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Optimal Discrete-time Integral Sliding Mode Control for Piecewise Affine
Systems
Olfa Jedda* ■ and Ali Douik

Abstract: This paper presents an optimal discrete-time integral sliding mode control for constrained piecewise
affine systems. The proposed scheme is developed on the basis of linear quadratic regulator approach and differen-
tial evolution algorithm in order to ensure the stability of the closed-loop system in discrete-time sliding mode and
the optimization of response characteristics in presence of control input constraints. Moreover, the controller is de-
signed such that chattering phenomenon is avoided and finite-time convergence to the sliding surface is guaranteed.
The follow-up of a reference model is also ensured. The efficiency of the proposed method is illustrated with an
inverted pendulum system.

Keywords: Differential evolution algorithm, discrete-time integral sliding mode control, inverted pendulum system,
piecewise affine systems.

1. INTRODUCTION

Over the last few decades, research activities in com-
puter science and control have been strongly oriented
to study hybrid dynamical systems since they are used
for modeling the behaviour of realistic complex systems.
In fact, they involve explicitly and simultaneously con-
tinuous and discrete dynamics. In other words, discrete
processes are employed to select, control and supervise
the behaviour of continuous processes [1]. Several sub-
classes of hybrid dynamical systems, such as linear com-
plementarity (LC) systems [2, 3], mixed logical dynami-
cal (MLD) systems [4], piecewise affine (PWA) systems
[5], and max-min-plus-scaling systems (MMPS) [6], are
established in literature in order to make possible analy-
sis and development of control techniques which are not
available for general hybrid systems.

Recently, piecewise affine systems have received much
attention in research not only because they can provide
a useful modeling method for a large category of hybrid
dynamical systems but also because they can be used to
approximate nonlinear systems, given that they are equiv-
alent to interconnections of linear systems and finite au-
tomata [7]. Moreover, all techniques developed for PWA
systems can be extended to some other subclasses, such
as MLD systems [8], since they are equivalent as demon-
strated by Heemls et al. in [9].

Numerous research studies concerning PWA discrete-
time systems have been carried out on stability criteria
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[10, 11], identification techniques [12, 13], and control
methods such as optimal control [4, 14] and model pre-
dictive control (MPC) [4, 15]. In this paper, we propose
a new control technique for PWA discrete-time systems
based on discrete-time sliding mode theory.

Discrete-time sliding mode control (DSMC) appeared
in the mid 1980s with Milosavljevic [16] and then has
been followed with a great interest from control commu-
nity [17–21] in view of the increasing use of computers for
the implementation of digital controllers. Yet, invariance
and robustness properties of continuous-time sliding mode
control (CSMC) against parametric uncertainties, model-
ing errors and external disturbances [22–25] can not be
maintained in discrete-time because of the finite sampling
rate. Actually, the control input is updated at each sam-
pling time so that it can not be changed when the state
trajectory crosses the sliding surface during the sampling
period; hence the occurrence of chattering phenomenon
that may excite high-frequency dynamics, adversely af-
fect system performance and damage electric power cir-
cuits and mechanical parts.

In [19], Gao introduced the notion of quasi-sliding
mode that consists in bringing the state trajectory to cross
the sliding surface in finite-time and therefore to follow
a zigzag motion within a boundary layer in its vicinity
so that the chatter effect will be attenuated but not totally
avoided. In [26], Bartolini et al. developed a discrete-time
control algorithm that consists in defining the equivalent
control as the piecewise-constant control that guarantees
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the elimination of chattering phenomenon as well as the
occurrence of an ideal discrete-time sliding mode in finite-
time.

Later, discrete-time integral sliding mode control
(DISMC) was proposed by Abidi et al. in [27] as an
improved approach of DSMC based on the integral slid-
ing mode concept [28]. Recently, it was developed for
robust tracking and model following of uncertain sys-
tems [29, 30] and systems with state and input delays
[31,32]. In addition to its straightforward design, DISMC
controller ensures the elimination of reaching phase, the
stability of the closed-loop system, the excellent tracking
performance and the high degree of accuracy. Moreover,
in quasi-sliding mode, the motion equation has the same
order as the state space instead of being reduced by the
dimension of the control input as is the case with the con-
ventional sliding mode controller. Yet, the integral term of
the sliding function is at the origin of error accumulation
in the initial phase and therefore of high values of control
input. In presence of control input constraints in practical
application, this can cause uncontrollable overshoots, os-
cillations and even instability which may be the origin of
an unanticipated deterioration of control devices.

