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Sampled-data Control of Fuzzy Systems Based on the Intelligent Digital
Redesign Technique: An Input-delay Approach
Han Sol Kim, Jin Bae Park*, and Young Hoon Joo*

Abstract: In this paper, a novel intelligent digital redesign (IDR) method for a Takagi-Sugeno fuzzy system is
proposed based on the guaranteed cost method. The objective of the IDR is to determine a sample-data data gain
that achieves the same performance as a given continuous-time controller. Unlike previous works, we use the
state-matching error cost function and develop an IDR technique without the use of any discretization methods. To
this end, a sufficient condition guaranteeing both the asymptotic stabilization of the error dynamics model and the
minimization of the upper bound of the error cost function is formulated in terms of linear matrix inequalities based
on the input-delay approach. Finally, a simulation example validates the superiority of the proposed method.

Keywords: Guaranteed cost method, intelligent digital redesign (IDR), sampled-data control, Takagi-Sugeno (T–S)
fuzzy system, time-dependent Lyapunov-Krasovskii functional (LKF).

1. INTRODUCTION

The Takagi-Sugeno (T–S) fuzzy model [1] has been in-
tensively studied from the control community because it
can express a given nonlinear dynamics model as a con-
vex summation of sub-linear models and fuzzy weighting
functions using the sector nonlinearity concept [2]. As
a wide class of nonlinear systems can be modeled in the
form of the T–S fuzzy model, it is possible to systemat-
ically design a controller for nonlinear dynamic systems
based on the T–S fuzzy control approach. Accordingly,
various studies have been performed regarding the con-
trol design of continuous-time T–S fuzzy models, such as
observer-based control [3], robust control [4], H∞ control
[5], and decentralized control [6].

At the same time, because of the advances of digital
computing technologies, implementing a controller using
a digital computer or microcontroller have also received
significant attention. When the continuous-time system
is controlled via a digital controller, such a control sys-
tem is called a sampled-data (SD) control system. The
most common approach, called the input-delay approach
[7], designs an SD controller based on the Lyapunov-
Krasovskii functional (LKF) after converting a given SD
control system into an equivalent input-delay control sys-
tem. While the input-delay approach has been success-
fully applied to the design of SD fuzzy controllers for
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years [8–12], there exists a serious problem in that the
approach relinquishes a large number of fruitful methods
developed in the continuous-time domain.

As an alternative approach to the input-delay approach,
an intelligent digital redesign (IDR) technique was pro-
posed in [13]. In the IDR methods, an SD controller
that has an equivalent performance with a pre-designed
continuous-time controller is designed. Due to this char-
acteristic, many IDR-based SD control approaches have
been actively studied, example include [14, 15, 17]. In
previous studies, the control systems were approximately
discretized in advance, and the IDR problem was then ad-
dressed using the state-matching condition which guar-
antees the minimization of the norm distance between
these closed-loop system matrices only at each sampling
time. Thus, the discretization error together with the unad-
dressed inter-sampling time state-matching degrades the
state-matching performance. Recently, a different type of
IDR method was proposed based on the guaranteed cost
method in [18]; however, this method could not obtain suf-
ficient state-matching performance either because of the
discretization error.

Motivated by the above considerations, this paper pro-
poses an input-delay approach to the IDR of T–S fuzzy
systems based on the guaranteed cost method. This is
realized using the state-matching error cost function and
a technique that minimizes the cost over the whole time
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domain. Linear matrix inequality (LMI) [19] conditions
guaranteeing both the asymptotic stabilization of the er-
ror dynamics model and minimization of the upper bound
of the error cost function is developed without the use of
any discretization methods. By solving the performance
degradation caused by the discretization error, an im-
proved state-matching performance can be obtained. Fi-
nally, the superiority of the proposed method is validated
using a simulation example.

2. PROBLEM FORMULATION

In this paper, we deal with the IDR problem of the T–S
fuzzy model of the following form:

ẋa(t) =
r

∑
i=1

wi
(
xa(t)

)(
Aixc(t)+Biuc(t)

)
, (1)

where i ∈ Ir := {1,2, . . . ,r}, xa(t) ∈ Rn and ua(t) ∈ Rm

are the state and input vectors, respectively, in which the
subscript “a” can be either both “c” or “d”, the subscript
“c” indicates the analog control while the subscript “d”
denotes the SD control in the sequel, Ai and Bi are the sys-
tem and input matrices, respectively, and wi

(
xa(t)

)
is the

scalar fuzzy weighting function satisfying the following
properties: wi

(
xa(t)

)
∈ [0, 1] and ∑r

i=1 wi
(
xa(t)

)
= 1.

