. Then,
the proposed algorithm is obtained by means of a mini-
mization procedure based on a cost function, which de-
pends on the output error signal. An algebraic approach
is used to estimate the required time derivatives of a given
signal. The proposed method is compared to an off-line
LS algorithm with data pre-processing, an on-line RLS
algorithm, and an on-line parameter identification algo-
rithm reported in [25]. Then, these parameter identifi-
cation techniques are applied using the model of a sec-
ond order nonlinear system affected by disturbances due
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to quantization error, differentiation errors, and constant
perturbations.

This paper contributes by:

1) providing a new parameter identification algorithm
that allows estimating the whole set of parameters of a
class of second order nonlinear system, including dif-
ferent types of non-linearities;

2) proving parameter convergence by means of a rigorous
Lyapunov-based analysis;

3) verifying by means of numerical simulations that the
proposed algorithm outperforms other existing on-line
algorithms; and

4) showing that the proposed algorithm is robust against
disturbances, and its performance is similar to that of
an off-line algorithm, but without requiring any data
pre-processing.

It is important to remark that the proposed algorithm
considers an alternative definition of the output error sig-
nal. Besides, the regressor vector used in the parameter
identification formula relies on signals coming from the
estimation system, which is not affected by disturbances.
As a consequence, the proposed algorithm turns out to
be less affected by signals disturbing the actual system,
which is corroborated by numerical simulations.

1.4. Organization
The rest of the paper is organized as follows. Some

worthwhile concepts required in the convergence analy-
sis are given in Section 2. The structure of the second or-
der nonlinear system to be identified, its estimation model,
definition of the output error signal, and problem formula-
tion are given in Section 3. The proposed parameter iden-
tification algorithm and its convergence analysis are de-
veloped in Section 4. Some issues related to the imple-
mentation of the proposed algorithm are discussed in Sec-
tion 5. A comparative study that allows assessing the per-
formance of the proposed parameter identification algo-
rithm is presented in Section 6. A discussion about the nu-
merical results is presented in Section 7. Finally, the paper
ends up with some concluding remarks in Section 8.

2. BASIC CONCEPTS

Parameter convergence analysis is commonly related to
the asymptotic stability of the next differential equation
[47, 48]

˙̃θ(t) =−gϕ(t)ϕT (t)θ̃(t), (1)

where θ̃(t), ˙̃θ(t) denote the parameter estimation error and
its time derivative, respectively; ϕ(t) is the regressor vec-
tor, and g > 0 is the adaptation gain.

The regressor vector ϕ(t) is said to be Persistently Ex-
citing (PE) if there exist constants ᾱ1, ᾱ2, and δ > 0, such
that

ᾱ1I ≤
∫ t0+δ

t0
ϕ(τ)ϕT (τ)dτ ≤ ᾱ2I, (2)

for all t0 ≥ 0, with I being the identity matrix.
The exponential convergence of the parameter estima-

tion error θ̃(t) in (1) is related to the PE condition (2), as
stated in the next theorem.

Theorem 1 (PE and exponential stability) [48]: Let ϕ :
IR+ → IR2n be piecewise continuous. If ϕ is PE, then the
differential equation (1) is globally exponentially stable.

In this work, the convergence analysis of the proposed
parameter identification algorithm employs the Leibniz in-
tegral rule [49], which states that, given a function f (t,τ),
whose partial derivative with respect to t exists and is con-
tinuous, the expression

d
dt

∫ v(t)

u(t)
f (t,τ)dτ =− f (t,u)

du
dt

+ f (t,v)
dv
dt

+
∫ v(t)

u(t)

∂
∂ t

f (t,τ)dτ (3)

holds, with ∂/∂ t denoting the partial derivative with re-
spect to time.

Finally, given a time-varying signal v(t), its time deriva-
tive is represented by v̇(t).

3. MODEL DESCRIPTION AND PROBLEM
FORMULATION

This Section presents the class of nonlinear systems to
be identified and defines its estimation model. Then, an
error system is obtained, and the problem formulation is
stated.

The class of second order nonlinear systems to be iden-
tified can be mathematically described by the next state-
space equation

ξ̇1 = ξ2,

ξ̇2 =−aξ2 − c1 f1(ξ1)− c2 f2(ξ2)+β +bu, (4)

where a, b, c1, c2, β are the system parameters, which are
assumed to be constant. Parameter β denotes a constant
perturbation, u(t) is the control input, and f1(ξ1), f2(ξ̇2)
are nonlinear functions. Note that given the structure of
equation (4), it may represent many different and useful
systems. For instance, it may describe a DC servomecha-
nism, with ξ1(t),ξ2(t), ξ̇2(t) denoting the position, veloc-
ity and acceleration, respectively.

It is assumed that functions fi(·), i = 1,2 in (4) are lo-
cally Lipschitz, i.e., they satisfy the inequality

| fi(x)− fi(y)| ≤ Li |x− y| , ∀x,y ∈ IR, (5)
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with Li > 0 being the Lipschitz constant, and |·| denoting
the absolute value. Note that assumption (5) allows in-
cluding non-linearities such as gravity torque and friction
torque characterized by smooth models [25, 50, 51].