In what follows, an optimal discrete-time integral slid-
ing mode control (ODISMC) will be developed for PWA
systems subject to input constraints. Actually, the linear
quadratic regulator (LQR) approach and the differential
evolution (DE) algorithm are used in the sliding function
design in order to ensure the stability of the closed-loop
system in discrete-time sliding mode and the optimum re-
sponse characteristics while respecting control input con-
straints. Proposed by Storn and Price [33], the differential
evolution algorithm is a stochastic population-based opti-
mization method that has been widely applied in various
scientific and engineering domains [34]. It has many ad-
vantages such as simplicity of implementation, reduced
number of control parameters and efficiency in finding the
global minimum of non-differentialble, discontinuous and
nonlinear cost functions [35–37].

The proposed controller will be applied to an inverted
pendulum system modeled as a single-input single-output
PWA system with input constraints. It will be compared to
optimal discrete-time integral sliding mode controller us-
ing linear matrix inequality (LMI) approach, to discrete-
time integral sliding mode controller based on an arbitrary
selection of the sliding vectors, and therefore to model
predictive controller in order to demonstrate its efficiency.

This paper is organized as follows: Section 2 is de-
voted to the design of optimal discrete-time integral slid-
ing mode controller for constrained piecewise affine sys-
tems. A discrete-time PWA model of an inverted pendu-
lum system is given in Section 3. Section 4 presents the
numerical simulation results as well as their comparison
to results of other methods. Finally, concluding remarks
are provided in Section 5.

2. OPTIMAL DISCRETE-TIME INTEGRAL
SLIDING MODE CONTROL FOR PWA

SYSTEMS

The PWA systems are defined as the partition of the
state space into a finite number of polyhedral regions such
that a different affine state-updated equation is associated
with each region. They are described by

x(k+1) = Aix(k)+Biu(k)+ fi,

y(k) =Cix(k)+Diu(k)+hi,
if
[

x(k)
u(k)

]
∈ Ωi, (1)

where x(k) ∈ IRn is the state vector, u(k) ∈ IRm is the con-
trol input, and y(k) ∈ IRp is the system output. Ωi are
convex polyhedra in the state/input space given by

Ωi =

{[
x(k)
u(k)

]
∈ IRn+m : Nix+Liu≤Ei

}
, i = 1 . . .ns,

(2)

where ns is the number of subsystems. Ai, Bi, fi, Ci, Di, hi,
Ni, Li and Ei are constant matrices of appropriate dimen-
sions [9, 38–41].
In order to make the notation in the following development
less cluttered, each subsystem is expressed as follows{

x(k+1) = Ax(k)+Bu(k)+ f ,
y(k) =Cx(k)+Du(k)+h,

(3)

where (u(k),y(k)) ∈ IR× IR and both matrices (D,h) are
supposed to be equal to 0 in this study.
The discrete-time reference model is given by{

xm(k+1) = Amxm(k),
ym(k) =Cmxm(k),

(4)

where xm(k) ∈ IRnm is the state vector and ym(k) is the ref-
erence model output that has the same dimension as y(k).

According to [32, 42, 43], tracking the reference output
ym(k) requires the existence of matrices G ∈ IRn×nm and
H ∈ IR1×nm that satisfy the following relation[

A B
C 0

][
G
H

]
=

[
GAm

Cm

]
. (5)

If there is no solution for (5), one must choose a different
reference model (Am,Cm) or system output matrix C [42].

Consider that the tracking controller has the following
structure

u(k) = Hxm(k)+ v(k), (6)

where H fulfills condition (5) and v(k) is defined as an
auxiliary control law. Then, an auxiliary state vector z(k)
will be introduced in order to facilitate the development of
the proposed scheme. It is defined as

z(k) = x(k)−Gxm(k), (7)
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where G satisfies condition (5).
Using (3) and (7), the auxiliary subsystem can be ex-

pressed as follows

z(k+1) = Az(k)+Bv(k)+ f . (8)

Later, the ODISMC controller is used to design the auxil-
iary control law v(k) such that the system output y(k) fol-
lows the reference model output ym(k), the auxiliary sub-
system (8) is asymptotically stable in discrete-time slid-
ing mode, and the response characteristics are optimized
in presence of control input constraints.

2.1. Design of optimal integral sliding surface
The integral sliding function is defined as

σ(k)=Sz(k)−Sexp(−βk)z(0)−ε(k), β > 0, (9a)

ε(k)=ε(k−1)+S(A+BK)z(k−1), ε(0) = 0, (9b)

where S ∈ IR1×n is determined using the differential evolu-
tion algorithm while ensuring that SB is non-singular and
K ∈ IR1×n is designed using the linear quadratic regulator
approach in order to ensure the stability of the auxiliary
subsystem (8) in discrete-time sliding mode and the opti-
mization of response characteristics.