We assume that the continuous-time fuzzy controller for
stabilizing (1) was designed in advance and has the fol-
lowing form:

uc(t) =
r

∑
j=1

w j
(
xc(t)

)
Kc

j xc(t), (2)

where Kc
j for j ∈ Ir is the predetermined continuous-time

gain matrix.
Substituting (2) into (1) and for any matrix Mis using

the following notation: M(t) = ∑r
i=1 wi

(
xc(t)

)
Mi, we have

the following continuous-time closed-loop fuzzy control
system representation:

ẋc(t) =
{

A(t)+B(t)Kc(t)
}

xc(t). (3)

Next, we employ an SD fuzzy controller of the follow-
ing form:

ud(t) = ud(tk) =
r

∑
j=1

w j
(
xd(tk)

)
Kd

j xd(tk)

= Kd(tk)xd(tk), (4)

for t ∈ [tk, tk+1), ∀k ∈ Z≥0, where tk is the kth sampling
time, h := tk+1 − tk is a constant sampling period, and Kd

j
for j ∈ Ir is the SD gain matrix to be determined.

Closing (1) with (4), the closed-loop SD fuzzy control
system becomes

ẋd(t) =A(t)xd(t)+B(t)Kd(tk)xd(tk)

=
{

A(t)+B(t)Kd(tk)
}

xd(t)

− (t − tk)B(t)Kd(tk)x̄d(t), (5)

where (t − tk)x̄d(t) := xd(t)− xd(tk).
The proposed method is derived based on the following

assumption:

Assumption 1: In this paper, we assume that the dif-
ference between the continuous-time and sampled-time
fuzzy weighting functions is small enough to be ignored;
in other words, wi

(
xc(t)

)
≃ wi

(
xd(t)

)
for i ∈ Ir and ∀t.

This is valid when the state-matching error between xc(t)
and xd(t) is small enough, which is the objective of this
paper.

The purpose of this paper is to minimize the state-
matching error e(t) = xc(t)− xd(t) so that xd(t) closely
matches xc(t) for all t. The error dynamics model can be
configured as follows:

ė(t) =ẋc(t)− ẋd(t)

=
{

A(t)+B(t)Kc(t)
}

e(t)+B(t)Kc(t)xd(t)

−B(t)Kd(tk)xd(t)+(t − tk)B(t)Kd(tk)x̄d(t)

=
{

A(t)+B(t)Kc(t)
}

e(t)

+B(t)
{

Kc(t)−Kd(tk)
}

xd(t)

+(t − tk)B(t)Kd(tk)x̄d(t). (6)

By defining the augmented state vector as χ(t) =
col{xd(t), e(t)}, we have

χ̇(t) =A(t, tk)χ(t)− (t − tk)B(t, tk)χ̄(t), (7)

where

A(t, tk) =
[

A(t)+B(t)Kd(tk) 0
B(t)

{
Kc(t)−Kd(tk)

}
A(t)+B(t)Kc(t)

]
,

B(t, tk) =
[

B(t)Kd(tk) 0
−B(t)Kd(tk) 0

]
, and

χ̄(t) :=
1

t − tk

(
χ(t)−χ(tk)

)
. (8)

Finally, the IDR problem considered in this paper is
summarized in the following statements:

Problem 1: Assuming that there exists a well-
constructed continuous-time gain matrix Kc(t), find an
SD gain matrix Kd(tk) so that the following conditions
can be satisfied simultaneously:

1) The upper bound of the error cost function J(∞) is less
than a predefined level γ ∈ R>0, where

J(t) =
∫ t

t0
eT (s)Qe(s)ds, (9)

in which 0 ≺ Q = QT ∈ Rn×n is predefined positive
definite matrix of an appropriate dimension.

2) The equilibrium of (5) is asymptotically stable.
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3. THE INPUT-DELAY APPROACH TO THE IDR
METHOD

In this section, we derive the proposed IDR method
based on the input-delay approach. First, we briefly re-
view lemmas required to derive the proposed method.