Given the structure of the actual system (4), let us con-
sider the following estimation system

ẇ1 = w2,

ẇ2 =−âw2 − ĉ1 f1(w1)− ĉ2 f2(w2)+ β̂ + b̂ue, (6)

where â, b̂, ĉ1, ĉ2, β̂ correspond to the estimated values of
the parameters a, b, c1, c2, β , respectively, ue is the esti-
mated value of u, and w1,w2, ẇ2 are the estimated signals
corresponding to ξ1(t), ξ2(t), ξ̇2(t), respectively.

Parameter identification methodologies, such as the LS
algorithms, usually define the output error signal as the
difference between the system output and its estimated
value. Then, a cost function depending on this error sig-
nal is used to obtain a parameter identification formula.
By following this methodology, let us define the output
error signal e(t) as

e(ξ,w, ξ̇, ẇ) = g(ξ, ξ̇)−ge(w, ẇ), (7)

where ξ = [ξ1,ξ2]
T , w = [w1,w2]

T , and signals g(ξ, ξ̇),
ge(w, ẇ) are defined as

g(ξ, ξ̇) = µ1ξ1 +µ2ξ2 +µ3ξ̇2,

ge(w, ẇ) = µ1w1 +µ2w2 +µ3ẇ2, (8)

with µ1, µ2, µ3 being positive constants. It is also worth
defining the errors ε1,ε2,εu as

ε1 = ξ1 −w1,

ε2 = ξ2 −w2,

εu = u−ue. (9)

Note from definitions (7)-(9) that the output error (7)
consists of a linear combination of the signals coming
from the actual system (4) and its estimation model (6).
Besides, u(t),ue(t) correspond to the inputs of the actual
and the estimation systems, respectively.

Signals y = [ξ1,ξ2, ξ̇2]
T and ye = [w1,w2, ẇ2]

T are con-
sidered as the outputs of the actual and the estimation sys-
tems, respectively. Using this selection, the identification
objective can be formulated as follows:

Identification problem: Given the inputs u,ue, and the
outputs y,ye, coming from the actual system (4) and the
estimation model (6), respectively, find a parameter updat-
ing law that allows obtaining a set of parameter estimates

θ̂ =
[
â, b̂, ĉ1, ĉ2, β̂

]T
, corresponding to the actual parame-

ter vector θ = [a,b,c1,c2,β ]T , such that the limit

lim
t→∞

θ̃(t) = 0, (10)

holds, with θ̃ = θ̂−θ being the parameter estimation er-
ror.

4. IDENTIFICATION ALGORITHM

The block diagram of the proposed parameter identifi-
cation algorithm is depicted in Fig. 1, and is described as
follows. Both, the actual second order nonlinear system
and the estimation system have the same structure. These
systems are operated in closed-loop by means of the stabi-
lizing controllers u(t) and ue(t), respectively. These con-
trollers also have the same structure, but each of them uses
signals coming from the actual and the estimation sys-
tems, respectively. It is assumed that outputs y(t),ye(t) are
measurable. Using the input-output measurements from
both, the actual and the estimation systems, a regressor
vector ϕ2(t), a matrix P(t), and the output error signal
e(t) are computed. These values are utilized in a parame-
ter identification algorithm, which yields the vector of pa-
rameter estimates θ̂(t). The actual and the estimation sys-
tems are driven by the same reference signal xd(t), which
is assumed bounded, with bounded first-time derivative.
Furthermore, the parameters of the estimation system are
continuously updated by the new parameters θ̂(t).

In order to obtain the proposed parameter identification
algorithm, we follow the next steps:

• define a cost function;
• obtain a parameter identification algorithm, using the

proposed cost function; and
• perform a parameter convergence analysis.

4.1. Cost function
Let us consider the cost function

J(ξ,w, ξ̇, ẇ, t) =
∫ t

0
λ (t−τ)/T e2(τ)dτ, (11)

where λ ,T are positive constants.
The cost function (11) is similar to the integral cost

function presented in [47, 52]. The design parameter λ
acts as a forgetting factor, i.e., as time t increases, the ef-
fect of the old data at time τ < t is discarded “λ -fast".
For instance, data will be exponentially discarded for λ =
2.7182.

Using (8)-(9), the output error signal e(t) and the cost
function J can be rewritten as follows:

e = µ1ε1 +µ2ε2 +µ3ε̇2, (12)

J =
∫ t

0
λ (t−τ)/T [µ1ε1 +µ2ε2 +µ3ε̇2]

2 dτ. (13)

4.2. Parameter identification algorithm
Let us define the vectors

ϕ1 =
[
−ξ2 u − f1(ξ1) − f2(ξ2) 1

]T
,

ϕ2 =
[
−w2 ue − f1(w1) − f2(w2) 1

]T
,

ϕ3 = ϕ1 −ϕ2 =
[
−ε2 εu − f̃1 − f̃2 0

]T
,
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Fig. 1. Block-diagram of the proposed on-line parameter identification algorithm.

θ =
[

a b c1 c2 β
]T

,

θ̂ =
[

â b̂ ĉ1 ĉ2 β̂
]T

,

θ̃ = θ− θ̂, (14)

where f̃1 = [ f1(ξ1)− f1(w1)], f̃2 = [ f2(ξ2)− f2(w2)], θ̃
denotes the parameter estimation error, θ the nominal pa-
rameter vector corresponding to (4), and θ̂ the estimated
parameter vector corresponding to the system (6).