2.1.1 Differential evolution algorithm
Given that for each subsystem the sliding vector is ex-

pressed as S =
[
s1, . . . ,sn

]
, the DE algorithm is used to

generate the global optimum vector Ξ =
[
ξ 1, . . . ,ξ nt

]
=[

s1
1, . . . ,s

n
1, . . . ,s

1
ns, . . . ,s

n
ns

]
that minimizes the following

cost function

cost = λ1tr +λ2ts +λ3Mp +λ4Ess, (10)

where tr is the rise-time, ts is the settling-time, Mp is
the overshoot, Ess is the steady-state error, and λq , q =
1, . . . ,4, are their corresponding weights.

DE starts with a population of NP nt-dimensional
parameter vectors Ξ j,Gen =

[
ξ 1

j,Gen, . . . ,ξ nt
j,Gen

]
, j =

1, . . . ,NP. In presence of search space constraints
Ξmax =

[
ξ 1

max, . . . ,ξ nt
max

]
and Ξmin =

[
ξ 1

min, . . . ,ξ nt
min

]
, each

parameter in the jth vector of the initial generation
Gen = 0 is generated as follows:

ξ δ
j,0=ξ δ

min+rand (0,1)
(
ξ δ

max−ξ δ
min

)
, δ = 1, . . . ,nt,

(11)

where rand (0,1) returns a random number that is uni-
formly distributed over the interval [0,1].
Then, a mutant vector Φ j,Gen =

[
ϕ 1

j,Gen, . . . ,ϕ nt
j,Gen

]
is cre-

ated for each individual Ξ j,Gen via the mutation strategy
DE/best/1 described by

Φ j,Gen = Ξbest,Gen +F
(

Ξr j
1,Gen −Ξr j

2,Gen

)
. (12)

Different from the index j, the integers r j
1 and r j

2 are
randomly generated within the range [1,NP]. F ∈ [0,2]
is the scaling factor fixed during the optimization process,
and Ξbest,Gen is the best individual corresponding to the
least cost function value at the current generation Gen.

Next, DE employs the crossover operation for each
target vector Ξ j,Gen and its corresponding mutant vector
Φ j,Gen in order to increase the potential of the population

diversity. A trial vector Ψ j,Gen =
[
ψ1

j,Gen, . . . ,ψnt
j,Gen

]
is

generated on the basis of the binomial crossover scheme
defined by

ψδ
j,Gen =


ϕ δ

j,Gen if randδ (0,1)≤CR
or δ = δrand ,

ξ δ
j,Gen otherwise,

δ = 1, . . . ,nt, (13)

where CR is the crossover rate chosen constant within the
range [0,1] and δrand is randomly chosen within the range
[1,nt]. If there is any parameter value of the trial vector
that exceeds the minimum and maximum bounds set in
advance, it will be uniformly and randomly reinitialized
in the search space.

Subsequently, DE uses a selection process that consists
in comparing the cost function value of each trial vector
Ψ j,Gen with that of its corresponding target vector Ξ j,Gen.
Actually, if the cost function value of the trial vector is
less or equal to that of the target vector, the latter will be
replaced by the trial vector in the next generation. Other-
wise, it will remain for the next generation. This operation
can be expressed as follows:

Ξ j,Gen+1 =

{
Ψ j,Gen if cost (Ψ j,Gen)≤ cost (Ξ j,Gen),

Ξ j,Gen otherwise.
(14)

Moreover, a fixed number ρ of sliding vectors that cor-
respond to the worst cost function values will be replaced,
at each generation, by those corresponding to the best fit-
ness values. This operation aims to accelerate the conver-
gence of this algorithm by preventing the worst individu-
als to get involved in the other operations.

As shown in Table 1, all the above-mentioned opera-
tions will be repeated generation after generation until the
satisfaction of certain criteria [34, 44].

2.1.2 Linear quadratic regulator approach
Let’s consider a forward expression of the sliding func-

tion given in (9)

σ(k+1) = Sz(k+1)−Sexp(−β (k+1))z(0)

− ε(k+1), (15a)

ε(k+1) = ε(k)+S(A+BK)z(k). (15b)
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Table 1. Description of DE algorithm.

Step 1 Set the population size NP, the scale factor F ∈
[0,2], and the crossover rate CR ∈ [0,1].

Step 2 Initialization
Set the generation number Gen = 0.
Initialize randomly and uniformly a population
of NP individuals Ξ j,Gen =

[
ξ 1

j,Gen, . . . ,ξ nt
j,Gen

]
,

j = 1, . . . ,NP, within the maximum and mini-
mum bounds Ξmax =

[
ξ 1

max, . . . ,ξ nt
max

]
and Ξmin =[

ξ 1
min, . . . ,ξ nt

min

]
.