Lemma 1 [22]: Given any vector function v(t), posi-
tive definite matrix M = MT ≻ 0, and positive scalars t0
and t f with t0 < t f , the following inequality always holds:{∫ t f

t0
v(s)ds

}T

M
{∫ t f

t0
v(s)ds

}
≤ (t f − t0)

∫ t f

t0
vT (s)Mv(s)ds. (10)

Lemma 2 [23]: The following two statements are
equivalent:

(1) Find P = PT ≻ 0 such that AT PA−H ≺ 0.
(2) Find P = PT ≻ 0 and G such that[

−H ∗
GA −G−GT +P

]
≺ 0.

The proposed IDR method is summarized in the follow-
ing theorem:

Theorem 1: For a given sampling period h and a pos-
itive scalar α > 0, state vectors xc(t) of (3) and xd(t) of
(5) satisfy the conditions given in Problem 1 if there ex-
ist positive definite matrices P̄ and R̄, full-rank matrices
F̄1, F̄2, Z̄1, Z̄2, Ȳ1, Ȳ2, and Ȳ3, and matrix K̄d

i such that the
following LMIs are satisfied:

min
X

γ, X ∈ {P̄, R̄, F̄1, F̄2, Z̄1, Z̄2,Ȳ1,Ȳ2,Ȳ3, K̄d
i }

subject to

Ml
iiq ≺ 0 for (i,q, l) ∈ Ir ×Ir ×I2, (11)

Ml
i jq +Ml

jiq ≺ 0 for i < j ∈ Ir,(q, l) ∈ Ir ×I2,

(12)[
−γ ∗

χ(0) −F̄ − F̄T + P̄

]
≺ 0, (13)

where the definition of Ml
i jq is given in (15)-(17).

Finally, an SD fuzzy gain matrix Kd
q for q ∈ Ir can be

obtained by

Kd
q = K̄d

q F̄−1
1 . (14)

Proof: Consider the following LKF [7]:

V (t) =χT (t)Pχ(t)+(tk+1 − t)
∫ t

tk
χ̇T (s)Rχ̇(s)ds

+(tk+1 − t)
[

χ(t)
χ(tk)

]T [H11 ∗
H21 H22

][
χ(t)
χ(tk)

]
(18)

for t ∈ [tk, tk+1), where 0 ≺ P = PT ∈ R2n×2n and 0 ≺
R = RT ∈ R2n×2n are positive definite matrices to be de-
termined, H11 = 0.5

(
Z1 + ZT

1

)
, H21 = −ZT

1 + ZT
2 , and

H22 = −Z2 − ZT
2 + 0.5

(
Z1 + ZT

1

)
, in which Z1 ∈ R2n×2n

and Z2 ∈ R2n×2n are full-rank matrices to be determined.
The time derivative of (18) along the trajectories of (7)

for t ∈ (tk, tk+1) is as follows:

V̇ (t) =2χT (t)Pχ̇(t)

+(tk+1 − t)χ̇T (t)Rχ̇(t)−
∫ t

tk
χ̇T (s)Rχ̇(s)ds

+2(tk+1 − t)
{

χT (t)H11χ̇(t)+χT (tk)H21χ̇(t)
}

−
[

χ(t)
χ(tk)

]T [H11 ∗
H21 H22

][
χ(t)
χ(tk)

]
. (19)

From Lemma 1, we know that

−
∫ t

tk
χ̇T (s)Rχ̇(s)ds ≤−(t − tk)χ̄T (t)Rχ̄(t) (20)

holds; thus, from (19) and (20), we have

V̇ (t)≤2χT (t)Pχ̇(t)
+(tk+1 − t)χ̇T (t)Rχ̇(t)− (t − tk)χ̄T (t)Rχ̄(t)

+2(tk+1 − t)
{

χT (t)H11χ̇(t)+χT (tk)H21χ̇(t)
}

−
[

χ(t)
χ(tk)

]T [H11 ∗
H21 H22

][
χ(t)
χ(tk)

]
. (21)

On the other hand, the following null expressions are
obvious from (7) and (8):

0 =2
{

χT (t)Y T
1 + χ̇T (t)Y T

2 +χT (tk)Y T
3

}
×
{
−χ(t)+χ(tk)+(t − tk)χ̄(t)

}
, (22)

0 =2
{

χT (t)FT +αχ̇T (t)FT
}

×
{
− χ̇(t)+A(t, tk)χ(t)− (t − tk)B(t, tk)χ̄(t)

}
,

(23)

where Y1, Y2, and Y3 are 2n× 2n full-rank matrices to be
determined, F = diag{F1, F2}, in which F1 and F2 are n×
n matrices to be determined, and α ∈ R>0 is a predefined
scalar.