Using definitions (14), the signal ε̇2 can be expressed as

ε̇2 =θ̃Tϕ1 + θ̂Tϕ3

=θ̃Tϕ2 +θTϕ3

=θ̃Tϕ2 −aε2 +bεu − c1 f̃1 − c2 f̃2. (15)

The solution of the parameter identification problem is
obtained by minimizing the cost function J in (11) with
respect to θ̂. To this end, let us compute the partial deriva-
tive of J with respect to θ̂ as follows:

∂J
∂ θ̂

= 2
∫ t

0
λ (t−τ)/T e

∂e
∂ θ̂

dτ. (16)

Note that the partial derivative ∂e/∂ θ̂ depends on sig-
nals w1,w2, and these signals have an implicit dependence
on the parameters θ̂. However, this partial derivative can
be obtained by considering only the explicit derivatives
and neglecting the implicit dependencies on the parame-
ters [52]. Under this assumption, using (13) and (15), the
partial derivative of J with respect to θ̂ is given by

∂J
∂ θ̂

=−2µ3

∫ t

0
λ (t−τ)/T e(τ)ϕ2(τ)dτ. (17)

The validity of equation (17) can be verified by numer-
ical simulations [52]. Then, by substituting (12) into (17),
and equating to zero, the vector θ̂(t) can be separated as
follows∫ t

0
λ (t−τ)/T

[
µ1ε1 +µ2ε2 +µ3ξ̇2

]
ϕ2dτ

= µ3

[∫ t

0
λ (t−τ)/Tϕ2ϕ2

T dτ
]
θ̂. (18)

Let us define the symmetric matrix P−1(t) as

P−1(t) =
∫ t

0
λ (t−τ)/Tϕ2(τ)ϕ2

T (τ)dτ, (19)

with initial value P(t0) = P0 = PT
0 > 0.

Using the Leibniz rule (3), the time derivative of matrix
P−1(t) is given by

d
dt
[P−1(t)] = ϕ2(t)ϕT

2 (t)+
lnλ
T

P−1(t).

Furthermore,

d
dt

[
PP−1]= ṖP−1 +P

d
dt

[
P−1]= 0. (20)

Using (20), the time derivative of matrix P(t) can be
written in the next form

Ṗ =
d
dt

P =−Pϕ2ϕ
T
2 P− lnλ

T
P. (21)

From equation (18) and definition (19), the estimated
parameter vector θ̂ can be expressed as

θ̂(t) =
1
µ3

P(t)F(t), (22)

with

F(t) =
∫ t

0
λ (t−τ)/T

[
µ1ε1 +µ2ε2 +µ3ξ̇2

]
ϕ2dτ,

and the time derivative of θ̂(t) is given by

˙̂θ =
1
µ 3

ṖF +
1
µ 3

PḞ (23)

=
1
µ3

P [µ1ε1 +µ2ε2 +µ3ε̇2]ϕ2.
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Using (12) and (23), the differential equation that gov-
erns the dynamics of the estimated parameters can be writ-
ten as

˙̂θ(t) =
1
µ3

P(t)ϕ2(t)e(t), (24)

and, from definition of θ̃ in (14) and using (24), the dy-
namics corresponding to the parameter error θ̃ can be ex-
pressed as follows

˙̃θ(t) =− 1
µ3

P(t)ϕ2(t)e(t). (25)

Equation (25) allows computing the estimated parame-
ter vector θ̂(t). This equation is valid if matrix P−1(t) in
(19) is nonsingular. Then, the forthcoming stability anal-
ysis is based on the next assumption.

Assumption 1: Matrix P−1(t) fulfills the next condition

λmin{P−1(t)}> 0, for all t ≥ 0, (26)

with λmin(·) denoting the minimum eigenvalue of the cor-
responding matrix.

Note that if vector ϕ2(t) is PE, it also fulfils the next
inequality

α3I ≤
∫ t0+δ1

t0
λ (t−τ)/Tϕ2(τ)ϕT

2 (τ)dτ ≤ α4I, (27)

for all t0 ≥ 0, with α3,α4,δ1 being positive constants.
Thus, if the regressor vector ϕ2(t) is PE, then P−1(t) is
positive definite, i.e., the PE condition on ϕ2(t) implies
the fulfillment of Assumption 1 and the validity of the pa-
rameter estimation formula (25). This fact is important
because ϕ2(t) depends on signals coming from the esti-
mation system (6), which is not affected by disturbances
such as those due to time derivative estimations, quanti-
zation error, or noisy measurements. This is not the case,
however, for the vector ϕ1(t), which is the one used in
standard LS parameter identification techniques. In the
simulations presented in this work, this feature on ϕ2(t)
seems to make the proposed algorithm less sensitive to
disturbances.

Finally, note that equation (25) is similar to (1), with
ϕ2(t) being the corresponding regressor vector, and ma-
trix P−1(t) may be interpreted as the covariance matrix
used in the RLS algorithms. In the following, equation
(27) is referred to as the λ -persistently exciting or λ -PE
condition, and it is equivalent to the PE condition (2) when
λ = 1.