FOR j = 1 to NP
FOR δ = 1 to nt

ξ δ
j,0 = ξ δ

min + rand (0,1)
(
ξ δ

max −ξ δ
min

)
END FOR

END FOR
Evaluate the initial population individuals.

Step 3 WHILE stop criterion is not satisfied DO
Select the best individual Ξbest,Gen that corre-

sponds to the best cost function value.
Replace a fixed number ρ of sliding vectors that
correspond to the worst cost function values by
those corresponding to the best ones.

FOR j = 1 to NP
Step 3.1 Mutation operation
Select randomly 2 distinct indexes r j

1 and
r j

2 from the range {1, . . . ,NP}\{ j}.
Generate the mutant vector Φ j,Gen =[
ϕ 1

j,Gen, . . . ,ϕ nt
j,Gen

]
that corresponds to the tar-

get vector Ξ j,Gen.
Φ j,Gen = Ξbest,Gen +F

(
Ξr j

1 ,Gen −Ξr j
2 ,Gen

)
Step 3.2 Crossover operation
Generate the trial vector. Ψ j,Gen =[

ψ1
j,Gen, . . . ,ψnt

j,Gen

]
for each target vector Ξ j,Gen and

its corresponding mutant vector Φ j,Gen.
δrand = ⌊rand (0,1)×nt⌋
FOR δ = 1 to nt

IF (randδ ≤CR) or (δ = δrand)

ψδ
j,Gen = ϕ δ

j,Gen

ELSE
ψδ

j,Gen = ξ δ
j,Gen

END IF
END FOR
Step 3.3 Selection operation
Evaluate the trial vector Ψ j,Gen

IF cost (Ψ j,Gen)≤ cost (Ξ j,Gen) THEN
Ξ j,Gen+1 = Ψ j,Gen

else
Ξ j,Gen+1 = Ξ j,Gen

end if
END FOR
Increment the generation count

Gen = Gen+1
END WHILE

Using the equivalent control approach, the equivalent con-
trol veq is obtained by setting σ(k+ 1) = 0. Then, it can

be expressed as follows

veq(k) =Kz(k)−(SB)−1S f+(SB)−1Sexp(−β (k+1))z(0)

+(SB)−1ε(k). (16)

In discrete-time sliding mode, solving σ(k) = 0 leads to

ε(k) = Sz(k)−Sexp(−βk)z(0). (17)

Substituting (17) into (16) yields

veq(k) = Kz(k)+(SB)−1Sz(k)− (SB)−1S f +Γ(k),
(18)

where

Γ(k) = (SB)−1S[exp(−β (k+1))− exp(−βk)]z(0).
(19)

Consequently, the auxiliary subsystem in discrete-time
sliding mode can be expressed as follows:

z(k+1) = Acz(k)+d(k), (20)

where Ac = A + B(SB)−1S + BK and d(k) = (I −
B(SB)−1S) f +BΓ(k).

Remark 1: The exponential term Γ(k) given in (19)
tends towards zero when k approaches infinity and then
the last term d(k) in (20) tends towards the constant term
(I −B(SB)−1S) f , i.e. lim

k→∞
d(k) = (I −B(SB)−1S) f . Thus,

d(k) will not affect the stability of the auxiliary sub-
system (20) in discrete-time sliding mode. In addition,
if (I −B(SB)−1S) f ≡ 0, the auxiliary subsystem (20) is
asymptotically stable in discrete-time sliding mode.

In what follows, the gain vector K will be designed us-
ing the infinite time horizon discrete-time LQR in order
to ensure the stability of the equilibrium of the auxiliary
subsystem (20) in discrete-time sliding mode.

Theorem 1: The equilibrium of the auxiliary subsys-
tem (20) is asymptotically stable in discrete-time sliding
mode if there exist a positive-definite matrix P ∈ IRn such
that the following inequality is satisfied

AT
c PAc −P < 0. (21)

Proof: Firstly, a positive definite Lyapunov function is
chosen as follows

V (k) = zT (k)Pz(k) . (22)

The Lyapunov difference of the auxiliary subsystem
(20) without the last term d(k) is expressed by

∆V (k) =V (k+1)−V (k)

= zT (k+1)Pz(k+1)− zT (k)Pz(k)

= zT (k)
(
AT

c PAc −P
)

z(k) . (23)
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The stability requires that ∆V (k) is negative-definite and
this is only possible if AT

c PAc −P < 0 as required by (21).
Then, the equilibrium of the auxiliary subsystem (20) is
asymptotically stable in the sense of Lyapunov stability in
discrete-time sliding mode. The proof is completed. □

Theorem 2: The equilibrium of the auxiliary subsys-
tem (20) is asymptotically stable in discrete-time sliding
mode if there exist positive-definite matrices Q ∈ IRn and
R ∈ IR such that the LQR infinite horizon objective func-
tion given by