Combining (21)-(23) yields

V̇ (t)≤ηT (t)
{

Θ1(t, tk)+(tk+1 − t)Θ2

+(t − tk)Θ3(t, tk)
}

η(t), (24)

where η(t) = col{χ(t), χ̇(t),χ(tk), χ̄(t)},

Θ1(t, tk) =


He

(
FTA(t, tk)−Y1

)
−H11

P−Y T
2 −F +αFTA(t, tk)
−Y T

3 −H21 +Y1

0
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M1
i jq =


He

(
Āi jq − Ȳ1

)
−H̄11 ∗ ∗ ∗

P̄− Ȳ T
2 − F̄T +αĀi jq +hH̄T

11 −α(F̄ + F̄T )+hR̄ ∗ ∗
−Ȳ T

3 −H̄21 + Ȳ1 Ȳ2 +hH̄21 −H̄22 + Ȳ3 + Ȳ T
3 ∗[

0 F̄2
]

0 0 −Q−1

 , (15)

M2
i jq =


He

(
Āi jq − Ȳ1

)
−H̄11 ∗ ∗ ∗ ∗

P̄− Ȳ T
2 − F̄T +αĀi jq −α(F̄ + F̄T ) ∗ ∗ ∗

−Ȳ3 −H̄21 + Ȳ1 Ȳ2 −H̄22 + Ȳ3 + Ȳ T
3 ∗ ∗

h
(
Ȳ1 −B̄T

iq

)
h
(
Ȳ2 −αB̄T

iq

)
hȲ3 −hR̄ ∗[

0 F̄2
]

0 0 0 −Q−1

 , (16)

Āi jq =

[
AiF̄1 +BiK̄d

q 0
BiKc

j F̄1 −BiK̄d
q

(
Ai +BiKc

j

)
F̄2

]
, B̄iq =

[
BiK̄d

q 0
−BiK̄d

q 0

]
, and F̄ =

[
F̄1 0
0 F̄2

]
for (i, j,q, l) ∈ Ir ×Ir ×Ir ×I2, H̄11 = 0.5

(
Z̄1 + Z̄T

1

)
, H̄21 =−Z̄T

1 + Z̄T
2 , and H̄22 = He

(
− Z̄2 +0.5Z̄

)
. (17)

∗ ∗ ∗
−α

(
F +FT

)
∗ ∗

Y2 −H22 +Y3 +Y T
3 ∗

0 0 0

 ,

Θ2 =


0 ∗ ∗ ∗

HT
11 R ∗ ∗

0 H21 0 ∗
0 0 0 0

 , and

Θ3(t, tk) =


0 ∗
0 0
0 0

Y1 −BT (t, tk)F Y2 −αBT (t, tk)F

∗ ∗
∗ ∗
0 ∗
Y3 −R

 .

Adding eT (t)Qe(t) = ηT (t)ÎQÎT η(t) ≥ 0 to (24) on
both left- and right-hand sides, we have

V̇ (t)+ eT (t)Qe(t) =V̇ (t)+ηT (t)ÎQÎT η(t)

≤ηT (t)
[
Θ1(t, tk)+ ÎQÎT

+(tk+1 − t)Θ2

+(t − tk)Θ3(t, tk)
]
η(t), (25)

where Î = col{
[
0n I

]T
,02n,02n,02n}, in which I is an n×

n identity matrix, and 0n and 02n stand for n×n and 2n×n
zero matrices, respectively.

Thus, V̇ (t)+eT (t)Qe(t)≤ 0 for t ∈ (tk, tk+1) if and only
if the following matrix inequality holds:

V̂ (t) :=Θ1(t, tk)+(tk+1 − t)Θ2

+(t − tk)Θ3(t, tk)+ ÎQÎT ≺ 0. (26)

Moreover, we can reformulate V̂ (t) as the following

convex sum representation:

V̂ (t) =
tk+1 − t

h

[
Θ1(t, tk)+hΘ2 + ÎQÎT

]
+

t − tk
h

[
Θ1(t, tk)+hΘ3(t, tk)+ ÎQÎT

]
≺ 0.