4.3. Parameter convergence analysis
In general, the actual system (4) may not be open-loop

stable. Then, for safety reasons, the parameter identifi-
cation procedure must be implemented with the system

working in closed-loop. Besides, for parameter identifi-
cation purposes, we only require a stabilizing controller
with relative low tracking error [53], which must not de-
pend on the system parameters. Thus, in order to stabilize
the system (4), let us consider the next PD controller for
the actual system

u(t) = k1ξ̃1(t)+ k2ξ̃2(t), (28)

and, for the estimation system, the estimated controller

ue(t) = k1w̃1(t)+ k2w̃2(t), (29)

with

ξ̃1(t) = xd(t)−ξ1(t), ξ̃2(t) = ẋd(t)−ξ2(t),

w̃1(t) = xd(t)−w1(t), w̃2(t) = ẋd(t)−w2(t),

and k1, k2 > 0 being the controller gains, xd(t) the desired
reference signal, and ẋd(t) its time derivative. Note that
both, the control law (28) and (29) use the same gains.

Controller (28) was selected because the system (4), in
closed-loop with (28), may be seen as a stable linear sys-
tem, affected by a bounded disturbance. Therefore, the
PD control (28) ensures boundedness of ξ1,ξ2 with posi-
tive PD gains k1 and k2.

From (28)-(29), the error signal εu in (9) can be ex-
pressed as

εu =−k1ε1 − k2ε2, (30)

which allows expressing (15) as

ε̇2 = θ̃Tϕ2 −bk1ε1 − [a+bk2]ε2 − c1 f̃1 − c2 f̃2. (31)

Let us define

A =

[
0 1

−bk1 − [a+bk2]

]
,

B =
[

0 1
]T

,

ϵ=
[

ε1 ε2
]T

,

r =−c1 f̃1 − c2 f̃2. (32)

Using (31) and the definition of r in (32), the output
error e(t) in (12) can be rewritten as follows

e =− [µ3bk1 −µ1]ε1 − [µ3 [a+bk2]−µ2]ε2 (33)

+µ3
[
θ̃Tϕ2 + r

]
.

Then, from (9), (25), (32), and (33), the state-space equa-
tion describing the closed-loop error and parameter error
dynamics is given by

d
dt

[
ϵ
θ̃

]
=

[
Aϵ+B

[
θ̃Tϕ2 + r

]
− 1

µ3
P(t)ϕ2(t)e(t)

]
, (34)

where the origin [ϵT , θ̃T ]T = 0 ∈ IR7 is an equilibrium of
(34).
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In order to prove the stability of the origin of (34), let
us consider the next positive definite Lyapunov candidate
function

V (ϵ, θ̃) =V1(ϵ)+V2(θ̃), (35)

with

V1(ϵ) =
α1

2
ϵT P1ϵ,

V2(θ̃) =
α2µ3

2
θ̃T P−1θ̃,

where α1, α2 are positive constants, and P1 ∈ IR2×2 is a
symmetric positive definite matrix, which is solution of
the Lyapunov equation

1
2
[
AT P1 +P1A

]
=−Q, (36)

with Q ∈ IR2×2 being a positive definite matrix.
The time derivative of V1 and V2 along the trajectories

of (34) is given by

V̇1 =−α1ϵ
T Qϵ+α1ϵ

T P1B
[
θ̃Tϕ2 + r

]
, (37)

V̇2 =− α2µ3

4
θ̃T

[
ϕ2ϕ

T
2 −

2lnλ
T

P−1
]
θ̃ (38)

+α2θ̃
Tϕ2 [[µ3bk1 −µ1]ε1 +[µ3 [a+bk2]−µ2]ε2

−µ3r]− α2µ3

4
[
θ̃Tϕ2

]2
.

Let pi j denote the i j-th element of matrix P1. Then, we
can obtain the relations

α1ϵ
T P1B = α1 [p12ε1 + p22ε2] , (39)

−α2µ3θ̃
Tϕ2r = µ3α2θ̃

Tϕ2
[
c1 f̃1 + c2 f̃2

]
,

and

−α1 [p12ε1 + p22ε2]
[
c1 f̃1 + c2 f̃2

]
≤ 3α1β1β2

2
∥ϵ∥2 ,

(40)

with

β1 = max{|p12| , |p22|} , (41)

β2 = max{L1c1,L2c2} . (42)

Using V̇1,V̇2, and relations (39)-(40), the time derivative
of V (ϵ, θ̃) can be written as

V̇ =−α1ϵ
T Qϵ+α1θ̃

Tϕ2 [p12ε1 + p22ε2] (43)

−α1 [p12ε1 + p22ε2]
[
c1 f̃1 + c2 f̃2

]
− α2µ3

4
θ̃T

[
ϕ2ϕ

T
2 −

2lnλ
T

P−1
]
θ̃

+α2θ̃
Tϕ2 [[µ3bk1 −µ1]ε1 +[µ3 [a+bk2]−µ2]ε2

+µ3
[
c1 f̃1 + c2 f̃2

]]
− α2µ3

4
[
θ̃Tϕ2

]2
,

which allows bounding V̇ as follows:

V̇ ≤−α1

[
λmin(Q)− 3

2
β1β2

]
∥ϵ∥2

− α2µ3

4
θ̃T

[
ϕ2ϕ

T
2 −

2lnλ
T

P−1
]
θ̃

+α2θ̃
Tϕ2 [[µ3bk1 −µ1]ε1 +[µ3 [a+bk2]−µ2]ε2

+µ3
[
c1 f̃1 + c2 f̃2

]]
− α2µ3

4
[
θ̃Tϕ2

]2

+α1θ̃
Tϕ2 [p12ε1 + p22ε2]

≤−α1

[
λmin(Q)− 3

2
β1β2

]
∥ϵ∥2 (44)

− α2µ3

4
θ̃T

[
ϕ2ϕ

T
2 −

2lnλ
T

P−1
]
θ̃

−
∣∣θ̃Tϕ2

∣∣[α2

4

∣∣θ̃Tϕ2
∣∣− [α1β1 +µ3β2 +α2β3]

[|ε1|+ |ε2|]] ,

where

β3 = max{µ3bk1 −µ1,µ3 [a+bk2]−µ2} . (45)

Let us define the set Ω1, matrix R, and the element s1 as
follows

Ω1 =
{
θ̃Tϕ2 :

∣∣θ̃Tϕ2
∣∣>

4
α2

[α1β1 +µ3β2 +α2β3] [|ε1|+ |ε2|]
}
,

R = ϕ2ϕ
T
2 −

2lnλ
T

P−1,

s1 = λmin(Q)− 3
2

β1β2. (46)

From inequality (44) and definitions (46), if λmin(R) >
0, s1 > 0, and θ̃Tϕ2 ∈ Ω1, then

V̇ ≤−α1s1 ∥ϵ∥2 − α2µ3

4
λmin(R)

∥∥θ̃∥∥2
< 0, (47)

which implies that both the error vector ϵ and the param-
eter error θ̃ converge to zero. Besides, the convergence to
zero of ε1,ε2 implies that all the signals corresponding to
the estimated model (6) remain bounded.

The previous development is summarized in the next
theorem.

Theorem 2: Let us consider the closed-loop dynamic
system (34), and the set Ω1, matrix R, and s1 defined as in
(46). Given the parameter updating law

˙̃θ(t) =− 1
µ3

P(t)ϕ2(t)e(t), (48)

with

e = µ1ε1 +µ2ε2 +µ3ε̇2, (49)

ϕ2 = [−w2,ue,− f1(w1),− f2(w2),1]
T , (50)
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P−1(t) =
∫ t

0
λ (t−τ)/Tϕ2(τ)ϕ2

T (τ)dτ, (51)

if the regressor vector ϕ2(t) is λ -PE, λmin(R)> 0, s1 > 0,
and θ̃Tϕ2 ∈ Ω1, then

lim
t→∞

 ε1(t)
ε2(t)
˜̃θ(t)

= 0 ∈ IR7, (52)

i.e., the vector of parameter estimates θ̂ converges asymp-
totically to the nominal parameter vector θ, and all the
signals from the actual system (4) and the estimation sys-
tem (6) remain bounded.

5. ALGORITHM IMPLEMENTATION

In order to apply equation (48), the values correspond-
ing to ξ2(t) and ξ̇2(t) are needed. In practice, the time
derivatives of the variable of interest are seldom available
and if so, these measurements may be noisy and biased.
Furthermore, if noisy estimates were used from bad qual-
ity sensors, biased estimations would be obtained if a LS
algorithm were used. Then, a trustworthy procedure to
estimate these values is required. In addition, it must be
verified that the reference signal xd(t) satisfies Assump-
tion (27).

5.1. Velocity and acceleration estimation
A possibility for computing the estimates of ξ2(t), ξ̇2(t)

consists of using an algebraic approach, which is based
on differential algebra theory [54]. This methodology al-
lows obtaining a general formula for computing the time
derivatives of a measurable signal. The procedure used
in this work for estimating these values follows the same
lines of reference [25].

Computation of ξ2, ξ̇2 is performed using two estima-
tors for each signal. Each estimator provides the estimated
signals ξ̃2,

˙̃ξ2, corresponding to ξ2, ξ̇2 respectively, using
the next formulas [25]

ξ̃2(t) =
1

[t − tr]
6

[
−720

∫ (5)
ξ1 +4320

∫ (4)
[t − tr]ξ1

−5400
∫ (3)

[t − tr]
2 ξ1 +2400

∫ (2)
[t − tr]

3 ξ1

−450
∫

[t − tr]
4 ξ1 +30 [t − tr]

5 ξ1

]
, (53)

˙̃ξ2(t) =
1

[t − tr]6

[
−720

∫ (4)
ξ1 +4320

∫ (3)
[t − tr]ξ1

−5400
∫ (2)

[t − tr]2ξ1 +2400
∫

[t − tr]3ξ1

−300[t − tr]4ξ1 +24[t − tr]5ξ̃2

]
, (54)

where the term
∫ ( j) h denotes an iterated integral of the

form
∫ ( j) h =

∫ t ∫ σ1 . . .
∫ σ j−1 h(σ j)dσ j . . .dσ1; and tr > 0

is the resetting time. Then, by combining two estimators,
signals ξ̃2,

˙̃ξ2 are computed as follows

ξ̃2 =

{
ξ̃2a, for 0 ≤ t mod tr < κv

2
ξ̃2b, for κv

2 ≤ t mod tr < κv,
(55)

˙̃ξ2 =

{ ˙̃ξ2a, for 0 ≤ t mod tr < κa
2

˙̃ξ2b, for κa
2 ≤ t mod tr < κa,

(56)

where κv, κa are positive constants. Signals ξ̃2a(t),
˙̃ξ2a and

ξ̃2b, ˙̃ξ2b correspond to the estimations provided by the first
and second estimator, respectively.