J =
∞

∑
k=0

(z(k)T Qz(k)+ veq(k)T Rveq(k)) (24)

is minimized. The feedback gain K is given by

K = (BT
eqPBeq +R)−1BT

eqPAeq, (25)

where Aeq = A+B(SB)−1 S, Beq =−B and P is a positive-
definite matrix solution of the discrete-time algebraic Ric-
cati equation

AT
eqPAeq −P−AT

eqPBeq(BT
eqPBeq +R)−1BT

eqPAeq +Q

= 0. (26)

Proof:

AT
c PAc −P

= (Aeq −BeqK)T P(Aeq −BeqK)−P

= AT
eqPAeq −AT

eqPBeqK −KT BT
eqPAeq

+KT BT
eqPBeqK −P

=
(
AT

eqPAeq −P−AT
eqPBeqK +Q

)
−Q

−KT BT
eqPAeq +KT (BT

eqPBeq +R
)

K −KT RK

=
(
AT

eqPAeq −P−AT
eqPBeqK +Q

)
−Q−KT RK −KT (BT

eqPBeq +R
)

×
[(

BT
eqPBeq +R

)−1
BT

eqPAeq −K
]
.

Replacing K by its expression given in (25) yields

AT
c PAc −P =−Q−KT RK < 0. (27)

From Theorem 1, it concludes that the existence of P
satisfying Riccati equation (26) guarantees the stability of
the equilibrium of the auxiliary subsystem (20) in discrete-
time sliding mode, and the gain vector K can be expressed
as in (25). The proof is completed. □

2.1.3 Analysis of overall system stability
For each region, the auxiliary subsystem in discrete-

time sliding mode is given by

z(k+1) = Aciz(k)+di(k), i = 1 . . .ns, (28)

where Aci = Ai + Bi(SiBi)
−1Si + BiKi, di(k) = (I −

Bi(SiBi)
−1Si) fi+BiΓi(k), and Γi(k)=(SiBi)

−1Si[exp(−β (k
+1))−exp(−βk)]z(0). Si and Ki are respectively the slid-
ing and gain vectors determined previously using DE
algorithm and LQR approach.

The connection of all auxiliary subsystems is stable in
discrete-time sliding mode if there exist a positive-definite
matrix P ∈ IRn such that for each region the Lyapunov
function V (22) is positive-definite and the Lyapunov dif-
ference ∆V (23) is negative-definite.

2.2. Design of optimal discrete-time integral sliding
mode controller

In this paper, The control law will be designed such that
the chattering phenomenon is eliminated and the state tra-
jectory converges to the sliding surface after a finite time
interval. Control input constraints are taken into account
in the control design.

The forward expression of the sliding function (9) can
be rewritten as follows :

σ(k+1) =σ(k)− (S+SBK)z(k)+SBv(k)+S f

−SBΓ(k). (29)

Hence, the corresponding equivalent auxiliary control is
expressed as

veq(k) =− (SB)−1σ(k)+
(
(SB)−1S+K

)
z(k)

− (SB)−1S f +Γ(k). (30)

Considering that the control input u(k) may vary within
the admissible domain [−u0,u0], i.e. ∥u(k)∥ ≤ u0, the
auxiliary control must belong to the range [vmin,vmax] with
vmin = −u0 −Hxm and vmax = u0 −Hxm. The constrained
auxiliary control is given by

v(k) =


veq(k) if vmin ≤ veq(k)≤ vmax,

vmax if veq(k)> vmax,

vmin if veq(k)< vmin.

(31)

Suppose that ∥Hxm∥< u0, ∥v(k)∥ ≤ v0 and

∥(SB)−1∥∥(S+SBK)z(k)−S f +SBΓ(k)∥< v0,
(32)

where v0 = min(∥vmin∥,∥vmax∥).
In this restrained domain, the constrained auxiliary con-

trol can be expressed as follows:

v(k) =


veq(k) if ∥veq(k)∥ ≤ v0,

v0
veq(k)
∥veq(k)∥

if ∥veq(k)∥> v0.
(33)

Using (30), the forward expression of the sliding function
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l

θ

u

Fig. 1. Schematic of the inverted pendulum system.

(29) for ∥veq(k)∥> v0 is given by

σ(k+1) = (σ(k)− (S+SBK)z(k)+S f −SBΓ(k))

×
(

1− v0

∥veq(k)∥

)
.