(27)

From the above, we can know that (27) holds if the fol-
lowing matrix inequalities are satisfied simultaneously:

Θ1(t, tk)+hΘ2 + ÎQÎT ≺ 0, (28)

Θ1(t, tk)+hΘ3(t, tk)+ ÎQÎT ≺ 0, (29)

because t ∈ (t, tk) and h = tk+1 − tk, ∀k ∈ Z≥0.
Thus, applying the Schur complement to (28) and (29),

we have

(28)⇔
[

Θ1(t, tk)+hΘ2 ∗
ÎT −Q−1

]
≺ 0, and (30)

(29)⇔
[

Θ1(t, tk)+hΘ3(t, tk) ∗
ÎT −Q−1

]
≺ 0, (31)

respectively.
Before proceeding next, we define

F̄1 = F−1
1 , F̄2 = F−1

2 , F̄ = F−1 = diag{F̄1, F̄2},
Ȳ1 = F̄TY1F̄ , Ȳ2 = F̄TY2F̄ , Ȳ3 = F̄TY3F̄ ,

Z̄1 = F̄T Z1F̄ , Z̄2 = F̄T Z2F̄ , P̄ = F̄T PF̄ , R̄ = F̄T RF̄ ,

H̄11 = 0.5
(
Z̄1 + Z̄T

1

)
, H̄21 =−Z̄T

1 + Z̄T
2 ,

H̄22 =−Z̄2 − Z̄T
2 +0.5

(
Z̄1 + Z̄T

1

)
, K̄d(tk) = Kd(tk)F̄1,

Ā(t, tk) =A(t, tk)F̄ =

[
A(t)F̄1 +B(t)K̄d(tk)

B(t)Kc(t)F̄1 −B(t)K̄d(tk)

0(
A(t)+B(t)Kc(t)

)
F̄2

]
, and

B̄(t, tk) = B(t, tk)F̄ =

[
B(t)K̄d(tk) 0
−B(t)K̄d(tk) 0

]
.
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Finally, using the above relationships and applying
the congruence transformation to (30) and (31) with
diag{F̄ , F̄ , F̄ , I} and diag{F̄ , F̄ , F̄ , F̄ , I}, we conclude that
V̇ (t)+ eT (t)Qe(t)≤ 0 for t ∈ (tk, tk+1) if

Ml(t, tk)≺ 0, for l ∈ I2, (32)

which is equivalent to

r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)wq(tk)Ml
i jq

=
r

∑
i=1

r

∑
q=1

w2
i (t)wq(tk)Ml

iiq

+
r

∑
i< j

r

∑
q=1

wi(t)w j(t)wq(tk)
[
Ml

i jq +Ml
jiq

]
≺ 0, (33)

for l ∈ I2, where the definitions of Ml
i jq are defined in

(15) and (16).
Therefore, if the LMIs of (11) and (12) are satisfied,

then the equilibrium of (5) is asymptotically stable, which
means that condition 2 of Problem 1 is achieved.

Moreover, integrating V̇ (t)+eT (t)Qe(t) from t+k to t−k+1
with respect to time t yields

∫ t−k+1

t+k

[
V̇ (t)+ eT (t)Qe(t)

]
dt ≤ 0. (34)

Because V (t−k ) = V (t+k ) = V (tk) and e(t−k ) = e(t+k ) =
e(tk), summing (34) from k = 0 to ∞, we have

∞

∑
k=0

[∫ t−k+1

t+k

{
V̇ (t)+ eT (t)Qe(t)

}
dt
]

=
∞

∑
k=0

[
V (t−k+1)−V (t+k )+

∫ t−k+1

t+k
eT (t)Qe(t)dt

]
=V (∞)−·· ·−V (t+k )+V (t−k )−V (t+k−1)+ · · ·−V (t+0 )

+
∫ ∞

t0
eT (t)Qe(t)dt

=V (∞)−V (t0)+
∫ ∞

t0
eT (t)Qe(t)dt ≤ 0, (35)

which yields∫ ∞

t0
eT (t)Qe(t)dt ≤V (t0)−V (∞)≤V (t0). (36)

Thus, the upper bound of the state-matching error cost
function is V (t0). Now, assume that the following holds:

V (t0) = χT (0)Pχ(0)≤ γ, (37)

where γ is a positive scalar to be determined, from which
we have

χT (0)Pχ(0)− γ ≤ 0. (38)