The previous algebraic estimation procedure was se-
lected because it provides more accurate and less noisy
estimates when compared, for instance, to the estimates
obtained using the dirty derivative [25, 55].

5.2. Tuning of the algorithm gains
A reliable set of parameter estimates is obtained by a

proper tuning of the parameter identification gains. This
tuning stage requires setting the values of gains λ , µ1, µ2

and µ3. The structure of the parameter identification algo-
rithm given in Section 4, together with the parameter con-
vergence analysis, permit obtaining some guidelines for
tuning the gains of the proposed parameter identification
algorithm.

There are some elements that allow us to know how to
select the value of parameter λ . First, note that matrix
−ln(λ )P/T in equation (21) is alike to the positive defi-
nite matrix Q in the Kalman filter (see equation (2.3.12)
in [48]), which allows concluding that the value of λ has
to be less than one. On the other hand, from definitions
given in equation (46) in the parameter convergence anal-
ysis, note that condition λmin(R)> 0 is trivially ensured by
selecting λ < 1. Furthermore, an LS with forgetting factor
algorithm is the usual way to avoid the covariance wind
up, a problem that is present in ordinary LS algorithms.
The usual values for the forgetting factor are within the
interval (0,1) [48]. Therefore, the values of λ are selected
as 0 < λ < 1. In this work, it was verified that a good set
of parameter estimates is obtained by selecting λ close to
one.

According to the parameter convergence analysis, gains
µ1,µ2 can be selected having large values. However, sim-
ulations results show that this usually yields overshoots in
the parameter estimates. For the parameter µ3, it can be
verified that the element 1/µ3 in (25) plays the role of the
adaptation gain, which implies that a faster convergence
is obtained if the value of 1/µ3 is large. Besides, small
values for µ3 allow ensuring that condition θ̃Tϕ2 ∈ Ω1

is satisfied. As a consequence, the value of µ3 must be
small. By considering the previous analysis, a usual way
to select the values of µ1, µ2, µ3 is as follows. Select
small values for µ1,µ2 (for instance µ1 = µ2 = 0.1), and
select the value of µ3 to be about ten times smaller than
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the value of µ2. This selection usually allows the param-
eter identification algorithm to converge, but with a slow
rate of convergence. Then, better estimates are obtained
by increasing the value of µ1, although with overshoots in
the parameter estimates. These overshoots can be reduced
by first increasing the value of µ2, and then by slightly
varying the value of µ3.

5.3. Persistency of excitation
Another important issue in parameter identification is

associated with the PE condition, which is also related to
the spectral richness of the reference signal xd(t) [14, 48].
An example of this is given in the next.

Five numerical simulations were performed using the
model (4), with f1(ξ1)= sin(ξ1), and f2(ξ2)= tanh(β4ξ2),
β4 > 0. It is assumed that this nonlinear system corre-
sponds to a position controlled DC servomechanism. Each
simulation corresponds to one of the reference signals xdi,
i = 0,1,2,3,4, described by

xdi =

{
1 , i = 0
∑i

j=1 mi sin(ωit) ,otherwise [rad], (57)

with m1 = 1.2, m2 = 2, m3 = 0.5, m4 = 0.5, ω1 = 1 rad/s,
ω2 = 2 rad/s, ω3 = 2.5 rad/s and ω4 = 3 rad/s.

Reference signals (57) range from a constant reference
xd0 (low excitation), up to a combination of four sinu-
soids (corresponding to eight spectral lines, i.e., high ex-
citation). In addition, the robustness of the proposed pa-
rameter identification algorithm was assessed by adding
a quantizer before measuring ξ1(t). This quantizer simu-
lates an optical encoder with a resolution of 2000 pulses
per revolution. The velocity and the acceleration esti-
mates were obtained using formulas (55)-(56), with gains
κv = κa = 1.2. The proposed parameter identification al-
gorithm was applied using the gains µ1 = 4,µ2 = 1.3,µ3 =
0.04,λ = 0.9999, and T = 0.1. Table 1 shows the final es-
timates obtained with each simulation after 20 seconds.
The nominal values of the system parameters used in the
simulation are also provided.

Table 1 shows that the performance of the proposed pa-
rameter identification algorithm enhances when the exci-
tation level corresponding to the reference signal xdi(t)
increases. In linear systems, parameter convergence is
guaranteed if the number of spectral components of the
reference signal equals the number of unknown parame-
ters [48]. However, for nonlinear systems, a less amount
of spectral lines may be enough for identifying the same
number of parameters [22].