(34)

Therefore, using (32)

∥σ(k+1)∥
= ∥σ(k)− (S+SBK)z(k)+S f −SBΓ(k)∥

− v0
∥σ(k)− (S+SBK)z(k)+S f −SBΓ(k)∥

∥veq(k)∥
≤ ∥σ(k)∥+∥(S+SBK)z(k)−S f +SBΓ(k)∥

−v0
∥σ(k)−(S+SBK)z(k)+S f−SBΓ(k)∥

∥(SB)−1∥∥σ(k)−(S+SBK)z(k)+S f−SBΓ(k)∥
≤ ∥σ(k)∥+∥(S+SBK)z(k)−S f +SBΓ(k)∥

− v0

∥(SB)−1∥
< ∥σ(k)∥.

Thus a monotonic decrease of ∥σ(k)∥ occurs. Moreover,
the equivalent auxiliary veq(k) will belong to the restrained
domain, i.e. ∥veq(k)∥ ≤ v0, and therefore to the admissi-
ble domain [vmin,vmax], after a finite time interval. This
can happen, according to (30) and (32), when σ(k) = 0.
In other words, the state trajectory will converge to the
sliding surface after a finite number of steps; hence the
existence of discrete-time sliding mode.

3. PWA MODEL OF THE INVERTED
PENDULUM SYSTEM

The schematic presentation of the inverted pendulum
system given in Fig. 1 shows a simple pendulum of mass
M = 1 kg and length l = 0.5 m rotated through an angle θ
from the upright position by an input torque u. Actually,
the input torque lies within a range of umin = −10 Nm to
umax = 10 Nm. The pendulum is subject to gravity and
viscous friction torque [38].

Let x =
[
x1 x2

]T
=

[
θ θ̇

]T be the state vector. The

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 2. Piecewise linear approximation of sine function
over the interval [−π π].

dynamic equations of the inverted pendulum are:
ẋ1 = x2,

ẋ2 =
Mgl sinx1 − τx2

l2M
+

1
l2M

u,
(35)

where g = 9.8 m/s2 is the acceleration of gravity and τ =
0.5 Nms is the friction coefficient.

Referring to Fig. 2, the sine function is approximated
over the interval [−π π] by the following piecewise linear
function

sinθ ≈


−αθ − γ if θ <− π

2 ,

αθ if |θ | ≤ π
2 ,

−αθ + γ if θ > π
2

(36)

with α = 24
π3 and γ = 24

π2 .
Thus, replacing the sine function by its piecewise lin-

ear approximation in (35) and using, for discretization, the
Euler forward method defined by

ẋ ∼=
x(k+1)− x(k)

Ts
(37)

yields the following discrete-time piecewise affine model

x(k+1) = Aix(k)+Biu(k)+ fi, i = 1, . . . ,3,

y(k) =Cix(k) (38)

with

A1 =

[
1 Ts

− Tsgα
l 1− Tsτ

l2M

]
, B1 =

[
0
Ts

l2M

]
,

f1 =

[
0

− gγTs
l

]
, C1 =

[
1 0

]
, if θ <−π

2
,

A2 =

[
1 Ts

Tsgα
l 1− Tsτ

l2M

]
, B2 =

[
0
Ts

l2M

]
,

f2 =

[
0
0

]
, C2 =

[
1 0

]
, if |θ | ≤ π

2
,

A3 =

[
1 Ts

− Tsgα
l 1− Tsτ

l2M

]
, B3 =

[
0
Ts

l2M

]
,

f3 =

[
0

gγTs
l

]
, C3 =

[
1 0

]
, if θ >

π
2
.
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4. SIMULATION RESULTS

For a sampling period Ts = 0.05 s, the discrete-time ref-
erence model is given by

xm(k+1) =

[
1 0
0 1

]
xm(k),

ym(k) =
[
1 0

]
xm(k).

(39)

The aim is to move the pendulum from the stable equilib-
rium position θ = π to the unstable equilibrium position
θ = 0 and maintain it there. Hence, the initial conditions
for (38) and (39) are chosen as follows

x(0) =
[
π 0

]T
, xm(0) =

[
0 0

]T (40)

The matrices G and H, solutions of (5), are given for each
region by

G1 =

[
1 0
0 0

]
, H1 =

[
3.7967 0

]
if θ <− π

2 ,

G2 =

[
1 0
0 0

]
, H2 =

[
−3.7967 0

]
if |θ | ≤ π

2 ,

G3 =

[
1 0
0 0

]
, H3 =

[
3.7967 0

]
if θ > π

2 .