Applying Lemma 2 to (38) yields[
−γ ∗

Fχ(0) −F −FT +P

]
≺ 0. (39)

Finally, applying the congruence transformation with
col{1, F̄}, we have the LMI condition (13). Therefore,
if there exists a numerical solution to the optimization
problem with LMIs (11)-(13), conditions of Problem 1 are
achieved, and the upper bound of the state-matching error
cost function is minimized below γ . This concludes the
proof. □

Remark 1: Using Theorem 1, a sufficient condition
guaranteeing the asymptotic stabilization of (7) and the
minimization of the upper bound of the error cost func-
tion (9) is proposed in terms of LMIs. However, because
of the mismatched information between wi(t)

(
or w j(t)

)
and wq(tk), the LMIs in Theorem 1 are somewhat conser-
vative. Thus, in the following, this paper derives a relax-
ation method which is an extended version of the conven-
tional one.

The following theorem gives the method for handling
the mismatched fuzzy weighting functions:

Theorem 2: The LMIs of (11) and (12) hold if the fol-
lowing LMIs are satisfied:

Ml
i jq +Ml

jiq +Ωl
i j +Ωl

ji ≺ 0, (40)

Ξl
i jq +Ξl

iq j +Ξl
jiq +Ξl

jqi +Ξl
qi j +Ξl

q ji ≺ 0, (41)

for (i, j,q, l)∈ Ir ×Ir ×Ir ×I2, where Ωl
i j is a symmetric

matrix of an appropriate dimension to be determined,

Ξl
i jq :=Ml

i jq −
r

∑
v=1

σv

(
Ml

i jv +Ωl
i j

)
,

and σv > 0 is a predefined scalars satisfying wv(tk)−
wv(t)+σv ≥ 0.

Proof: From (33), we have

r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)wq(tk)Ml
i jq

=
r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)
(
wq(tk)+wq(t)−wq(t)

+σq −σq
)
Ml

i jq

=
r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)wq(t)
(
Ml

i jq −
r

∑
v=1

σvMl
i jv

)
+

r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)

×
(
wq(tk)−wq(t)+σq

)
Ml

i jq ≺ 0. (42)
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For an arbitrary symmetric matrix Ωl
i j of an appropriate

dimension, the following is obvious:

r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)

×
(
wq(tk)−wq(tk)+σq −σq

)
Ωl

i j = 0. (43)

Combining (42) and (43) yields

=
r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)wq(t)

{
Ml

i jq

−
r

∑
v=1

σv

(
Ml

i jv +Ωl
i j

)}

+
r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)
(
wq(tk)−wq(t)+σq

)
×
(
Ml

i jq +Ωl
i j

)
≺ 0. (44)

We can say that the above matrix inequality is governed
by the following matrix inequalities:

1
6

r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)wq(t)
(

Ξl
i jq +Ξl

iq j

+Ξl
jiq +Ξl

jqi +Ξl
qi j +Ξl

q ji

)
≺ 0 and (45)

1
2

r

∑
i=1

r

∑
j=1

r

∑
q=1

wi(t)w j(t)
(
wq(tk)−wq(t)+σq

)
×
(
Ml

i jq +Ml
jiq +Ωl

i j +Ωl
ji

)
≺ 0. (46)

Because we have chosen wq(t) with q ∈ Ir to satisfy
wq(tk)− wq(t) + σq ≥ 0, the matrix inequalities of (45)
and (46) hold if and only if the LMIs of (40) and (41) are
satisfied. This concludes the proof. □

Remark 2: The main contributions of this paper are
summarized as follows:

1) Unlike previous works, the IDR problem is addressed
without the use of any discretization methods.

2) By minimizing the upper bound of the error cost func-
tion, the state-matching performance is considered
over the whole time interval.

3) The relaxed stabilization condition was developed
based on the proposed extended relaxation technique,
which handles the mismatched information of the
continuous-time and sampled-time fuzzy weighting
functions.