The results of the previous simulations show that good
estimates are obtained with a reference signal having two
sinusoids, and these estimates get closer to the real ones
when three sinusoids are employed. However, adding
more frequencies to xdi(t) did not reflect an important
improvement in the final estimates. Therefore, it can be

Table 1. Parameter estimates obtained using the proposed
parameter identification algorithm (48), and the
reference signals given in (57).

Parameters Nominal xd0 xd1 xd2

â 0.35 1.8090 0.1090 0.3560
b̂ 87 97.14 44.46 85.27
ĉ1 13 9.618 7.216 12.710
ĉ2 1 1.833 0.5534 0.9766
β̂ 0.5 -3.095 0.2592 0.4452

Parameters Nominal xd3 xd4 -
â 0.35 0.3591 0.3590 -
b̂ 87 86.22 87.56 -
ĉ1 13 12.800 12.800 -
ĉ2 1 0.9418 0.9596 -
β̂ 0.5 0.4738 0.4809 -

expected that, when applying the proposed method to a
second order system as that given in (4), parameter con-
vergence will be assured by selecting a reference signal
having three sinusoids.

It is also worth mentioning that, despite the distur-
bances due to the position quantization error, velocity and
acceleration estimations, the performance of the proposed
parameter identification algorithm is remarkable. This
may be due to the fact that the regressor vector ϕ2(t)
does not depend on signals coming from the actual sys-
tem (4), but on signals coming from the estimated system
(6), where the effect due to disturbances is absent.

We conclude this Section by providing the steps re-
quired to implement the proposed parameter identification
algorithm. These steps are listed below:

1) create an estimation model with the state-space de-
scription given in (6);

2) design the stabilizing controllers (28)-(29) for the ac-
tual system (4) and the estimation system (6), respec-
tively;

3) at each time instant, get the values of u ,ue, ξ1, ξ2, w1,
w2, ξ̇2, ẇ2;

4) obtain the output error signal e using (49), the regressor
vector ϕ2 using (50), and compute the matrix P using
(51);

5) compute the estimate θ̂ using (48),
6) update the parameters of the estimation model (6) us-

ing the new value of θ̂,
7) go to Step 3.

6. COMPARATIVE STUDY

This Section presents numerical simulations that vali-
date the performance of the proposed on-line parameter
identification algorithm.
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Fig. 2. Parameter estimates obtained using the off-line batch LS algorithm (LS), on-line RLS with forgetting factor algo-
rithm (RLS), the on-line parameter identification method from [25] (RMC), and the proposed parameter identifi-
cation method (Proposed). Dashed lines correspond to the nominal values.

Table 2. Parameter estimates obtained using the off-line
LS algorithm, on-line RLS algorithm, the RMC
algorithm, and the proposed method.

â b̂ ĉ β̂
Nominal 0.35 87 13 0.5

LS 0.3995 86.8605 12.9863 0.5089
RLS 0.3499 87 13 0.4996
RMC 0.3425 86.93 13.35 0.4913

Proposed 0.3566 87.1600 13.0400 0.5054

Simulations were performed using the system

ξ̇1 = ξ2,

ξ̇2 =−aξ2 − csin(ξ1)+β +bu, (58)

where a, b, c are positive constants, and β is a constant
perturbation affecting the system. It is assumed that model
(58) corresponds to a DC servomotor attached to a pendu-
lum, which moves in the vertical plane.

A quantizer was added after the output corresponding
to signal ξ1(t) for simulating the effect of an optical en-
coder of 2000 pulses per revolution, and the velocity and
acceleration estimations ξ2(t), ξ̇2(t) were obtained using
the algebraic state estimators (55)-(56).

Table 3. RMS parameter error of each parameter identifi-
cation scheme.

â b̂ ĉ β̂
LS 4.3353 107.9816 79.2632 10.9808

RLS 0.0051 0.1732 0.0161 0.0136
RMC 0.0031 0.0684 0.0281 0.0038

Proposed 0.0004 0.0306 0.0111 0.0002

The estimation system corresponding to (58) is given
by

ẇ1 = w2,

ẇ2 =−âw2 − ĉsin(w1)+ β̂ + b̂ue. (59)

The actual system (58) and its estimation model (59)
were operated in closed-loop, using the PD controllers
(28)-(29) with gains k1 = 0.1 and k2 = 0.001. The ref-
erence signal for this simulation was xd2(t) from (57), and
the proposed parameter identification algorithm was im-
plemented using the gains µ1 = 3.4, µ2 = 1.3, µ3 = 0.02,
λ = 0.9999, and T = 0.1.