(41)

The design parameter β in the sliding surface is equal to
0.9. The cost function to minimize using DE algorithm is
chosen as follows:

cost = tr + ts. (42)

The population size, the mutation scale factor and the
crossover rate are respectively chosen as NP = 100, F =
0.5 and CR = 0.9.
The minimum and the maximum bounds are given by

Ξmin =
[
0.5 0.5 0.5 0.5 0.5 0.5

]
,

Ξmax =
[
5 5 5 5 5 5

]
. (43)

For LQR approach, the weighting matrices R and Q in (24)
are selected for all subsystems as follows:

Ri = 1, Qi =

[
1 0
0 1

]
, i = 1, . . .3. (44)

Fig. 3 illustrates the evolution of the cost function (42)
for ODISMC using LQR approach. It reveals the rapid
convergence of the cost function to its minimum value
1.01 s. This is due to the last operation added in the DE
algorithm that consists in substituting a fixed number ρ ,
which is chosen equal to 5, of sliding vectors correspond-
ing to the worst fitness value by those corresponding to
the best cost value at each generation. The sliding vectors

0 10 20 30 40 50
1

1.5

2

2.5

Iteration

C
o

s
t

Iteration = 50, Cost = 1.014280408

Fig. 3. Evolution of the cost function for ODISMC using
LQR approach.

corresponding to the minimum value of the cost function
(42) are given by

S1 =
[
1.9710 4.432

]
if θ <− π

2 ,

S2 =
[
5 1.3056

]
if |θ | ≤ π

2 ,

S3 =
[
2.5291 0.5

]
if θ > π

2 .

(45)

The obtained gain vectors using LQR approach are
K1 =

[
0.6088 −6.9846

]
if θ <− π

2 ,

K2 =
[
−33.7849 −8.1815

]
if |θ | ≤ π

2 ,

K3 =
[
−31.7025 −8.1141

]
if θ > π

2 .

(46)

Let’s suppose that x1 ∈ [−π,π] and x2 ∈ [−10,10]. Ac-
cording to equations (7), (40) and (41), the auxiliary state
variables z1 and z2 are respectively within the same ranges.
As shown in Fig. 4, the auxiliary state space is divided by
two vertical boundary lines situated at z1,2

1 = ± π
2 into 3

subspaces Rgni, i = 1, . . . , 3.
Figs. 4 and 5 prove that the following chosen matrix

P =

[
2000 300
300 100

]
(47)

ensures that the Lyapunov function V (22) is positive in
all subspaces and that the Lyapunov difference ∆V (23)
is negative in each corresponding subspace. Therefore,
the connection of all the auxiliary subsystems of the in-
verted pendulum system is stable for the obtained sliding
and gain vectors.

Fig. 6 shows numerical simulation results of ODISMC
using LQR approach. Figs. 6(a)-6(b) depict the state vari-
ables x1,2(k) and their corresponding references xm1,2(k).
They show that the proposed controller ensures not only
the stability of the closed-loop system in discrete-time
sliding mode but also the follow-up of the reference model
while respecting control input constraints. Fig. 6(c) illus-
trates the constrained control input u(k). It shows that
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Fig. 4. The color coded values of V corresponding to each
subsystem. Red color stands for positive V ; the
color gradually gets lighter when V approaches
zero.
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(c) Variation of ∆V in Rgn3.

Fig. 5. The color coded values of ∆V corresponding to
each subsystem. Green color stands for negative
∆V ; the color gradually gets lighter when ∆V ap-
proaches zero.

chattering phenomenon is avoided since the controller is
designed on the basis of discrete-time sliding mode con-
cept that consists in defining the equivalent control as the
piecewise-constant control. Fig. 6(d) presents the sliding
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x
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x
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(a) State variable x1(k) and its reference xm1(k).
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(b) State variable x2(k) and its reference xm2(k).
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(c) Control input u(k).
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15
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(d) Sliding function σ(k).

Fig. 6. Simulation results of ODISMC using LQR ap-
proach.

function σ(k). It shows that the state trajectory, which di-
verges at the beginning because of constraints, converges
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Fig. 7. Evolution of the cost function for ODISMC using
LMI approach.

to the sliding surface in finite-time interval.
Using LMI approach, the auxiliary subsystem (20)

is asymptotically stable in discrete-time sliding mode if
there exist a positive-definite matrix X ∈ IRn and a matrix
W ∈ IR1×n such that the following inequality is satisfied[

−X (AeqX −BeqW )T

AeqX −BeqW −X

]
< 0. (48)

The gain vector K is expressed by

K =WX−1. (49)

Fig. 7 illustrates the evolution of the cost function (42)
for ODISMC using LMI approach. It shows that the de-
veloped DE algorithm ensures a rapid convergence to its
minimum value 4.23 s. The corresponding sliding and
gain vectors are respectively given by

S1 =
[
1.2793 0.5434

]
if θ <− π

2 ,

S2 =
[
1.7718 0.5

]
if |θ | ≤ π

2 ,

S3 =
[
4.8248 2.1035

]
if θ > π

2 ,

(50)

and 
K1 =

[
−10.2346 −9.5773

]
if θ <− π

2 ,

K2 =
[
−23.7746 −9.5773

]
if |θ | ≤ π

2 ,

K3 =
[
−9.9318 −9.5773

]
if θ > π

2 .