4. NUMERICAL EXAMPLES

In this section, we conduct a numerical simulation us-
ing YALMIP [20] running on MATLAB 2016a in or-
der to demonstrate the effectiveness of the proposed IDR

method. In this example, an inverted pendulum on a cart
[21] is chosen that can be represented by the T–S fuzzy
system (1) with

A1 =

[
0 1
g

4l/3−aml 0

]
, A2 =

[
0 1
2g

π(4l/3−amlβ 2) 0

]
,

B1 =

[
0

− a
4l/3−aml

]
, B2 =

[
0

− aβ
4l/3−amlβ 2

]
,

w1(t) =
{

1− 2
π x1, 0 ≤ x1 ≤ π

2
1+ 2

π x1, − π
2 ≤ x1 ≤ 0

,

w2(t)= 1−w1(t), x1 is the angle of the pendulum from the
vertical rad, x2 is the angular velocity rad/s, g = 9.8 m/s2,
a = 1/(m+M), M = 8.0 kg, m = 2.0 kg, 2l = 1.0 m, and
β = cos(88◦).

From [2], the continuous-time fuzzy controller for this
system can be obtained as follows:

Kc
1 =

[
120.6667 22.6667

]
, Kc

2 =
[
2551.6 764.0

]
.

In this example, we assume the operating regions of the
state variables as

x1(t) ∈ {−∆x1, ∆x1} :=
{
−π

2
,

π
2

}
, and

x2(t) ∈ {−∆x2, ∆x2} :=
{
−1000

180
π,

1000
180

π
}
. (47)

Under this assumption, we compute minimum required
value for σi with i ∈ Ir using the following process:
First, because of the system state vector, it is obvious that
ẋa1(t) = xa2(t); thus, we have

xa1(t) =xa1(tk)+
∫ t

tk
ẋa1(t)dt = xa1(tk)+

∫ t

tk
xa2(t)dt

≤xa1(tk)+
∫ t

tk
∆x2dt = xa1(tk)+(t − tk)∆x2

≤xa1(tk)+h∆x2, (48)

where subscript “a” can be either “c” or “d”.
From the above, the relationship between xa1(t) and

xa1(tk) becomes

xa1(t) ∈
[
xa1(tk)−h∆x2, xa1(tk)+h∆x2

]
. (49)

Assuming the maximum allowable sampling period h
is 0.015 s and based on the relation (49), we numerically
found the minimum required value for σi for i ∈ Ir via
a gridding procedure on the operating regions (47). The
result is σi ≥ 0.1667.

We set the initial conditions for xd(t) and xc(t) as
xd(0) = xc(0) = col{1.2,1} and the termination time t f =
5[s]. To quantitatively show the state-matching perfor-
mance, we employ the following performance index:

P =
2

∑
i=1

{∫ 5

0
|xci(t)− xdi(t)|dt

}
. (50)
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Fig. 1. Time responses of xc(t) and xd(t) for various methods at T = 0.015[s].

For 0.015 s, we used the previous method given in [13]
as well as the proposed Theorem 2 to compute the SD
fuzzy gain matrices. For the proposed method, the pa-
rameters were chosen as follows: σi = 0.2 with i ∈ Ir,
Q = 10−1I, and α = 10−2. Other parameters for the pre-
vious method were chosen appropriately to be able to suf-
ficiently show its effectiveness. The control gains are ob-
tained as follows from Theorem 2

Kd
1 =

[
473.78 142.84

]
, Kd

2 =
[
2290.06 743.06

]
,

and from [13]

Kd
1 =

[
611.34 275.95

]
, Kd

2 =
[
1991.88 808.43

]
.

Using the above gains, we measured P , and the results
are as follows: P = 0.1279 for Theorem 2 and P = 0.5108
for [13], in which the lower means the better performance.
Moreover, we depicted the time responses of xc(t) and
xd(t) in Fig. 1. The figure clearly shows that the state-
matching error performance of the proposed method is
better than the other method. From the results, we can
see that the proposed method provides better performance
than the existing method. This is mainly because the pro-
posed method directly minimizes the error cost function
J(t) without the use of any discretization methods, while
the previous approach approximately discretizes a given
T–S fuzzy model prior to apply their methods.

5. CONCLUSIONS

In this paper, we proposed an input-delay approach to
the IDR method for T–S fuzzy systems. Previous IDR
methods only minimized the state-matching error at each
sampling time, and were derived based on the discretized
model. However, in this paper, the main contributions are

that the performance is considered over the whole contin-
uous time interval and no discretization procedures were
used. Moreover, a sufficient condition guaranteeing both
the asymptotic stabilization and minimization of the cost
function was derived in terms of the LMIs. Finally, we
conducted a simulation, from which we conclude that the
proposed method provides better state-matching perfor-
mance than conventional ones.
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