The new algorithm is compared to an off-line batch
LS algorithm, an on-line RLS with forgetting factor al-
gorithm, and the parameter identification algorithm pro-
posed in [25]. The on-line RLS algorithm and the on-
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Fig. 3. Behavior of the region Ω1 defined in (46). The red
dashed line corresponds to

∣∣θ̃Tϕ2
∣∣, and the solid

blue line shows the behavior of region S(t) defined
in (62).

line parameter identification algorithm given in [25] were
used in order to compare the proposed method with other
existing on-line methodologies. Particularly, the on-line
algorithm addressed in [25] is robust against disturbances
and has some similarities to that presented in this work.
The off-line LS algorithm was selected because it has a
pre-processing stage, which allows reducing the effects
of disturbances; in this simulation, the off-line LS al-
gorithm was implemented using a low-pass non-causal
zero-phase digital filter for reducing the effect of posi-
tion quantization error, and velocity estimates were com-
puted without phase-shift using a central difference algo-
rithm. A complete description of these three additional
algorithms can be found in [25]. By using the same no-
tation from [25], the on-line RLS algorithm was imple-
mented using the values δ = 0.5, r1 = 20, r2 = 400, and
P0 = diag{150,200,50,50}; the off-line LS algorithm was
implemented using the same values given in [25]. Fi-
nally, the on-line parameter identification algorithm intro-
duced in [25] was implemented using the gains µ1 = 0.35,
µ2 = 0.5, µ3 = 0.06 and λ = 107.

6.1. Parameter estimation results
In the following, the off-line LS algorithm and the on-

line RLS algorithm will be referred to as the LS and RLS
algorithms, respectively. The parameter identification al-
gorithm given in [25] will be referred to as the RMC al-
gorithm. The parameter estimates obtained with the four
aforementioned algorithms are depicted in Fig. 2, where
the dashed line corresponds to the nominal value. The
numerical value of the parameter estimates obtained with
each algorithm after 20 seconds are given in Table 2. The
nominal values used in the simulation are also included
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Fig. 4. Time evolution of the minimum eigenvalues corre-
sponding to matrices P−1(t) and R(t), ensuring the
convergence of the parameter estimation error.

there.
Note that the values obtained with each algorithm are

almost the same. However, the convergence of the pro-
posed methodology is faster than that obtained with the
other algorithms. This fact can be verified by computing
the RMS values

RMS{eθ̃i
}=

√
1
m

k

∑
i=1

e2
θ̃i
(i), (60)

where

eθ̃i
= θi − θ̂i, (61)

is the i-th parameter estimation error, m is the number of
samples, θi is the i-th actual parameter, and θ̂i is the i-th
estimated parameter obtained with each parameter identi-
fication scheme. Table 3 shows the corresponding RMS
errors. The lowest RMS values are highlighted in bold.
Note that the proposed parameter identification method
has the smallest RMS errors.

7. DISCUSSION

In the previous Section, the simulation results using
the on-line RLS algorithm, off-line batch LS algorithm,
RMC algorithm and the proposed parameter identification
scheme were presented. It was observed that, despite the
disturbances due to position quantization error, velocity
estimation, and acceleration estimation, the final estimates
obtained with the four algorithms were similar. However,
the proposed methodology behaves faster than the other
ones. Specifically, the accuracy of the proposed algorithm
is similar to that obtained using the off-line LS algorithm,
although the proposed scheme does not require any data
pre-processing and operates on-line.
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It is also important to verify if the conditions given in
Theorem 2 are satisfied. To this end, the λ -PE condition
given in (27), the set Ω1, matrix R and the element s1 de-
fined in (46), were computed. Fig. 3 shows the behavior
of Ω1. The red dashed line corresponds to

∣∣θ̃Tϕ2
∣∣, and the

blue line shows the behavior of S(t) defined by

S(t) =
4 [α1β1 +µ3β2 +α2β3] [|ε1|+ |ε2|]

α2
. (62)

Condition (46) on the set Ω1 is satisfied almost every-
where, and those points not satisfying this condition does
not imply parameter drift, but time instants where the con-
vergence is not asymptotic, which was also verified by the
numerical simulations.

Fig. 4 shows the time evolution of the minimum eigen-
values of matrices P−1(t) and R(t). Note that the mini-
mum eigenvalue of matrix R is always positive, as required
in Theorem 2. On the other hand, the positiveness of the
minimum eigenvalue of matrix P−1 implies the λ -PE con-
dition (27) on the regressor vector ϕ2(t). Thus, all the
conditions of Theorem 2 are satisfied.

Finally, regarding the computational complexity of the
proposed parameter identification algorithm, it can be ver-
ified that the number of operations required for the pa-
rameter updating law (48) is the same as that required
for implementing the on-line RLS algorithm (see equation
(39) in [25]). However, the number of operations required
for implementing the off-line LS algorithm and the pro-
posed method in [25] are higher than those required for
the method introduced in this paper. As a consequence,
the proposed parameter identification algorithm turns out
to be an appealing method that can be used for on-line pa-
rameter identification of second order nonlinear systems.

8. CONCLUSION

In this paper, a methodology for on-line closed-loop pa-
rameter identification of second order nonlinear systems
was presented. The proposed methodology was applied
to second order nonlinear systems working in closed-loop
with a PD controller. The new parameter identification
methodology considered an estimation model of the actual
system, a cost function, and an output error signal based
on a linear combination of signals from the actual and the
estimation systems. The stability analysis of the proposed
parameter identification scheme was accomplished by us-
ing a Lyapunov-based approach.

The proposed parameter identification algorithm was
compared to an on-line RLS with forgetting factor algo-
rithm, an off-line batch LS algorithm, and a previously
reported on-line parameter identification algorithm. Nu-
merical simulations proved that the proposed methodol-
ogy converges faster than other methodologies, but with-
out requiring any data preprocessing. Besides, different

types of non-linearities can be identified using the pro-
posed scheme.
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