(51)

Fig. 8 illustrates a comparison of the state variable x1(k)
between ODISMC using LQR and LMI approaches. It
shows that the proposed controller provides better results.
Thus, the optimization of the response characteristics of
the closed-loop system is ensured using both DE algo-
rithm and LQR approach.

Fig. 9 presents a comparison of the state variable x1(k)
between ODISMC and DISMC. The latter uses the fol-
lowing sliding vectors that are chosen arbitrary

Si =
[
1 1

]
, i = 1, . . . ,3. (52)
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Fig. 8. Comparison between ODISMC using LQR and
LMI approaches.
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Fig. 9. Comparison between ODISMC and DISMC.

There is a notable difference between the two re-
sponses, as shown in Fig. 9. Therefore, in presence of
control input constraints, the DE algorithm facilitates the
determination of sliding vectors for which the response
characteristics of the closed-loop system are optimum.

Fig. 10 shows a comparison between ODISMC and
DISMC using LMI and LQR approaches. Referring to
[32], the DISMC controller is developed without taking
into account the constraints on control input. The corre-
sponding auxiliary control law is given by

v(k) =Kiz(k)− (SiBi)
−1 Si fi +(SiBi)

−1 ε(k)

+(SiBi)
−1 Si exp(−β (k+1))z(0)

+(SiBi)
−1 φσ(k), (53)

where the design parameter 0 < φ < 1 is chosen equal to
0.5 and the sliding vectors Si are given in (52).

Fig. 10(a) presents a comparison of the state variable
x1(k). It shows that the developed controller ensures the
fastest response even in the presence of input constraints.
Fig. 10(b) illustrates a comparison of the control input
u(k). It shows that the control inputs corresponding to
DISMC controller using LMI and LQR methods go be-
yond the bounds with minimum values of −16.4 Nm and
−14.2 Nm, respectively, which in practice may damage
control devices.

Fig. 11 depicts a comparison of the state variable x1(k)
between ODISMC and MPC. Actually, the MPC con-
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(a) Comparison of the state variable x1(k).
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Fig. 10. Comparison between ODISMC and DISMC
without control input constraints.

troller is applied to the MLD model of the inverted pendu-
lum system [45] and designed by minimizing the follow-
ing cost function

NMPC−1

∑
k=0

∥QMPC (y(k)− yre f )∥∞ +∥RMPCu(k)∥∞, (54)

where yre f = 0 is the reference signal, NMPC = 5 is the
prediction horizon, and QMPC = 1 and RMPC = 0.01 are
the weighting factors. The PWA model is generated us-
ing HYSDEL (Hybrid Systems Description Language)
tool [38] and then translated into MLD model. Simula-
tion results for MPC are obtained using Hybrid Toolbox
[46]. Fig. 11 shows that the two responses are very sim-
ilar. Actually, the developed ODISMC, efficient to con-
trol PWA systems subject to input constraints, is a robust
method that can be applied to control a class of uncertain
constrained PWA systems with external bounded distur-
bances.

The computational costs were evaluated. Numerical
simulations were performed on a standard HP Pavilion
dv7 system with a 2.4 GHz Intel Core i5 CPU and a 6
GB RAM. The software platform was Matlab 2016a. The
average time costs consumed by DE algorithm and the
implementation of ODISMC controller are respectively
about 422.094 and 4.127 seconds.

In practical applications, the developed algorithm is ex-
ecuted using the process model in off-line mode. Then,
the sliding vectors that correspond to the minimum value
of the cost function of DE algorithm will be used in the de-
sign of the controller that will be implemented in on-line
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Time (sec)

x
1
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Fig. 11. Comparison between ODISMC and MPC.

mode.

5. CONCLUSION

This paper presented an optimal discrete-time integral
sliding mode control for piecewise affine systems. In pres-
ence of control input constraints, the developed controller
uses the differential evolution algorithm and the linear
quadratic regulator approach to determine respectively the
sliding and the gain vectors for which the response char-
acteristics of the closed-loop system are optimum. More-
over, it guarantees the stability of the overall system in
discrete-time sliding mode as well as the follow-up of the
reference model. Based on discrete-time sliding mode
concept, chattering phenomenon is eliminated and finite-
time convergence to the sliding surface is ensured. Simu-
lation results show the efficiency of the proposed scheme
applied to the inverted pendulum system.

Future work will focus on extending the developed
algorithm to control multi-input multi-output, disturbed
[40, 47] and uncertain piecewise affine systems [41]. Fu-
ture research will also focus on developing this method
for Takagi-Sugeno fuzzy dynamic systems [48] and for
networked systems subject to network-induced limitations
such as time-delays and packet dropouts [49].
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